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The liquid-structure factors of fluid rubidium are calculated for a series of states along the
saturated-vapor-pressure curve, ranging from temperatures close to the melting point up to the criti-
cal point. The calculation is based on the optimized random-phase approximation and on effective
interatomic pair potentials derived from pseudopotential perturbation theory. The results are com-
pared with the static-structure factors measured using elastic neutron scattering. Good agreement is
found for temperatures up to 7=1400 K. From the divergence of S(0) the critical temperature is
calculated to be T,=2120+5 K, compared with an experimental value of T,=2090+20 K. The cal-
culation reproduces the strong increase of the long-wavelength scattering, but we find it to be con-
fined to a narrower temperature interval below T,. We bring evidence that this is due to the break-
down of the nearly-free-electron approximation in a regime where the mean free path of the elec-
trons becomes smaller than the average interatomic distance.

I. INTRODUCTION

For the fluid alkali metals, characteristic changes of the
scattering behavior and of the microscopic structure as
functions of temperature and density approximating the
critical point have been observed experimentally.!2

Theoretically the thermodynamic and structural prop-
erties of the liquid alkali metals at high densities are now
quite well understood. Computer simulations*~° have un-
doubtedly confirmed the concept of density-dependent ef-
fective interatomic pair potentials. Thermodynamic per-
turbation calculations’~° have elucidated the influence of
the repulsive and attractive interactions on the microscop-
ic structure of the liquid metals. For high densities near
the melting point, the physical picture emerging from
these theories is that the liquid metal has its volume deter-
mined by the volume energy and by the attractive part of
the interatomic potential, but once the volume has been
determined, the liquid metal may be considered as a
hard-sphere fluid confined within that volume. For the
heavy alkali metals, the repulsive part of the interatomic
interaction is extremely soft and Kumaravadivel and
Evans’ have shown that the Weeks-Chandler-Andersen
(WCA) functional expansion'®!! may be used to correct
the hard-sphere description for the softness of the inter-
atomic repulsions. However, a critical evaluation of their
results shows that although the functional expansion!®!!
provides the necessary damping of the strong oscillations
in the hard-sphere structure factor at larger momentum
transfers, it does not eliminate the phase difference rela-
tive to the static-structure factor generated by a computer
simulation. Tentatively, this phase difference may be con-
sidered as an effect of the attractive interactions.

Only a few attempts have been made to study the struc-
ture of expanded liquid metals theoretically. Only Moun-
tain!> and Tanaka'’ presented the results of computer
simulations. Mountain found only a rather moderate
agreement of his Monte Carlo study based on the inter-
atomic potentials of Price'* with the experimental data
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available at that time,'® but in fact the agreement with the
more recent and more accurate experimental data! is real-
ly good, except for the long-wavelength regime at the
highest temperature studied (7= 1400 K). Tanaka!® per-
formed molecular-dynamics calculations (based on slight-
ly different potentials) close to the saturated-vapor-
pressure curve including the critical point. Again one
finds good agreement with experiment for moderate tem-
peratures and momentum transfers larger than 0.5 a.u.,
but the long-wavelength density fluctuations are definitely
not adequately reproduced.

This is the motivation for performing another theoreti-
cal investigation of the structure of expanded fluid rubidi-
um, which is based on liquid state theory rather than on
computer simulation. Evidently what is needed is a
theory to describe the influence of the attractive forces
which should supplement the already existing theories for
the effect of the repulsions. Andersen and Chandler!®!
and Andersen et al.® have proposed a series of related
perturbation approximations for calculating the effect of
attractive interactions which they call the optimized
random-phase approximation (ORPA) and the optimized
cluster theory (OCT). Their theory may be cast into the
form of a variational problem defining a renormalized
(“optimized”) potential for the attractive forces. This is a
very attractive feature if systems with rather complicated
pair potentials—such as liquid metals—are to be con-
sidered.

We show that already at high densities and tempera-
tures close to the melting point the attractive forces are
crucial for an exact description of the liquid structure.
Compared to a system with repulsive interactions only,
the effect of the attractive interaction is to sharpen the
first peak and to shift the position of the second peak to
slightly smaller momentum transfers—we find that this is
just what is needed to get good agreement. A considera-
tion of the changes in the pair-correlation function in-
duced by the attractive potential allows us to establish the
importance of the oscillatory part of the potential. These
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effects are found to persist at higher temperatures, but in
addition we find that the onset of the long-wavelength
density fluctuations is triggered mainly by the strength of
the attractive interactions. Up to T=1400—1600 K the
agreement between theory and experiment is good. At
higher temperatures the theory underestimates the strong
increase in the long-wavelength scattering. This may have
different reasons: one point is that our calculation yields
a critical temperature of about 7,~2120+5 K whereas
experimentally one finds T,=2090+20 K. For a calcula-
tion of the critical temperature this is certainly as good an
agreement as can be expected, but of course this means
that the onset of the long-wavelength density fluctuations
is shifted to higher temperatures. Still, even if we plot
S(0) against t =T /T,, we find that, experimentally, the
increase in the low-q scattering develops already at lower
values of ¢ than predicted by our calculation. In this
respect an analysis of the electronic transport properties is
interesting: We find that at temperatures 7 > 1600 K the
electronic mean free path is already smaller than the mean
interatomic distance. This means that the linear-response
theory used for the construction of the potential has to be
modified. Another important point is the magnetic
anomalies observed at these temperatures'’—their descrip-
tion again requires a modification of the electronic
response function (spin-polarized response). This, howev-
er, can only be a subject of future research.

II. INTERATOMIC POTENTIALS

In the linear screening approximation the effective in-
teratomic pair potential in a metal consists of the direct
Coulomb repulsion between the ions, plus the attraction of
the first ion to the screening charge distribution induced
by the pseudopotential of the second ion?’

22 2 =gl =gl =]
V== [ [ Vil X(x"~",p)
X V(P —P)dEdE", (1)

where X(T,p) is the dielectric susceptibility of the interact-
ing electron gas, and V;,,(T) and Vie,(T) are the bare and
screened ionic pseudopotentials. In practice, V(r,p) is
calculated by Fourier transforming the reciprocal space
expression
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with the energy wave number characteristic F(q) (assum-

ing a local pseudopotential)
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where Q is the atomic volume, Z the valence, and €(q) is
the dielectric function
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where G(g) is the local field factor correcting for ex-
change and correlation interactions between the electrons.
The effective pair potential depends on the electron densi-
ty p through the density dependence of X(g) and €(q) and
a possible slight density dependence of the bare pseudopo-
tentials, but it is the density dependence of the screening
functions which gives the dominant effect.?! Hence, in
order to simplify the calculations we approximate the ion-
ic pseudopotential by a simple local empty-core model?>
with the core radius r. fixed at the value r,=2.47 a.u.
which minimizes the total energy of crystalline rubidium
at the observed density. Our value of r, is very close to
that of r,=2.40 a.u. used by Price?’ in a series of calcula-
tions of the properties of crystalline and liquid rubidium.
On the other hand, we have been very careful in the
choice of an appropriate form of the local field factor
G(q). The apparently very drastic effects of different
possible approximations to G(g) on V(r,p) have been
widely discussed (see, e.g., Ref. 24). What has been often
overlooked is that the dielectric function of the strongly
coupled degenerate electron gas has to satisfy a number of
consistency relations relating G (g) to the correlation ener-
gy, to the compressibility of the electron gas, to the
electron-electron pair-correlation function, etc. In our
case the consistency relations have to be satisfied over an
extremely wide range of electronic densities (r,=5—9
a.u.). After eliminating all approximations which violate
one or more of these requirements, we are left with only a
very few options which all produce very similar pair po-
tentials. The dielectric function of Ichimaru and Ut-
sumi*>? used in this work represents in our view an op-
timum compromise between accuracy and computational
simplicity. Let us note that the aforementioned computer
simulations of liquid rubidium®>!%!3 are all based on an
early version of the local field factor G (q) due to Singwi
et al.*” which violates the consistency rules, especially at
low electron densities.

In the following we will have to split the pair potential
into a purely repulsive short-range interaction V,(r) and
the remaining essentially attractive long-range interaction
Vi(r). We do this by following the WCA convention
which places the division at the first minimum situated at
ro [ V(rg)=Vmi,] and write

V(r)=Vy(r)+V(r) (6)
with
V(r)—=Vainy ¥ <Fo
V =
0(") ‘0, r>ro (7)
and
Vmins 7 <Tg
V =
1(r) lV(r), r>rg . ®

In the calculations we will need the Fourier transform
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I7l(q) of the attractive interactions, but one should avoid
the numerical inaccuracies associated with a double
Fourier transform: first I/;'(q) to get V(r) and then V(r)
to get ¥,(g). We follow McLaughlin and Young?®® in

writing
|

Vig)= _‘12;'_ [sin(gre)—qrocos(qro) 1V min
q

sin[(qg —q")ro] __ sin[(g +¢")ro] 477 %2
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r?l(q)=iq’1 [T Vet —r)—Vaalsingrrdr - ©)

and, after inserting (3) into (9) and changing the sequence
of integrations, we find

cos(gry) (10
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with the low-g limit given by
3
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where
G(q)—yq?/kE (for small q) (13)

is the compressibility factor of the electron gas?>2?® and kjp
is the Fermi momentum.

III. OPTIMIZED RANDOM-PHASE
APPROXIMATION FOR CONTINUOUS
POTENTIALS

In the following we recapitulate very briefly the appli-
cation of the ORPA to systems with continuous poten-
tials. The ORPA has been developed in a form specific to
systems with hard-core interactions. For systems with
continuous potentials we need a theory which allows us to
describe the repulsive interactions in terms of effective
hard-core potentials.

A. Repulsive interactions

The first step consists in replacing the soft repulsive in-
teraction Vjy(r) by an effective hard-sphere interaction
V,(r) with diameter o. This is achieved by expanding the
free energy in terms of the function B, (r) defined by'®!!

B, (r)=y,(r){exp[ —BVy(r)]—exp[ —BV,(r)]} (14)
with
Yolr)=exp[BV,(r)lg,(r), B=1/kgT . (15)

g(r) is the hard-sphere pair-correlation function, which
we describe by the analytical solution of the Percus-

q+q’

'dq’ +2F (q)+
q'dq’'+2F(q 07

[

Yevick? equation. The hard-sphere diameter o is deter-
mined at each temperature and density by the WCA re-
quirement

B,(g=0)= [ B,(rnd’r =0 (16)

which optimizes the convergence of the free-energy ex-
pansion. Finally, the pair-correlation function is
shown!%!! to be given by

8o(r)=g,(r)exp[ BV ,(r)—BVy(r)]
=yq(rlexp[ —BVo(r)] a”n

and the corresponding static-structure factor S;(g) by

So(q)=S,(q)+pB,(q) (18)

where p is the number density. At high densities the
static-structure factor Sy(g) given by Eq. (18) has a small
unphysical hump at small g (near g~w/0). Jacobs and
Andersen®® proposed on the basis of a diagrammatic ex-
pansion of the pair-correlation function to replace (18) by

So(@)=S4(q)[1—pSy(q)B,(g)]" (19)

and showed that this avoids the unphysical hump. Later
Telo da Gama and Evans®' rederived Eq. (19) using
density-functional techniques and showed that it has
essentially a low-g validity. In our calculations we found
that the pair-correlation function gu(r) obtained by
Fourier transforming (19) is unphysical at small distances
[80(r)5£0 for r <<o], hence it is not a suitable basis for
the application of the ORPA. Therefore we will use the
original WCA equation (18). This is justified because we
find that the WCA hump is very small at densities that
are not too high [Q > 800 (a.u.)].

B. Attractive interactions

The theory for the effect of the attractive interactions is
based on the Ornstein-Zernike (OZ) equation®? for the
direct correlation function ¢ (r) which may be written ei-
ther in configuration space

h(r12)=6(r12)+pfc(r13)h(r32)d3r3 N (20)
or in Fourier space

h(q)=8lq)/[1—p?(qg)], 1)
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where h(r)=g(r)—1 is the total correlation function
[note S(g)=1 +pl? (g)]. All the integral equations of the
theory of liquids may be formulated as the OZ equation
supplemented by a ‘“closure relation” relating c(r) and
h(r) to the interatomic potential V(r). The closure rela-
tion defining the Percus-Yevick? equation is given by

c(r)={1—exp[BV(r)]}g(r). (22)

If we decompose the pair interaction according to Eq. (6),
and replace the repulsive potential by the hard-sphere
reference potential V¥, this leads logically to a separation
of the correlation functions into two terms

h(r)=h,(r)+6h(r),
c(r)=cy(r)+6c(r).

(23a)

(23b)

Since we know the solution of the OZ equation
ho(ri)=co(rip)+p [ colrinhg(ry)d’rs (24)

for the reference system, it is useful to subtract the purely
repulsive couplings from both sides of Eq. (20) to give the
OZ equation in a residual form

8h(rp)=8¢c(ri)+p [ colri3)8h(r3)d’rs

+p [ 8crihg(ry)d’rs
+p [ 8c(ri3)8h(r3y)drs (25)
or in Fourier space

8h(q)=S,(9)8¢(q)S,(q)/[1—pdE(q)S,(g)].  (26)

The random-phase approximation (RPA) introduces the
asymptotic form of the direct correlation function

c(r)=—BV(r (27)

as the closure condition. As the solution of c,(r) is
known, one assumes the RPA only for the residual part
e (r),

Sc(r)=—BV(r). (28)

The RPA in the form of Eq. (28) has the unphysical
feature of a pair-correlation function which is nonzero in-
side the hard core. Andersen et al.'~!® proposed to re-
place the RPA by the ORPA defined by [note A,(r)=—1
for r < o]

Sc(r)=—BV(r), r>0 (29a)

8h(r)=0, r<o (29b)
or equivalently

Sc(r)=—BV(r), r>0 (30a)

Sc(r)=—PBd(r), r<o (30b)

where the optimized potential ¢(r) (r <o) is determined
such that Eq. (29b) is satisfied. Equations (29) or (30) de-
fine the closure relation to the residual OZ equation [Egs.
(25) and (26)]. This integral equation may be solved using
a variational procedure. Define the functional F by
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F(88)=~ [ d°q(pSo(q)8¢(q)

+1In[1—pSy(g)88(0)]}  (31)

and take its functional derivative with respect to 8¢(q)

OF®E) ___P_shig) . (32)
8[8¢1(q)] (27)
After Fourier transforming we have
8F(8¢c)
B[6c(r)] — pdh(r). (33)

Combined with Egs. (29b) and (30b) we find that the
correct behavior of the optimized potential is to make F
stationary with respect to changes in ¢(7) for r <o.

An alternative derivation of the ORPA may be given
using diagrammatic techniques.!"3* This has the addi-
tional advantage of placing the ORPA and the closely re-
lated OCT into the context of other liquid state theories
and to assess their exceptional usefulness.

Using the solution of Eq. (32) and combining it with
Eq. (18) to describe the effect of the soft repulsions, we ar-
rive at the following final result for the static-structure
factor:

S(q)=S,(q)+pB,(q)+pbhiq) , 34)

where the first term is the structure factor of the hard-
sphere reference system, the second term corrects for the
softness of the repulsion, and the third for the long-range
attractive interactions.

The ORPA has been applied to a variety of potentials,
such as the Lennard-Jones potential,'*~!® the square-well
fluid**** and to some selected liquid metals*®?’ and we
refer to our recent paper on the square-well fluid>® for the
numerical details of the solution of the variational prob-
lem posed by Eq. (32).

The application of this technique to systems with con-
tinuous pair potentials poses a problem which does not
arise for systems with pure hard-sphere repulsions and
which has received only very little attention until now.
The solution of Eq. (32) defines an optimized attractive
potential V] (#) given by [see Egs. (8) and (30)]

é(r), r<0
V;(")"—“ V mins o<r<ryg (35)

V(r), r>rg
and hence, in order to preserve the necessary condition

V(r)=Vo(r)+Vi(r) (36)

we are forced to define a modified repulsive potential
Vo (r) given by

V(r)—¢(r), r<o
Vo(r)= V(1) =Vmin=Vo(r), o<r<rg (37)
0, r>rg.

This new repulsive potential V;(r) must be used in the
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WCA procedure to determine a new hard-sphere reference
system V. with a different hard-sphere diameter o,
which has then to be used in the ORPA procedure defin-
ing a new optimized attractive potential V{(r)—clearly
this has to be repeated until a self-consistent separation of
the total interatomic potential into a repulsive (short-
range) part V5 (r) and a long-range part Vi°(r) has been
reached. The problem had been noticed by Andersen
et al.,'® but since in their calculations for the rather
harshly repulsive Lennard-Jones potential they found that
the first iteration changed o only by a negligible amount
[approximately (1—2)X 10~%0], it was concluded that the
iteration to self-consistency was not necessary. In our cal-
culations with the rather soft alkali-metal pair potentials
we find that the changes in o are about 2 orders of magni-
tude larger [approximately (1—2)X 10~20] and we find
changes in the ORPA contribution to the free energy of
up to 4%. Hence the iteration of the WCA plus ORPA
procedure to self-consistency is necessary. The conver-
gence is quite rapid, after four iterations the hard-sphere
radius and the free energy have converged to at least four

leading digits.

IV. APPLICATION TO EXPANDED
FLUID RUBIDIUM

In the following we shall discuss the application of the
theory described in Sec. III to expanded fluid rubidium
along the saturated-vapor-pressure curve. The calcula-
tions have been performed for a set of states for which ex-
perimental values of the static-structure factor are avail-
able. The temperature-volume relationship for the states
investigated is given in Fig. 1.

The solution of the variational problem represented, in
general, no difficulty, except at the lowest temperatures
investigated. As the temperature approaches T=350 K
we found that nf3 f}l(q)Sa(q) < —1for g near Q, (approx-
imately the position of the first maximum of the static-

!
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30001 d
2000+
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1000 2000 T(K)

FIG. 1. Temperature vs atomic volume for the states investi-
gated in this work. Squares, Franz et al. (Ref. 1); triangles,
Mountain (Ref. 12); circles, interpolated density after Huijben
et al. (Ref. 38). Dashed line, extrapolated.
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structure factor). As a consequence the RPA-structure
factor SRPA(g)=S,(q)[1+nBV()S,(g)]~" diverges at
these g values. At still lower temperatures, the RPA con-
tribution to the free energy becomes negative and a solu-
tion of the variational problem turns out to be impossible:
the functional F(8h) diverges. This situation has been
described by Wheeler and Chandler®® under the name of
“RPA catastrophe.” They showed that in this situation
(high density p, attractive interactions strong compared to
the thermal energy, strong correlations in the reference
system) the RPA free energy diverges in the thermo-
dynamic limit. However, this thermodynamic instability
is not the signature of a phase transition, but it is inti-
mately related to the extremely unphysical description of
the short-range correlations afforded by the RPA. At
densities not too high, the ORPA corrects for the bad
description of the short-range correlations, but at high
densities the RPA is no longer a good starting point for
the minimization of the free-energy functional F(84). No
such problem arose at temperatures from T=400 K up-
wards, as long as nﬁﬁl(q)S,,(q) > —1 for all ¢ the minim-
ization of F(6h) using a gradient routine in a six-
parameter space (see Ref. 35 for details) was straightfor-
ward.

The static-structure factors calculated at different levels
of approximation are shown in Fig. 2 for a few represen-
tative states, the corresponding pair-correlation functions
are given in Fig. 3. We see that the results vary very sys-
tematically with the degree of sophistication of the theory:
Compared to the hard-sphere reference structure factor,
the softness of the repulsive part of the pair potentials
brings a weak damping of the first maximum and a rela-
tively strong one of the higher-order oscillations, but no
phase shift. At high densities, the main effect of the at-
tractive forces is to order the fluid to a greater extent than
in their absence. The higher degree of order shows up in
the form of an enhancement of the height of the first
maximum in S(g). This effect is very strong in the RPA,
it is weaker in the ORPA (this is an effect which is known
as the “repulsive force screening” of the attractive interac-
tions, Ref. 11), but still very important for a proper
description of the experimental results. In addition, we
observe a slight shift of the right-hand-side slope of the
main peak and of the subsidiary oscillations to smaller
values of ¢g. Again this is just what is needed to get good
agreement with experiment.

The effect of the attractive interaction on the short- and
medium-range correlations in the fluid is seen much more
clearly in the pair-correlation function (Fig. 3). As the
function B, () is localized in T space to the immediate vi-
cinity of the hard-core diameter, the softness of the repul-
sive potential influences only the shape of the first peak in
g(r). The variation of the function with temperature and
density is shown in Fig. 4. We find that the function be-
comes more extended with increasing temperature. As a
consequence, the difference in the positions 7, of the first
peak in g,(7) (r{=0) and gwca (7) increases with increas-
ing temperature. This effect just compensates for the de-
crease of o with temperature (cf. below) so that the
“nearest-neighbor distance” r; is essentially independent
of the temperature, in agreement with experiment.? The
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FIG. 2. Static-structure factor of expanded fluid rubidium for some states along the saturated-vapor-pressure curve. Dotted line,
hard-sphere reference structure factor S,(q); dotted-dashed line, S WCA(q)=S,(q)+pB,(q); dashed line, random-phase approximation
SRPA(4)=S,(g)+pB,(q)+pdh RPA(g); solid line, optimized random-phase approximation, SORPA(0)— S _(q)+pB,(q)+pdh ORPA(g).

variation of the effective hard-sphere diameter with tem-
perature is dominated by the increase of the mean kinetic
energy. We find that o™°* is always slightly larger than
the mean collision distance o€ determined by the relation

V(0e)=(Eyn)=3ksT (38)

which would be the result of a hard-sphere variational cal-
culation.®? The peak of the WCA pair-correlation function
is situated at a distance which is just a bit smaller than 7,
due to the attractive interaction it is slightly shifted in the
direction of the minimum. We find a very distinct influ-

ence of the oscillatory part of the pair potential on the
short- and medium-range structure: wherever V;(r) <0
we find gORPA(r)>gWCA(r), where V,(r)>0 we find
gORPA(r) < gWCA(r), which is just the physically plausible
effect. Again this is overestimated by the RPA and re-
duced to realistic dimensions in the ORPA. Evidently the
Friedel oscillations play a greater role in determining the
liquid structure than the widespread use of the hard-
sphere model suggests. In this respect we agree with the
conclusions of Cummings and Stell*® and Cummings and
Egelstaff.*!

The temperature variation of the long-wavelength limit
of the static-structure factor is dominated by the attrac-
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FIG. 3. Pair-correlation functions g (r) corresponding to the static-structure factors shown in Fig. 2 (same symbols). Full intera-

tomic pair potential is shown for comparison (right-hand-side scale).

tive interactions (Fig. 5). Already, at T=900 K, the con-
tribution of 84(0) to S(0) is about 50%. It is generally
assumed that in the long-wavelength regime the RPA is a
good approximation to the static-structure factor.?®4243
We find that this is justified only for temperatures suffi-
ciently far from the critical region, at higher temperatures
we have SORPA(0) <<SRPA(0) (Fig. 2). Essentially the
same conclusion has been reached by Henderson and Ash-
croft.* They showed that the difference between the
RPA and the exact S(0) is related to the density deriva-
tives of the reference structure factor. As the density
dependence increases on approaching the critical region,

we expect the RPA to become less reliable.

The critical point is characterized by a divergence of
S(0), i.e., of the compressibility. In our calculations we
find that this divergence occurs at 7,~2120%+5 K,
whereas experimentally one finds 7,=2090+20 K.!?
For a critical-point calculation, this is certainly quite good
agreement. Very recently Gallerani et al.** and Cum-
mings and Stell*® have used the ORPA to study the criti-
cal behavior of Lennard-Jones and hard-sphere Yukawa
fluids, respectively. Both studies point to a critical ex-
ponent y=2 for the compressibility as in the three-
dimensional spherical model, and in both studies it was
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FIG. 4. Function r?B,(r) for liquid rubidium at different
temperatures (see text).

found that the attractive part of the interatomic interac-
tion introduces strong corrections to the leading term of
the compressibility. A detailed investigation of the criti-
cal behavior is beyond the scope of the present paper, but
the last finding may be relevant to our study: the strength
of the interatomic potentials increases strongly with de-
creasing density. However, within the nearly-free-electron
linear-response theory this increase is apparently still un-
derestimated.

Finally, we compare our results with the neutron-
scattering  experiments of Franz et al.’? (for
T =900—2000 K) and of Waseda*’ (for T=375 K), see
Fig. 6. For T <1400 K we find a good agreement be-

S(0) T
3+
T theor.
Cc
2+

1000 2000 T(K)

FIG. 5. Long-wavelength limit of the static-structure factor
as a function of temperature: Solid line, ORPA; dashed line,
RPA; dotted-dashed line, WCA-plus-hard-sphere calculation.
Experiment: O, S(0) from p-V-T data; X, S(0) from diffrac-
tion data (Refs. 1 and 2).

Siq) TK) /Qfaur’]
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FIG. 6. Static-structure factor of expanded fluid rubidium at
different temperatures. Solid lines, ORPA calculation. Open
circles, neutron-scattering results of Franz et al. (Refs. 1 and 2);
crosses, neutron-scattering results of Waseda (Ref. 47). For
T=1900 K the result of the molecular-dynamics calculation of
Tanaka (Ref. 13) is shown by the dashed line.

tween theory and experiment for all momentum transfers,
for T > 1600 K the agreement is still good for ¢ >0.5 a.u.,
but the long-wavelength density fluctuations are not ade-
quately described.

The good agreement we note for low and moderately
elevated temperatures is important because it demon-
strates that the WCA plus ORPA procedure is adequate
even for pair potentials as soft as those of rubidium. Ear-
lier conclusions that the WCA formalism is unable to
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cope with such extremely soft potentials®?® are shown to
be premature: The disagreement between the WCA
theory and experiment found in these papers is not to be
attributed to a failure of the WCA scheme, but to the
neglect of the attractive forces. Our results suggest that
the oscillatory part of the interatomic potential plays an
important role in determining the medium-range structure
of liquid Rb; very recently we have obtained similar re-
sults for a number of liquid polyvalent metals.*®

At higher temperatures, the attractive interactions are
still very important in determining the form of the first
diffraction peak. The fact that the nearest-neighbor dis-
tance 7, and hence the peak position Q, in S(g) are in-
dependent of temperature (which arises from a compensa-
tion between a decreasing effective hard-core diameter
and an increasing softness of the potential) is confirmed
by the experiment. The form of the long-wavelength part
of S(q), however, is not in agreement with experiment. In
this respect it is interesting to make a comparison with
the computer simulations of Tanaka!> and Mountain.!?
Although, due to the limited size of the samples, the ex-
treme low-g limit is not accessible to the simulations, we
see that again the long-wavelength density fluctuations are
not adequately reproduced, although the large-g part of
S(q) is quite accurate. This allows us to conclude that
the failure to reproduce the temperature dependence of
S(0) is not to be blamed on the ORPA alone. Hence we
find two reasons.

(i) The density dependence of the interatomic potentials
is evidently underestimated for 7 >1400 K. This has
nothing to do with the local field factor G(g) in the
dielectric function. Our potentials calculated using the
Ichimaru-Utsumi G(q) (Ref. 25) are more attractive than
the interatomic potentials constructed by Tanaka'® and by
Mountain'? using the G(g) of Singwi et al., but this has
only little influence on the structure factor. Note that at
this temperature and at saturation density the electrical
resistivity reaches a value of p~300 uQ cm—hence the
mean free path of the electrons is of the order of magni-
tude of the interatomic separation and the linear screening
approximation breaks down. At about the same tempera-
ture and density the temperature coefficient of the electri-
cal resistivity becomes negative,? marking the onset of the
metal-insulator transition. This also correlates with the
observed paramagnetic susceptibility.!® A simple calcula-
tion of the electrical resistivity along the saturation curve
using the Faber-Ziman theory and our pseudopotentials
and static-structure factors yields a good agreement with
the experimental results again up to T ~ 1400 K (Fig. 7).
For higher temperatures the calculated resistivities lie sub-
stantially above the experimental values. This is typical
for the breakdown of the weak-scattering Faber-Ziman
theory in a strong-scattering situation. An improved
transport theory for these high-resistivity conductors has
recently been developed by Belitz and Schirmacher.®
They show that with increasing static and thermal disor-
der the electron propagators entering the resistivity for-
mula begin to deviate from those for free electrons. As
the same electron propagators also enter in the linear-
response calculation of the interatomic potentials, we con-
clude that at these high temperatures the screening func-
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FIG. 7. Variation of the electrical resistivity along the satura-
tion curve: circles, ORPA results; squares, data taken from
Franz (Ref. 2).

tion must be corrected for the short electronic mean free
path.

(ii) Our calculation refers to the experimental saturation
curve—which is not necessarily identical with that of the
system described by our set of pair potentials. Thus there
is at least the possibility that our Q(7) curve bypasses the
critical point and hence shows weaker density fluctua-
tions. Finally, there is still the possibility of exploring
more complete diagrammatic expansions such as the op-
timized cluster theory.!! However, the algorithms re-
quired to obtain the solution of the OCT for continuous
potentials®® will be necessarily more complex than those
presently employed for the solution of the ORPA.

V. CONCLUSIONS

We have the following.

(i) At low and moderately elevated temperatures the
ORPA gives a good description of the structure.

(ii) The effect of the oscillatory potential is to order the
liquid by forcing the atoms into the attractive wells of the
potential.

(iii) The critical temperature is calculated relatively ac-
curately [ T, =2120%5 K (theor.) against 7, =2090+20 K
(expt.)], but the onset of the long-wavelength density fluc-
tuations is confined to a narrower temperature interval
than observed experimentally.

(iv) The nearly-free-electron approximation breaks
down at the density where the mean free path becomes of
the order of magnitude of the interatomic distance—
below this density the true potential is much more attrac-
tive than the one given by the linear-response calculation.
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