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Intermittent transient chaos at interior crises in the diode resonator
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We report experimental measurements and calculations using a model on a driven, dissipative,
dynamical system which shows chaotic behavior. The system is the diode resonator composed of
the series combination of a generator, inductor, and a p-n-junction diode. It is studied where there
are sudden transient changes in the strange attractor, phenomena called crises by Grebogi, Ott, and
Yorke, for which a universal scaling law exists. We verify the scaling law both experimentally and
with model calculations. Furthermore, the Lyapunov exponent, a measure of sensitivity to initial
conditions, is shown by both methods to increase rapidly but continuously through the crisis region.

GENERAL INTRODUCTION QUANTITATIVE DESCRIPTION OF CRISIS

The motion of driven nonlinear dissipative physical sys-
tems is often observed to settle into a state of sustained
nonperiodic turbulent or chaotic behavior. It has been
found that many of these systems show patterned routes
to chaos which are well described by the universal
behavior of iterated, unimodal, one-dimensional maps.
Also, many features of the chaotic behavior of these sys-
tems are surprisingly well described by simple one-
dimensional maps. We report here the experimental ob-
servation of a "universal" scaling law in the chaotic
behavior of the p-n-junction diode resonator in the vicini-
ty of interior crisis. ' We discuss the behavior in terms
of the exact one-dimensional mapping function which we
have recently obtained from a model of the p-n-junction
diode and in terms of an extension of that model to two
dimensions. We also report values of the I.yapunov ex-
ponent, which gives a measure of the predictability for the
system, in the neighborhood of interior crisis.

Recently, Grebogi, Ott, and Yorke ' have discussed the
occurrence of sudden qualitative changes in the chaotic
dynamics of nonlinear systems in terms of one- and two-
dimensional quadratic maps. These changes occur at par-
ticular values of the "drive" parameter, where an unstable
periodic orbit enters the region of phase space occupied by
the orbit of the sustained chaotic state into which the sys-
tem settles. The region of phase space into which the sys-
tern settles is called an attractor and Grebogi, Ott, and
Yorke have assigned the term crisis to the phenomenon of
the joining of the unstable orbit with the attractor. Re-
cent reports ' of experimental observations of the driven
nonlinear p-n-junction diode resonator show the qualita-
tive changes in the attractor at crisis as described by Gre-
bogi, Ott, and Yorke. In this paper we report both mea-
surements and model calculations for the p-n-junction
diode-resonator system which show the onset of intermit-
tent, transient, chaotic behavior of the response as the am-
plitude of the drive voltage is increased beyond the critical
value where crisis occurs.

The response of a driven anharmonic p-n-junction
diode resonator, composed of a resistance, inductance, and
a diode in series with an oscillator, has been found to ex-
hibit a pattern of period doubling ' and tangent-
bifurcation-intermittency' routes to chaos, in good agree-
ment with universal behavior found in iterated one-
dimensional maps. We have shown that a simple, piece-
wise linear model of the diode, which characterizes the
p-n-junction by a forward bias voltage, reverse capaci-
tance, and reverse recovery time, reduces exactly to a
one-dimensional map over a range of circuit parameters
and drive voltages. The map is of the form

where I~
~ „

is the maximum forward current through
the p-n-junction during the nth cycle, Vis the magnitude
of the drive voltage, and the mapping function I'& is given
by the step-by-step procedure described in Ref. 4. We
chose a very simple function to characterize the reverse
recovery time for the nth cycle: r„„=f(

~

I
~
„),where

f(I)=v~[1—exp( I/I, )]; r~ an—d I, are parameters
characterizing the particular p- n-junction used. Recently,
we have shown that the reverse recovery time depends not
only on the last conducting cycle but on the conducting
cycle previous to that as well. Thus, we extended the
model to include this characteristic by choosingr„„=f(

~

I
~
„)+af(

~

I
~
„~),where a is a parameter.

For a=0 we have the previous model, Eq. (1), and a&0
leads to a two-dimensional map of the form

over a range of circuit parameters and drive voltages.
Iteration of this map with a&0 has been shown to yield
an attractor with the qualitative features of a correspond-
ing attractor measured on a p-n-junction diode resonator.
The calculations reported here use this model.

For the most part, we report calculations and measure-
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ments taken with the drive parameter above the stable
period-3 window and in the neighborhood of the crisis
value V3, . (This point corresponds to C =C„3,as shown
in Fig. 2 of Ref. 2, using their notation, and to point B in
Fig. 2 of Ref. 6.) Precisely at V=V3, the unstable
period-3 orbit, created together with the stable orbit at the
period-3 tangent-bifurcation point, coincides with one end
of each of the three bands of the chaotic attractor. (The
chaotic attractor forms above V= V3„,where V3„is the
accumulation point for period-doubling bifurcations of
the original period-3 stable orbit. ) The point where
V —V3 is called interior crisis by Grebogi, Ott, and
Yorke. As Vincreases beyond V3, the attractor suddenly
(discontinuously) expands to include the regions between
the period-3 bands. Grebogi, Ott, and Yorke distinguish
between "interior crisis, " which we are discussing in this
paper, the "boundary crisis" where the domain of attrac-
tion for one attractor disappears and another attractor ap-
pears.

The behavior of the p-n-junction diode-resonator sys-
tem near this interior crisis point is best understood by
consideration of the third iterate of the model mapping
function of Eq. (1),
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where F' '(I)=F(E(F(I))). The third iterate is shown in
Fig. 1. We have used the one-dimensional model here for
clarity in describing the essential features of the behavior
of the system at, or near, crisis. The reduced circuit pa-
rameters used for this calculation listed in the figure cap-
tion are not critical and were chosen to be the same order
of magnitude as those of our physical circuit.

The solid line in Fig. 1 is the calculated third-iterate
mapping function, while the points (plus signs) show 256
successive iterates after an initial 744 iterates of F, . The
pattern shown by the points is independent of the starting
value of

~
I

~
and represents the attractor for the partic-

ular value of the drive voltage. The intersection of the
45-deg line and the third-iterate mapping function (inside
the circles in Fig. 1) gives the unstable fixed points I„for
the third iterate As .the drive voltage is increased from a
value below V3, [Fig. 1(a)], to a value above V3, [Fig.
1(b)], the chaotic bands of the attractor increase in length
until the unstable fixed point I„is included in the attrac-
tor. This first occurs at V= V3, .

Figure 2 is an expanded view of the upper right-hand
portion of Fig. 1(b), including one of the chaotic bands.
Iteration of the map shown in Fig. 2 shows that the sys-
tem remains trapped in the chaotic band until it "hap-
pens" to visit the region near I„butbelow the 45-deg line.
It then "escapes" the chaotic band and will wander wildly
over the rest of the third-iterate mapping function until
the forward current peak happens to fall within a band
again. Once the system is within a chaotic band it can es-

cape only through the small "exit" region near I„,as de-
cribed above. Hence, when V & V3„the attractor consists
of two distinct parts: the "chaotic trap" region and the
"intermediate" region. The chaotic trap region is com-
posed of three bands, which were the entire attractor be-
fore crisis, and above crisis act as a trap with a small but
finite escape probability. The intermediate region is the
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FIG. 1. The solid line is the third iterate of the mapping
function I~ obtained from the one-dimensional model. The
points are

~
I~

~ pal+3 vs
~

I
~
„(inunits of V~/R) for the 734th

through the 990th cycle and represent the attractor. (a)

V/Vj ——12.40 and below crisis. (b) V/Vj ——12.60 and above
crisis. In both cases, the circuit parameters were co=up Q =15,
~ mo/2+=1, and I,R/Vy ——2.0 using the notation of Ref. 4.
The unstable fixed points I„arewithin the circles at the inter-
section of the 4S-deg line and the third iterate of I' ~.
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region between the bands where the system is rarely
found, because once having escaped from the trapping
portion of the attractor the system is quickly trapped
again.

For V& V3„the system intermittently escapes from
and becomes trapped in the period-3 chaotic bands. We
describe the dynamical behavior of the system quantita-
tively by defining the following quantities. Each time the
system is trapped in a period-3 band, we refer to it as an
"event. " The system is observed for a period of time dur-
ing which there are a total of NT trapping events and on
the ith event the system remained trapped for I.; three-
fold iterates. The probability of being trapped for L
threefold iterates is P(L) =N(L)/NT, where the distribu-
tion function N(L) is the number of times the system
remains trapped in the chaotic bands for exactly L three-
fold iterates and NT is sufficiently large. The average L
for the set of NT trapping events is (L ) = gP gP(L).

Recently, Grebogi, Ott, and York indicate that systems
described by maps will exhibit universal behavior near
internal crisis such that
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FIG. 2. An expanded view of the upper right-hand part of

Fig. 1(b) showing the third iterate of Fj. Iteration of any point
on the map within the dashed box wi11 remain trapped in the re-
gion.

P=q. In this limit the sum for (L ) may be replaced by
an integral,

(L ) =f Lq exp( q—L)dL =q (6)

Equations (5) and (6) lead to Eq. (3).
The relationship between (L } and e depends on the

shape of the maximum of the mapping function. As e is
increased from zero, the maximum in E' '(I) moves up
through the dashed box shown in Fig. 2. The height h of
the maximum above the dashed box is a function of e.
The function has the properties h (a=0)=0, h (e) &0 if
a&0, and h (e) &0 if e&0. In general„the leading term in
an expansion of h (e) about @=0will be proportional to e
and, thus, the length b. is proportional to e'~' if the max-
imum in F' '(I) is of order z. The order of the extrema in
F' '(I) is the same as the order of the extremum in F(I).
Therefore, if F(I) has an extremum of order z, then
q o:e'~'and Eq. (6) gives

(L}~e '~'

since q ~ b. Equation (7) reduces to Eq. (4) for a quadra-
tic extremum where z =2.

In general, behavior near internal crisis associated with
a period-n window may be similarly described by con-
sideration of the nth iterate of the map. Hence, the re-
sults above are of universal validity for one-dimensional
maps.

—1/2 (4) EXPERIMENTAL RESULTS

where e=( V —V3, )/V3, « 1. We arrived independently
at the same result by the argument given below, which is
similar to theirs.

Tracing the path followed by the iterates on the map
shown in Fig. 2 demonstrates that points on the map
which are outside the dashed box will escape the period-3
chaotic band. Escape is assured once the peak forward
current falls in the region of length b, near the maximum.
Both iteration of the model map and experimental obser-
vations reported below (see Fig. 5) show that the distribu-
tion of third-iterate current peaks during a trapping event
is a smooth, flat function over the region near the max-
imum. Thus, the assumption of a random distribution of
entrance current peaks would allow a statistical treatment
of the system. However, this assumption is unnecessarily
strong since, as we demonstrate in the next section, the
Lyapunov exponent is positive over a range of the drive
parameter which includes the crisis point. The sensitive
dependence on initial conditions for systems exhibiting
chaotic behavior makes the statistical description of a
completely deterministic system possible. "' Thus, any
distribution in the entrance current peaks will lead to a
neighborhood near the crisis point where the statistical
description is valid. The probability that the system will
escape on any particular third iterate is q, and we expect q
to be proportional to the length of the escape region A.

The probability of escape after exactly L threefold
iterates is

P(L)=q(1 q) =q exp( PL),— —
where P= —ln(1 —q). If V& V3„then e—=0, q « 1, ana

The physical diode resonator is composed of the series
combination of a diode, an inductor, and a signal genera-
tor. Also included in the series loop is an operational am-
plifier used as a current-to-voltage converter. The diode
we use is a Westinghouse 1N1211 rectifier —a Si p nj--
junction, but any diode with a recovery time comparable
to the drive period will suffice. At sufficiently low drive
voltages the inductor (14 mH, 80 0 at 100 kHz) resonates
with the diode capacity at approximately 100 kHz. It was
found necessary to filter the output of our signal genera-
tor using a bandpass filter to remove spurious amplitude
modulation. The output of the bandpass filter drives the
resonator circuit through another operational amplifier to
reduce the drive impedance to practically zero. The re-
sulting drive signal has an amplitude modulation and drift
of less than 1 part in 5000. The frequency used was 80
kHz and found not to be critical.

Figure 3 shows the third iterate of the map with the
drive voltage just above the period-3 crisis (@=0.01). The
forward currents on the nth and n +3rd cycles are peak
detected and held for several cycles and displayed on the
x and y axes of an oscilloscope. The brighter lines indi-
cate the points which are also visited in the chaotic
period-3 region just below crisis. The folding in the lower
noisy region is a feature of the two-dimensional nature of
the diode resonator.

Figure 4 is a digitized (-500 points) version of Fig. 3.
Every third current maximum is peaked detected, digi-
tized, and stored in a computer. The technique allows the
observation of the order in which the points are visited.
Shown is a trajectory which begins in the lowest region,
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FIG. 3. Third itcratc of thc map with 6=0.0I. Thc three
bright areas correspond to the chaotic bands below crisis. The
value

~

I ~, is described in the text.
I
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wanders around the map, and eventually is trapped in the
upper chaotic region. This is what we call an event, and
in this case it lasts five period 3c-ycles before the trajecto-
ry escapes that region. Experimentally we detect an event

by the occurrence of two or more consecutive current
peaks, sampled every three drive cycles, larger than the

~

I ~, shown in Fig. 3. The value
t
I ~, is set such that

all current peaks in the upper chaotic band trigger a logic
circuit which then produces a "true" signal. At least two
consecutive current peaks are needed to discriminate
against other peaks, shown in Figs. 3 and 4, that are
larger than

i
I i, and are not part of an event.

Figure 5 shows the spectrum of current-peak heights
during events. The channel number is linearly related to
the current peak with an offset. The drive voltage is just
above crisis (@=0.0013). The true signal is apphed to the
colncldc11cc lllput of thc pulse-hclgllt aIIalyzcr to dlscrIm-
inate against the unwanted pulses.

The general shape of the spectrum is very similar to
that calculated from the logistics equation. " The two
small peaks on the high side of the spectrum correspond
to the two most probable entry points. These come from
the two peaks in the upper central region of the maps
shown in Figs. 3 and 4. The small peak to the left of the

I
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CHANNEL

FIG. 5. Spectrum of current-peak heights in the upper chaot-
ic band just above crisis (@=0.0013).

main spectrum corresponds to the first point visited after
an event. The central portion of the spectrum is quite
flat, justifying our earlier assumption.

Figure 6 shows the number of events of length I.occur-
ring out of a total 51200 events as a function of the
length of the orbit for a reduced drive voltage @=0.0042.
The data show an exponential decay over 3 orders of mag-
nitude verifying Eq. (5) with the average decay length
(I ) =19.2. To obtaIn 'thcsc data plllscs Icplcsclltlllg tlM
current peaks greater than

~
I ~, were counted in a mul-

t1channel analyzer. The log1c c11cu1t was used to prevent
the analyzer from counting except during an event and to
advance the channel when the event was over. The num-
ber of events for each I was sorted by computer. One

0.6- g(L) lO-

04
II l„&~A&

FIG. 4. Digitized version of Fig. 3 showing a trajectory get-
ting trapped in and escaping from the upper chaotic band after
five period-3 cycles—an event wj.th I.=5.

IOO

FIG. 6. Number of events of length I. as a function of I. for
e=0.0042. Here (L ) =19.2. The initial transient is discussed
in thc text.
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FIG. 7. Average inverse square of I. vs e verifying Eq. 7 with
z =2.

cause for the initial transient is that the acceptance level
of the current peaks ! I !, must be adjusted slightly
below the upper chaotic region, allowing some peaks from
trajectories never actually trapped in the region to be
counted. Another cause is the nonrandom distribution of
entrance currents which will be discussed in the next sec-
tion.

The variation of 1/(L) as a function of the reduced

drive voltage e (channel number) is shown in Fig. 7. The
average of L is over 1000 events per channel. Over a
large range of e and frequency we find Eq. (7) is con-
sistent with our data. For @=0.037 we observe a reprodu-
cible "glitch. " We found similar glitches for frequencies
between 60 and 100 kHz and with an added 100 0 series
resistance. We believe these glitches are due to a nonran-
dom entrance distribution.

To obtain these data, we recorded in the multichannel
analyzer the number of current pulses greater than ! I~ !,
occurring per 1000 events before advancing the channel.
The horizontal output of the analyzer (a voltage propor-
tional to the channel number) is used to control the ampli-
tude of the drive voltage, decreasing it by steps occurring
with every channel advance. The procedure was to start
the system at the highest e desired and allow it to proceed
until the crisis point was reached. A computer was used
to take (L) from the analyzer and compute 1/(L)
values for each channel.

The largest Lyapunov exponent A, is a measure of how
rapidly nearby points in phase space separate. A negative
value of A, corresponds to the system being in a limit cy-
cle, while a positive represents a chaotic or strange attrac-
tor. Brandstater et al. ' have recently determined A, with
some confidence in a Couette-Taylor flow experiment.
Following their example we digitized (12 bits) 4000
current peaks (which we here call I; for simplicity) for a
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FIG. 8. I.yapunov exponents near crisis. The circles are determined through Eq. (8) by experiment and the crosses from the one-
dimensional model through Eq. (9). P 9, P-15, and P-18 are st-able orbits of the period indicated, and A is the period-3 accumulation
point.
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number of values of e and stored the amplitudes in a com-

puter. Using the equation

&
I I;+. I,-+. I /I I; I,-I &.,="",

we determine A, by starting with an arbitrary i and search-
ing the data file to find an IJ very near I; on the first
iterate map. By incrementing n, the separation is then
followed until it is no longer small compared with the size
of the attractor. Then the second point of the pair IJ is
replaced by a new one determined as before. The average
is taken over about 400 different values of i Th.e log of
the averaged normalized separations is plotted against n

and the slope is determined. A good line is obtained for n

between 2 and 10. Since our noise is comparable with the
digitizing error (1 bit) and with the initial separation (2
bits), we would expect, and find, larger deviations for
n =1. Usually, after ten cycles the separation is about
10% of the size of the attractor. The circles in Fig. 8

show the results of these calculations. The regions labeled
P-9, P-15, and P-18 are limit cycles with the period indi-
cated and would have a negative Lyapunov exponent.
The period-3 accumulation point is denoted by A. The
most noteworthy feature is the dramatic but apparently
continuous rise at crisis.
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FIG. 10. The number of events of length L as a function of
L (x's) using the two-dimensional model with @=0.0136. The

boxes are obtained from the same data by summing the events

over L in steps of 5 to improve the statistics. The average

length of an event is obtained from the slope using Eq. (3) and

neglecting the events with small L as discussed in the text.

(L ) =10.6 for the case shown.

MODEL CALCULATIONS

l.70

l.55- 2D MODEL

The dynamics of the p-n-junction resonator near crisis
was also studied using the two-dimensional model
described earlier. The circuit parameters used were not
critical, but again were chosen to be the same order of
magnitude as those used in the physical system reported
above. For Figs. 9—ll, Q=15; r~cuo/2m=1. 2; RI, /Vf

=2.0; co=coo', cc=0.4, where Q =Lcoo/R; coo ——(1/LC)'~2;
and Vf, R, L, and C are the forward bias voltage, resis-
tance, inductance, and reverse capacitance, respectively.
We use the same notation here as in Ref. 4. For these
values of the circuit parameters, internal crisis above the
period-3 window occurs at V/Vf ——8.879 15+0.000 05,
where V is the amplitude of the drive voltage.

Figure 9 is a plot of about 500 third iterates of the for-
ward current peaks with V/Vf ——9.0. The model gives
very good qualitative agreement with the experimental re-
sults displayed in Figs. 3 and 4. The folded, multivalued
nature of this attractor is in contrast with the simple at-

I.40 '-

l.25-

I. I 0- +

+y

0.95-
+
~ 0.80-
E

0.6 5-
+
+

,,".I
050- +

0.35-

e

!
102

(L) 10

0.20
0.20

I

0.50
I

0.80
li rn I n

I

I .I 0 I.40 I

IO 2 10-1

FIG. 9. Third iterates,
I
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for the 478th through the 990th cycle using the two-dimensional
model with V/Vf ——9.00 (a=0.0136).

FIG. 11. The average length of an event, (L ) vs e for the
two-dimensional model. The line with slope 0.5 is the universal

scaling law of Eq. (7) with z =2.
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tractor obtained from the one-dimensional model shown
in Fig. 1(b).

Figure 10 shows the distribution of the number of trap-
ping events of length L out of a total of 1000 events for
V/Vf =9.0. The two-dimensional mapping function F2
was iterated 51540 times in order to collect these data.
Such a calculation required about 40 min of IBM 4341
computer CPU (central processing unit) time. The x's in
Fig. 10 represent the number of events which were ob-
served for each value of L. The squares were obtained
from the same data by summing the number of events
with length from 1 to 5, 6 to 10, 11 to 15, etc. This was
done to improve the statistics and facilitate the taking of
slopes to obtain (L). These results compare well with
the experimental results shown in Fig. 6.

We find that both the experimental results and the
model calculations are in good agreement with the ex-
ponential form of Eq. (3) for L )L;„,where L;„(10.
However, for L (L;„,deviations which are clearly
beyond statistical fiuctuations are observed in both cases.
These deviations are, in part, due to the fact that the as-
sumption of a random distribution of entrance currents,
used to obtain Eq. (3), is not valid. The distribution of en-
trance currents is determined by the shape of the attractor
at points away from the three chaotic bands. Considera-
tion of Figs. 3 and 4 show that entrance into the upper
chaotic band is gained from the two peaks in the attractor
which occur at low

~

I
~
„.The distribution of entrance

currents tends to peak at these two maxima. This is a
clear violation of an assumption of a random distribution
of entrance-current values. The effect which this has on
the distribution N(L) for low L depends on the values of
the first few iterates of the most probable entrance
current. If the first few iterates do not fall in the region
of length b, (see Fig. 2) near the maximum where escape is
assured, then N(L), at small L, will be much smaller than
Eq. (3) would predict. This is the case in Fig. 10.

For L )L;„the distribution behaves as if the dynam-
ics were statistical even though the entrance points are not
random. This is due to the sensitive dependence on initial
conditions which is indicated by the positive Lyapunov
exponent for the attractor. Nearby points separate ex-
ponentially, and after L;„iterates, the particular value of
the entrance current becomes unimportant. L;„de-
creases as the Lyapunov exponent increases.

The average length of a trapping event (L ) was ob-
tained for several values of the drive parameter V by tak-
ing the slope of the semi-log plot of the number of events
versus L as indicated in Fig. 10. The values of (L ) are
plotted versus e in Fig. 11. The statistical theory [Eq. (7)]
predicts a scaling law with m =0.5 if the map has a
quadratic extrema. Our results are consistent with
m =0.5 at small e. If all the data are considered, then a
slightly larger m =0.525 fits the data better. This may
indicate a deviation of the calculated results for the larger
values of e from the prediction of Eq. (7), which is only
valid for e«1.

Finally, the Lyapunov exponent A, was calculated for
the 1D model [Eq. (7)] as the drive parameter was in-
creased through crisis. The Lyapunov exponent for a
one-dimensional map"' may be expressed as

dFi(x;)
A, = lim —gin

N~ao N; i dx

where dF&/dx is evaluated at the ith iterate x;. Since Fi
obtained from the model is not an analytic function, it
was necessary to use a numerical method to find the
derivative of Fi at each iterate. We used a simple four-
point "extrapolation-to-the-limit" technique. ' Values of
A, were obtained using Eq. (9), truncating the limit at
N =4000. The results are plotted as x's in Fig. 8. Dif-
ferent starting values of the current gave the same value
of A, to within the size of the points on Fig. 8. Negative
values of A, were obtained fram Eq. (9) when the drive pa-
rameter was within a window of a periodic orbit. For a
one-dimensional map, periodic windows exist at every de-
gree of resolution in the drive parameter in the chaotic re-
gion. This leads to an infinite number of very narraw
negative spikes in the A, versus drive-parameter curve. '

However, the width of the periodic window decreases rap-
idly with increasing periodicity, and, on the scale of Fig.
8, only the periodic windows indicated were observed.
Experimental noise is also known to smooth the A, curve. '

The Lyapunov exponent of the 1D model agrees well with
the largest Lyapunov exponent calculated from measure-
ments on the physical system. Both show a sharp but
continuous (to within the precision of the calculations)
rise as the drive parameter is increased through the crisis
point.

CONCLUSIONS

In summary, we have used both experimental measure-
ments and a mathematical model, which leads to a one- or
two-dimensional map, to study the dynamics of the p n-
junction diode resonator near internal crisis. We have
studied extensively the internal crisis which is associated
with the stable period-3 window. The attractor of the sys-
tem, above but near internal crisis, consists of two parts:
a chaotic trap region and an intermediate region. The sys-
tern intermittently escapes from the chaotic trap region
into the intermediate region and then quickly becomes
trapped again.

A simple statistical argument is given, using the third
iterate of the one-dimensional model map, which leads to
the predictions of an exponential decay from the trap re-
gion and a scaling law indicating the average length of a
trapping event is proportional to e ' ', where the map has
an extremum of order z. These predictions are universal
for unimodal one-dimensional maps.

Experimental results and two-dimensional model calcu-
lations were presented which show that the probability
that the system is trapped for L iterates is an exponential-
ly decreasing function of L. Also, the average length of a
trapping event (L ) is found to be proportional to e
These results are in agreement with the universal predic-
tions for a one-dimensional map with a quadratic ex-
tremum. Calculations of the Lyapunov exponent X, both
from experimental results and from the one-dimensional
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model map, show a sharp but continuous rise in I, as the
drive parameter is increased through the crisis point.
This continuous change in the Lyapunov exponent, in
spite of the discontinuous change in the attractor, at crisis
is similar to the behavior observed at other intermittency
points (at tangent-bifurcation points for example' ). We
believe that this is the first time these quantities have been
reported for a physical system in the vicinity of crisis.
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