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The space-time memory function associated with the dynamical structure factor is expressed in

terms of current-current and density-current correlation functions. We then apply the binary-
collision expansion to evaluate these correlation functions. In this approximation, we include exact-

ly all the effects of a single collision between a pair of particles. The dynamical structure factor is

then evaluated from the memory function and compared with the neutron scattering data on dense

krypton gas. The agreement is very good even for wave numbers below the first diffraction peak in

the structure factor, indicating that the spatial correlations are included in this theory.

I. INTRODUCTION

It is well known that the dynamical properties and the
transport properties of a physical system are embodied in
time correlation functions (TCF). The theoretical prob-
lem of studying these functions is basically that of
describing the dynamical properties of a many-body sys-
tem. The time evolution of the TCF can be expressed in
terms of a space-time memory function' and thus the
problem reduces to the calculation of an appropriate
memory function. The memory function has in it all the
contributions to the dynamics of a many-body system—
free streaming, uncorrelated and correlated binary col-
lisions, and higher-order collisions.

In previous papers, we have applied the technique of
binary-collision expansion (BCE) to evaluate the space-
time memory function and from that the time-correlation
function of interest. In this approximation, we consider
exactly all the effects of a single collision between a pair
of particles. Since the BCE is applied to the memory
function, this should lead to an improved approximation
relative to the direct expansion of the correlation function.
In other words, higher-order terms in density do appear in
TCF (with not exactly the correct coefficients), even

though the memory function is expanded only to first or-
der in the density. It should also be noted that the full
two-particle static correlations are included in this theory
through the use of the exact pair-distribution function.
An added feature of this formalism is that it is an expli-
citly ab initio calculation and is valid for any intermolec-
ular potential. The only inputs required are the pair-
distribution function and the intermolecular potential. Of
course the results of this simple model will show increased
deviation from experimental results for longer times espe-
cially as the density approaches liquid density wherein the
effects of correlated binary collisions and higher-order
collisions cannot be neglected.

In this paper, we use this technique to evaluate the den-
sity correlation function, S(q,co), and compare our results
with the experimental neutron scattering data. Until this
experiment, the only data available on $(q, co) were at the
triple point and our theory will not be valid at such high
densities. However, the recent data are at moderate den-

sities (na =0.482 and 0.628) and it will be of interest to
study the role of binary collisions in the time decay of the
density correlation function. In addition, the line-shape
data has indicated a potential related effect implying that
the hard-sphere Enskog kinetic equation which has been
found to be valid up to quite high densities (by compar-
ison with simulation results ) is not the appropriate kinet-
ic equation. A comparable kinetic equation for continu-
ous potentials is still lacking. In our theory, we do look
into the dynamics of the intermolecular collisions using a
continuous (Lennard- Jones) potential.

In Sec. II, we formulate the problem and apply BCE to
the appropriate correlation functions that appear in the
memory function. In Sec. III, we present the results of
our calculation and compare them with the experimental
and molecular dynamics results. It is seen that our results
agree with the experimental values, for q) 1 A ', espe-
cially at the lower density.

II. MEMORY FUNCTION FORMALISM

The time evolution of the intermediate coherent scatter-
ing function F(q, t), defined by

F (q, t) = (p «(0)e' 'p«(0) ) = (p «(0)p«(t) )

is governed by the Mori-Zwanzig equation'

(2)

where M(q, t) is the space-time memory function defined
by

M(q, t)=(p «(0)e' ~'p (0))(p «(0)p«(0))

Here

I
p«= ~ g e''

is the particle density, N is the total number of particles,
L, is complete Liouville operator, q is the wave vector, and
g = 1 Pwhere-

P
I p (0))(p (0)

I (p (0)p —(0))
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is the projection operator. ( . . ) denotes an equilibrium
ensemble average and the dot denotes derivative with
respect to time. The static structure factor S(q) is de-
fined as

S(q)=(&,{O»,(0) & . (&)

In terms of the Laplace transform variable z, Eqs. (2)
and (3) transform to

F(q,z) = S(q)
z+M(q, z)

1 1

z —iI. z —iI.o

+—g2 . k z —iIO —il. .k z —iIoJi J

PJ.
L[)—— i g— = QL[)(j),m

C(q,z)=(p z(0) . pz(0)) .

Note that in eliminating the projection operator Q, we
have introduced two correlation functions, the longitudi-
nal current J, and the cross correlation between density
and current, C.

We then get the dynamical structure factor S(q, to) by
noting that

S(q, to) = ReF(q, z = i—qo)—

1 M'(q, qo)S(q)
~ (M') +(co—M")

Mzz( )
J (qzto ) +EJ (qzto )

1+C'(q, co)+iC"(q,co)

J(q,z = iso) =J'(q, co)+iJ"(q,co)—

= f J(q, t)e'"'dt (13)

and a similar expression for C' and C".
So far the formulation is exact. Our approximation

consists of evaluating J(q, t) and C(q, t) using the first
two terms of the binary-collision expansion. The basic
formula of BCE is

M(qz) =
(p z(0) pz(0)) [S(q)]

The time dependence of the memory function is rather
complicated, being governed, not by exp(iLt) but by
exp(iLQt). However, the operator Q can be eliminated
using the identity

1 1 1 . 1il I'
z —iLQ z iL z —iLQ —z iL—

%e then get

J(q,z)/S(q)Mq, z=
1+C(q,z)/S (q)

where

J(q,z)=(p z(0) . pz(0)),

8 [)I.Jk
——i

BRJ (jP ()pk

where P is the two-body potential and (RJ,PJ) are the
phase-space coordinates of particle j of mass m. The first
term of this expansion yields the free-streaming contribu-
tion and the second term represents exactly all the effects
of a single binary collision. Defining the free-particle and
binary-collision contributions by subscri. pts 0 and 1,
respectively, wc have

J(q, t) =J,(q, t)+nJ, (q, t),

C (q, t) =- Co(q, t) +nC[(q, t),

Q' Uot
J[){q,t)= — exp-

dt

g UOt
Co(q, t) =—exp-

dt 4

where Uo 2ktt T/m, T——being the temperature.
The expressions for J, (q, t) and C, (q, t) are comphcated

and are therefore given in the Appendix, wherein the cal-
culation of J(q, t) in BCE is outlined. Thus once we ob-
tain J(q, t) and C(q, t), we use Eqs. (13), (12), and (11) to
get S(q,co). It should be noted that the only inputs re-
quired to calculate J[(q, t) and C[(q, t) [Eqs. (A9) and
(A12)] are the pair-distribution function g (r) and the in-
teratomic potential Q(r) Thus our .theory has no arbitrary
parameters. It can be easily checked that this approxima-
tion satisfies the zeroth, second, and fourth moments ex-
actly.

It should be noted that the expansions of J{q,t) and
C(q, t) are only up to first order in density. However,
Eqs. (8) and (5) indicate that the density expansion of
S(q, to) will have terms of all orders in density. In addi-
tion, since our theory uses the exact g(r), this will also
contribute terms of higher order in density. This implies
that higher-order collisions, more than the single binary
collision between a pair of particles, are somewhat includ-
ed in our theory. Of course the coefficients of the
higher-order terms are not correct.

From Eqs. (11)—(13), it can be easily seen that
S(q, to=0) turns out to be indeterminate. However, the
limit of S(q,co) as (o approaches zero, is very well defined.
By working out, the small-qo behavior of the correlation
functions involved, it can be shown that
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(17)

a= tJ q, t t.
For dlscusslon purposes, 1t %'ill bc 1nstructlvc to recast

the Zwanzig-Mori equation (5) in the form

I @ I P

x
, ~

Xo(q,z)
X(q,z) =

1 —g(q, z)XO(q, z)
' (18)

where X(q,z) is the density response function and Xo(q,z)
is the free-particle response function. The polarization
po'tc11tlRl Q(q, z) Is thc11 g1vcn by

p(q, z) =kII T 1— 1

S q

The static part of f(q,z) describes the mean-field effects
and the frequency-dependent part describes the dynamical
cvcnts.

The two density states ~e have analyzed using our
theory are no =0.482 and 0.628 at a temperature of
T*=kIIT/c=1. 47 —with cr=3.57 A and e/kII ——202 K.
These are the thermodynamic states for which the experi-
mentai data have been pubhshed. ' The higher density is
about 75% of the liquid density. The binary-collision
contributions JI (q, t) and C I (q, t) are evaluated using
Lennard-Jones as the interatomic potential. For such a
potential, g(r) can be generated for any thermodynamic
state using the optimized cluster theory. This g(r) agrees
remarkably weil with the molecular dynamics result' and
the static-structure factor S(q) is in very good agreement
with the experimental values except for very low wave
vectors at the lower density.

As before, the multidimensional integrals occurring in

JI(q, t) and CI(q, t) [Eqs. (A9) and (A12)] are performed
through importance sampling Monte Carlo methods and
the Verlet algorithm' is used to evaluate r(t) and p(t).
For reasons of practicality, we cut off the r integration at
r =2.25o'. A typical number of initial configurations tak-
en to evaluate the 1ntcgral ls 60000. By computing thc
imaginary part of thc 1Iltcgral, Which should bc exactly
zclo, wc cstlIDRtc that the errors 1nvolvcd 1Q evaluating
the integral is around 5%.

In Fig. 1 we have plotted the full width at half max-
imum (FTHM) of the dynamical structure factor S(q, co)

as a function of the wave vector q. In Fig. 1(a) n*=0.482
Rnd 111 FIg. 1(b) n =0.628. Tllc solId llllc 1S a sIllooth
cuI'vc drMvn through thc experimental points and CI'osscs
are the results of our theory. It is seen that our theory
yields results that are in good agreement vnth the experi-
mental values up to q —1.2 A at the 1ower density. At

FIG. 1. Full width at half maximum (F%'HM) of S(q,u) as
a function of q for two density states (a) n*=0.482 and (b)
n =0.628. Experimental result is the solid line and our results
are denoted by crosses.

the higher density some deviatiop from the experimental
results are seen for q & 1.6 A '. In Fig. 2, S(q,
~=0)/S(q), as obtained from Eq. (17), is plotted as a
function of q for the two densities. Here again the solid
line is a smooth curve through the experimental points
and the crosses are the results of our theory. The agree-
ment between our theory and the experimental values is
very s1mllar to 'that scc11 111 FIg. 1. Fol' values of q less
than about 1 A ', the numerical results for JI(q, &) Rnd

CI(q, t) start exhibiting an oscillation which reflects as a
side peak in S(q,co). This seems to suggest that this sim-
ple binary-collision theory breaks down for q ~1 A
Hence we have not plotted any points in Figs. 1 and 2 for
such values of q.

Hovvever, it should be noted that the behavior in the vi-
cinity of the first diffraction peak, which occurs for
q -1.8 A ', is very mell explained by our theory. Spatial
correlations play an important role in this region and this
has bccn taken 1nto account ln ou1" theory Rs ~as noted 1n
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FIG. 2. Scattering law S(q,~)/S(q) for zero energy transfer

as a function of q for (a) n =0.482 and (b) n*=0,628. The
solid line is the experimental result and the crosses denote our
results.

(b)

Eq. (19). The FTHM, obtained from our theory clearly
shows the de Gennes narrowing behavior which arises
from strong spatial correlations. This narrowing behavior
was not perceptible when a BCE directly on S(q,co) was
attempted. "

In Fig. 3, we have plotted S(q, co) for a value of q near
the first diffraction peak for both the densities. This pro-
vides an overall picture of the validity of our theory. It
can be seen that at the lower density, the agreement is
very good cxccpt around OP=0. The cxpcr1mcntal curve,
shown by the solid line, is not symmetrical about ~=0
while our theory will of course be an even function of co.

The agreement at the higher density, even though not as
good as at the lower density, is sufficient enough to have
confidence to apply our theory for such states.

As was pointed out in Sec. II, we have calculated the
first two terms in the density expansion of the current
correlation function and the density-current correlation
function. In other words, in the equation J(q, co)

=Jo(q, ~)+nJi(q, a))+ . we have obtained exact ex-
pressions for Jo and J, (and similarly for Co and Ci),
which are valid for all q and co. Since we have incorporat-
ed only the effects of a single binary collision, this expan-
sion 1s R short-t1IYle cxpRQS10Q Rnd hcncc has only 11mltcd
validity as a representation of J(q,~). The region of
(q, co) space for which we expect reasonable results will
depend on the density —the lower the density, the greater
the (q, m) space.

HowcvcI", wc have calculated thc dcnslty col rclatlon
function S(q,co) through the memory function which has
in it the above density expansions and hence in this repre-
sentation we have a density expansion for S(q, co) to all
orders in density, even though the coefficients of terms of

FIG. 3. Scattering law S(q,u) as a function of energy
transfer fm for (a) n =0.482, q=1.74 A ', and (b) n =0.628,
q=1.8 A . The solid line is the experimental result and the
crosses denote our results.

order Pl Rnd higher arc not exact. Such R pI'occduIc has
increased the region of validity quite significantly.

Since the region of validity depends on q and density,
the parameter often used is (ql) ', where I is the mean
free path. If ql ~1, the system is characterized by free
streaming and uncorrdated binary coHisions. As q/ de-
creases, correlated and collective collisions become impor-
tant and finally the hydrodynamic effects. For the densi-
ty states we have investigated, we can thus make some
qualitative comments about the validity of our theory in
different ranges of the momentum transfer. For q & —,qo,
where qo is the position of the first diffraction peak of
structure factor S(q), the collective modes and hydro-
dynamic effects start playing an important role. Our
theory, being still only an extended binary-collision ap-
proximation, will exhibit increased deviations froID exper-
imental values for such q values. For —,q ~q & qo, spat1al
correlations and binary collisions play important roles and
the present theory is able to account for the S(q, co) spec-
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trum in this region very vreH. For q greater than qo the
system can bc adequately dcscr1bcd by 8 short-tlGlc expan-
sion theory such as binary-collision approx1Ination.

The very good agreement of the results of our theory
with experimental values for q around qo is one of the
features of this formalism. This is due to the fact that
our theory has in it some of the effects of higher-order
binary collisions and also those of mean field. Any exten-
sions of the theory to low values of q (&1 A ') or to
liquid densities will require proper inclusion of correlated
colllslons. In conclusion~ 8 slQlplc b1nary-colllslon theory~

111 wlllcll a partlclc c11couiltcl's oIlly ollc colllsloll, whcil
apphed to evaluate the space-time memory function asso-
ciated %vlth thc density corrclat1on function, ls able to ac-
count for a very significant portion of the spectrum of the
density correlation function at moderate densities.
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From the definition of J(q,z) [Eq. {9)jand the BCE formula [Eq. {14)].We have

PAIW IJo(az)= p-&
Z —EI 0

I
JI(q,z) = p q g z —)L,o —)I.jk

I
Pq

Z —EL 0

In the time domain, we have for the free-streaming part,

I IJ (q, t)= ——f dR, dR exp( —PU) Q G(I' )dP. Qj=l

'D .~ ~0—iqR& . ~k &qRk(t)—l q' e l q" e
m I (A2)

WIMrc p= I/k TII, U is tllc potclltlal, G(P~) Is tllc normalized
and Rk(t):c' ' Rk =—Rk+(PI, /m)t, the ideal gas propagation.

In (A2), only the terms k =I will contribute, yielding

q.p1 Plt
Jo{q,t)= f exp iq G(p. I)dpiI pl

Maxwellian, Z is the configurational partition function,

Pff
exp iq G(PI)dPI

dt

d 2

exp( —q Uot /4)2 22
2 (A3)

= I I - X(X—1)nJ, {q,t)= dR.,——dR exp( —PU) Q G(r )dP g —iq eXZ 2 ) vl
I

L, ~

X 'cxp I WI2+ g Lo(J) t —c
j 3

iq Rkp ~ -+

lq e
APE

where ~12=La(1)+Lo(2)+Llz is the two-body propagator.
When thc sUIDGlations involved arc pcrfofIDcd, only tcrIlls 1nvolv1ng part1clcs I and 2 remain, yielding

1'

2

J, (q,t)=, f dR, dRzg( ) ff G(&, )dP, ' g q —q+2 m
(A5)

l WI2f~
where RI, (t)=e Rk and similarly for Pk(t). Here g(r) is the pair-distribution function with r =

~
Ri —RI

~
and de-

fined througI1



3325

g(r)= I dR3 . dR~exp( —PU),
ZV

where Vis the volume.
Going over to the center-of-mass coordinates

R= T(R, +Re), P=P, +P2,

{A6)

r =R)—R2, P=P) —Pg,

we get after the trivial integration over R,

nJ~(q, t)=n I drg(r) M(P)M{p)dPdp —,'exp iq t

X[E(q,r, r(t))A(q p,P p(t)) E(q, r—, r(t))A—(q p, P, —p(t))] Jo(q,—t)

and

E(q, r, r(t)) =exp[iq (r —r(t))/2]

A(qp, Pp(t))=[(q P) —(q p)][(q P) —(q p(t))] .

The P integration can then be performed yielding

nJ~(q t)=n J dr g(r) tdpM(p)exp( qvot /8)—[E(q,rr(t))B(q p p(t)) E(qr, r—(t))B(q—p, —p(t))] Jo(q t)—j,
(A9)

B(q,p,p(t))=DO —D~ (p+p(t))+ (q.p)(q p(t))
2m 4pyg

2

Do —— 1— (A10)

1M(P)= z 2,&2exp
(2am vo)

is a normalized Maxwellian.
A similar procedure yields

vot
Co(q t) = exp

dt 4
(Al 1)

nC&(q, t)=n I drg(r)IM(p)dpexpf qvot /8)[E(q, r, r—(t))T(q p(t)) E(q, r, r(t))T(q, ——p(t))] —Co(q—,t)j,

T(q,p(t)) =
—q vot iq p{t)

4 2/n
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