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Boundary-layer model of pattern formation in solidification
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We propose and investigate the properties of a model of pattern formation in crystal growth. The
principal dynamical variables in this model are the curvature of the solidification front and the
thickness (or heat content) of a thermal boundary layer, both taken to be functions of position along
the interface. This model is mathematically much more tractable than the realistic, fully nonlocal
version of the free-boundary problem, and still recaptures many of the features that seem essential
for studying dendritic behavior, for example. In this paper we describe analytic properties of the
model. Preliminary numerical solutions produce snowflakelike patterns similar to those seen in na-
ture.

I. INTRODUCTION

The search for an understanding of nonequilibrium
pattern-forming mechanisms, for example, dendritic so-
lidification, ' has been impeded by a lack of tractable
mathematical models. The full free-boundary problem,
even for the simplest case of solidification of a pure sub-
stance, has proved to be extremely difficult for either ana-
lytic or direct numerical investigation. Moreover, recent
studies of some overly simple one-dimensional models
have made it seem likely that a correct explanation of pat-
tern formation may be mathematically more subtle than
had previously been expected. The present investiga-
tion is an attempt to use some clues obtained in recent
analyses as a guide to constructing a more useful
mathematical description of solidification patterns.

The principal simplifying feature of the relatively tract-
able one-dimensional models is that they can be described
by partial differential equations of the form

F —A F BF BF
2 g 4

Here I; and s are time and linear positions, respectively;
F(s, t) is some displacement, for example, the position of a
solidification front; and A is a nonlinear function of its ar-
guments. In contrast to (1.1), a realistic solidification
front is a surface, embedded in a two- or three-
dimensional space, whose motion is determined by nonlo-
cal retarded interactions. That is, the motion of a point
on the front is determined by the thermal field near that
point which, in turn, is determined by the latent heat
which has been generated at earlier times at neighboring
points. Our problem is to see how this realistic nonlocal
problem might be reduced in its essential features to a
simpler local model of the kind that can be described by a
differential equation such as (1.1).

The idea to be developed in this paper has its roots in
some of the earliest attempts to solve solidification prob-
lems. The latent heat generated by a solidification front
as it advances into an undercooled melt may be visualized
as forming a thermal boundary layer in the liquid just

ahead of the solid. The motion is governed by the rate at
which the latent heat that is added to the layer on the
solid side can be diffused away into the liquid. If this
layer was thin everywhere compared to the radius of cur-
vature of the solid surface, then a local approximation to
the solidificatio~ kinetics, using differential rather than
integral equations, might make sense. Unfortunately,
most solidification phenomena seem to occur in the oppo-
site limit. The radius of curvature at the tip of a free den-
drite, for example, is generally smaller than the charac-
teristic scale of the thermal diffusion field by an order of
magnitude or more; thus the boundary-layer approxima-
tion has not seemed to be very interesting.

The main reason for reviving the idea at this time is the
need for tractable mathematics; the boundary-layer ap-
proximation should bring us at least one step closer to real
solidification problems than we were when dealing with
the purely artificial models summarized by (1.1). As we
shall see, however, the approximation may turn out to be
closer to reality than expected. In the first place, the
boun. dary layer may indeed be thin compared to the den-
dritic tip radius at large undercoolings; thus the model
may be realistic in one physically sensible, albeit experi-
mentally difficult, limit. It may even be possible to apply
the model to the more usual case of small undercoolings
by phenomenological reinterpretation of one or more sys-
tem parameters, most probably the undercooling itself.
But this is a speculation that is best left until later.

At this point, there are two directions which one might
take. The first is to adopt a purely phenornenological ap-
proach, that is, to use the boundary-layer approximation
only as a rationale for studying simple local models of in-
terface motion. For example, consider the two-
dimensional situation illustrated in Fig. 1. The liquid-
solid interface is a curve which can be specified by giving
its curvature K as a function of arc length 5,

(1.2)

Here, 8 is the angle between the normal to the curve and
some arbitrarily fixed direction in the plane. The simplest
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have dynamical effects which are quantitatively but not
qualitatively important; thus, the model we shall develop
resembles the purely chemical case. The thermal picture
seems more physically intuitive, however; and realistic
chemical models have unpleasant complications of their
own. The dimensionless temperature field u is measured.
from the growing solid, and is expressed in units of the ra-
tio of the latent heat to the specific heat. The problem re-
quires solving the diffusion equation for u everywhere in
the liquid subject to two boundary conditions at the solidi-
fication front. These are, first, the Gibbs-Thomson condi-
tion,

FIG. 1. Schematic illustration of a solidification front, show-

ing various quantities defined in the text.

models that are consistent with rotational and reflection
symmetries are those for which the normal growth veloci-
ty V„ is a function only of E and its even derivatives
8 K/BS, etc. This kind of model can be described by a
nonlinear partial differential equation for K as a function
of S and t by writing

a', a'x
BS

+E V„E,
as

(1.3)

where the symbol (dldt)„denotes the rate of change
along the normal growth direction. Note that (1.3) has a
structure similar to that of (1.1). This class of models
may be interesting, but our preliminary investigations in-
dicate that simple choices of V„do not reproduce the
qualitative features of dendritic growth. Work along these
lines is being pursued by others ' at present and will not
be discussed further here.

The second direction, and the one that we shall take
here, is to use the boundary-layer approximation as the
basis for a systeinatic derivation of equations of motion
similar to (1.3). We shall see that this approach leads us
to introduce, in addition to K(S,t), a second field H(S, t)
which can be interpreted as the heat content of the boun-
dary layer. The second field, with its own new equation
of motion, complicates the analysis in comparison with
(1.3). However, this approach has the advantage that the
results can be compared directly with known special solu-
tions of realistic sohdification problems.

The main part of this paper is devoted to the above
kind of comparison. The basic boundary-layer model is
derived in Sec. II. Sections III and IV are devoted to rela-
tively simple planar, circular, and spherical examples
where exact realistic solutions are known both for steady-
state and for some stability problems. The more interest-
ing prelude to the dendrite, the so-called "needle-crystal"
problem, is discussed in Sec. V. Some preliminary numer-
ical results are described in Sec. VI.

(2.1)

where 6 is the dimensionless undercooling and dp is a
capillary length proportional to surface tension. For a
two-dimensional system, E is the curvature defi~ed in
(1.2); in three dimensions K is twice the mean curvature.
The second boundary condition is the statement of heat
conservation at the surface,

V„= D(V„u—), , (2.2)

H = Q dz =cxQ+I,
0

(2.3)

which is the heat content per unit length (or area) of the
surface. Here a is a constant of order unity which we can
treat for the moment as an adjustable parameter. The
length I has been defined in Fig. 2 so that (2.2) becomes

Dam,
V„=

H
(2.4)

iiU

US
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where D is the diffusion constant and V„ is the normal
gradient. The left-hand side of (2.2), in our dimensionless
thermal units, is the rate at which latent heat is generated
at the surface, and the right-hand side is the rate at which
that heat flows into the liquid.

The crux of our approximation is the idea that, instead
of solving for the exact diffusion field u, we might more
simply characterize this field by the effective thickness l
of the thermal boundary layer at each point along the so-
lidification front. The situation is shown schematically in
Fig. 2, where u is plotted as a function of z, the distance
away from the surface along the local normal. A slightly
more convenient variable is H

II. EQUATIONS OF MOTION
FOR THE BOUNDARY LAYER Boundary

Layer

LIquid

Z

Consider a purely thermal solidification problem in
which a solid is growing into a uniformly undercooled
melt. We shall ignore diffusion in the solid, which can

FIG. 2. Temperature vs z, the distance from the interface
along the local normal.
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(H AS) —=(AS)V„(1—u, )+a(bS)DVs I%su, .
dt

(2.5)

The first term on the right-hand side of (2.5) is the rate at
which latent heat is added to the boundary layer. The to-
tal rate of heat generation is V„; but, of this, an amount
V„u, is used to heat the solidified liquid from u =0 to
u =u, . The remainder, V„(1—u, ), enters the boundary
layer. The second term describes lateral heat diffusion;
the symbol Vq denotes a gradient along the solidification
front. The temperature gradient in this term is self-
explanatory, and the factor al has been introduced as an
approximation to the z integration just as in (2.3). To
eliminate the factors b,S in (2.5), note that

—(bS) =(b,S)V„K .d
dt

(2.6)

We now must derive an equation of motion for II. This
is done by looking at the thermal balance in the boundary
layer as a whole. Consider the heat content HES in a
length (area) b,S of the boundary layer. In the case
Kl ((1, the time derivative of this quantity can be written
in the form

The dependence of s and ~ on dp and D is compulsory; the
latter are the only dimensional parameters in this problem.
The powers of h, appearing in (2.8)—(2.10) have been
chosen so that b, will disappear from (2.11) and (2.12) in
situations where it becomes very small but ~ remains fin-
ite. In fact, this scaling behavior is possibly an indication
of a breakdown of the boundary-layer approximation in
the limit of small b, . If some b, -independent value of v
emerges from, for example, a dendrite calculation, then
(2.10) predicts that observable velocities V vanish like b, .
This is a physically implausible result, especially because
it is independent of spatial dimension. As is generally
well known, and as we shall see in the next section, the
small-5 limit is where the boundary layer becomes thick
and our underlying approximation becomes invalid.

III. PLANAR, CIRCULAR, AND SPHERICAL
STEADY STATES

We begin a study of special cases by considering a pla-
nar solidification front as it grows, initially without defor-
rnation, into an undercooled melt. Let the displacernent
of this front be go(r), and let hp(r) be the heat content of
the undeformed boundary layer. Then (2.11) and (2.12)
become

(Again, K is twice the mean curvature in three dimen-
sions. ) Thus (2.5) becomes

= V„(1—u, HK)+DU—s'H Vs(lnu, ) . (2 7)

dko a=Vp=
d~ hp

dhp
=vo(1 —a) .

d7

(3.1)

(3.2)

a'S a'Ds
7 7 2 4

dp dp
(2.8)

Accordingly, the scaled curvature ~ and heat content h are
defined by

(2.9)

and the scaled velocity v is

Along with the Gibbs-Thomson relation for u, (K) in (2.1),
this equation of motion for 0 and the equation for
V„(K,H ) in (2.4) constitute a complete specification of the
boundary-layer model.

It will be convenient for most of the following analysis
to use dimensionless length and time variables, s and ~,

Dividing (3.2) by (3.1) and integrating, we find

hp(r) =hp(0)+ ( 1 —5 )go(r)

and, from (3.1),

ho(0)go(r)+ —,
'

(1 —b, )go(r) =ar .

(3.3)

(3.4)

2cx7
gp(r) = hp(r) = [2a(1 b,)r]'~—(3.5)

It is useful to rewrite this result in terms of a planar
Peclet number P,

As long as 5 is less than unity and hp is initially positive,
the system will settle down after an initial transient to the
square-root law characteristic of diffusion controlled
growth:

1/2

dpV

D~
(2.10) Zo VoP:—

2D

~'voto a
2 I —5 (3.6)

v =—(1—b, ~)CX

n (2.11)

dh
d'7

=v„(1 b, +b, ~ ha. ) 7,— 2
—V,~—

I —b, K

(2.12)

In terms of these variables, the equations of motion be-

come

BQ 8 1c

Qg Qz2
(3.7)

where Zp and Vp are the dimensional displacement and
growth velocity, respectively. Nate that P is the ratio of
the displacement to the diffusion length 2D/Vp. Equa-
tion (3.6) provides a convenient form for comparing the
prediction of the boundary-layer model with exact results.
The relevant solution of the one-dimensional diffusion
problem,
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subject to the continuity condition,
(3.17)

1S

u (z„t )= (vrP )'~ e erfc
Zo t

(3.8)

(3.9)

where Ro is the dimensional radius and Vz the radial
growth rate.

The asymptotically exact solution of the two-
dimensional, circularly symmetric diffusion problem in
the limit of large Ro was first given by Zener. In our no-
tation he finds

u(r, t) =pet'Et(pr /Ro(t)), (3.18)

eec(w) = I"e "-dy .
'IT

(3 1{)) where r is the radial distance from the center of the circle
and E~ is the exponential integral

Then the thermodynamic boundary condition, u(Zo) =b„
yields a relation between I' and 5, Et(tLt)= I dy .

W
(3.19)

( P)'~',
1 —1/(2P)+ .

This is to be compared with (3.6), for which
r

Setting u (R o ) =5, we now find

~exact=pe El{p)

p ln(1/p), p «1
1 —1/p, p»1. (3.20)

(2P/a)', P « 1

boundary layer —
1 &/(2P)+. . . p » 1

ho ———,{1—b)po+5 +1 const
(3.15)

The choice a= 1, consistent with u cc exp( —z/I) in (2.3),
achieves exact agreement in the large-P limit. At small P,
the square-root law is correct but the numerical coeffi-
cient is wrong. The general structure of the theory
remains intact; that is, we could restore complete agree-
ment by letting the parameter a be a function of h.

A very similar analysis can be carried out for the two-
dimensional case of a growing circle of dimensionless ra-
dius po(r) Now the . curvature x= 1/po enters the growth
law:

2 2
dpo a b,=Vo= 1—
d~ ho po

Lateral diffusion does not occur, because the curvature is
independent of position around the circle, and (2.12) be-
comes, after division by vo,

dho g2 ho=1—5 1 —— (3.14)
dpo po po

This is to be compared with (3.17) for which

(p/~)'", p«1
1 —a/p, p »1. (3.21)

2p» p ++1
1 —1/p+, p»1 (3.22)

whereas the solution of the boundary-layer equations, with

Ic=2/po, ts

(2p/3a)'i, p « 1

1 —3a/(2p)+, p »1 . (3.23)

The choice +=1 again achieves exact agreemcnt in the
large-p limit. At small p, howcvcl, thc powcI law is
wrong. This discrepancy is occurring in just the situation
where we should expect the boundary-layer approximation
to break down, that is, in the case where the thickness of
the layer D/Vo is large compared to the radius of curva-
ture Ro.

The three-dimensional, spherical case shows further
discrepancies, especially at small p. The exact result due
to Zener is

2p erfc(~p )

2V(p/~)e ~+erfc(v p )
r

, ho=[~(1 —~)r]'". {3.16)

The analog of (3.6) is

where the constant must be determined by initial condi-
tions. All trajectories in the ho, po plane are asymptotic at
large po to the line ho ———,

' (1—h)po+b, , and, for positive

ho, all these trajectories are traversed in the direction of
increasing po. When the circle becomes much larger than
its critical radius, po »6, we find an analogy to (3.5)

1/2

IV. PLANAR INSTABILITIES

An essential feature of the boundary-layer model is that
it recaptures, quite accurately, the MuHins-Sekerka insta-
bility" which is the underlying pattern-forming mecha-
ni.sm in these systems. To see this, it is simplest to return
to the planar situation and look at small deviations &om
the unperturbed solutions go(r), ho(r) described in Eqs.
(3.1) through (3.5).
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We write the total forward displacement and heat con-
tent of an almost flat front in the form

&n—:&a+
~87

we find the following linear equations of motion:

+0 2 187 Qg Q

Bh] a ~'0i=[5'(2—3b, )vp+ u]
87 Bs &o Bs

2

—(1—b, ) h) .

(4.4)

Here we have used (3.1) to eliminate hp in favor of vp, but
notice that vo is a 7-dependent quantity. If we ignore that
7 dependence, assuming that it is slow in comparison with
the deformation rates of interest to us, then we can per-
form a conventional eigenvalue analysis. Let both g& and
h ~ be proportional to exp(iqs+ cur). The resulting disper-
sion relation is

g(s, r)=gp(r)+g~(s, r), h(s, r)=hp(r)+h~(s, r), (4.1)

where s denotes position along the front and g& and h
&

are
assumed to be small. Using

Q2g
K

2
(4.2)

Bs

These two spectra are actually quite similar throughout
the interesting range of wave numbers in which instabili-
ties occur, that is, for values of q of order ~vp [dimen-
sional wave numbers of order (Vp/Ddp)' ]. Both func-
tions are shown in Fig. 3 for the case vp

——0.01 (and a = 1).
The boundary-layer spectrum has a second branch associ-
ated with out-of-phase motions of the thermal field h; but
these modes are all stable. The two branches coalesce into
a complex conjugate pair at large q, where Reer decreases
like —q instead of —q as in (4.8). The latter behavior,
however, is an artifact of the quasistationary approxima-
tion, ' and the correct behavior at large q is, in fact, —q .

It is also of some interest to look at (4.6) in the limit of
small 6,

2 1/2
co(q) &p &p z q+ — - +q

vo 25K 4~ vo
6«1 . (4.9)

The range of instability is again q & ~vp. In dimensional
units, however, this corresponds to wave numbers less
than (Vph/Ddp)'~, thus the instability is confined to
longer wavelengths at smaller A. When 6 is less than uni-
ty, vp decreases as a function of time r. One might then
think of a sequence of events in which a deformation sets
in at a certain q less than ~vp, vp then decreases to a
value such that the system is stable against small deforma-
tions at the original q, and finally the system reverts to
planarity via an oscillatory decay because the square root
in (4.9) has become imaginary. Such a sequence probably
can be made to occur in this model, and perhaps even in
real experiments, by choosing initial conditions such that

(1—b, ) —b. q20.'

vp(1 —6) vph
1+ (1—2b, ) q'

4a CX

1/2
4 4

q (4.6)

pp4

0.02

The special case of unit undercooling, b, = 1, is interest-
ing here because it allows (4.6) to be interpreted as a true
stability spectrum. In that limit, the latent heat exactly
balances the undercooling and, as seen in (3.1) and (3.2),
the front can move at any constant speed vo. Equation
(4.6) becomes —0.02

I I a I I I I

0.15 q

co(q ) = —q+/q/ 1—
Vo

1/2

(4.7)

—0.04
This result is usefully compared, for example, with the
quasistationary approximation for the analogous stability

spectrum co~s(q) in the full diffusion problem [see Ref. 1,
Eq. (3.14), with P=O]. In our present dimensionless vari-
ables, this is

~os(q)
&0

1/2

= ——,(q +vp)+ q +—
4

(4.8)

FIG. 3. Comparison between the stability spectra of the
boundary-layer model (solid line) and the full diffusion problem
in the quasistationary approximation (dashed line) v0=0.01,
+=1.
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the instability does not grow out of the range of the linear
approximation before restabilization occurs. It is much
more likely, however, that these instabilities will lead to
qualitatively different cellular or dendritic behavior.

which is a, parabola with its tip pointing in the +z direc-
tion. The tip radius 1s p = 1 /It (0); thus, 1n analogy to
(3.6), the Peclet number p can be written in the form

V. NEEDLE CRYSTALS

v~ =v cost9 (5.1)

%e turn now to the so-called "needle-crystal" problem,
which has generally been considered to be an essential first
step in the study of dendritic growth. We shall start by
showing how the boundary-layer model recovers almost
exactly the well-known family of isothermal solutions first
discovered by Ivantsov. The most interesting point to
emerge from the following analysis is the fact that, in the
boundary-layer approximation, the capillary correction to
the Ivantsov model is a singular perturbation which de-
stroys the needle-crystal solutions.

Our problem is to find shape-preserving growth forms,
that is, nonplanar solidification fronts that move with
constant growth velocity v in, for example, the z direction
in Fig. 1. Specifically, for the two-dimensional ease in
which the front is described by a single curve, we look for
solutions of (2.11) and (2.12) such that

where R and V are the dimensional tip radius and growth
velocity, respectively. The exact Ivantsov result is identi-
cal to (3.11)with the planar I' replaced by p. That is,

(mp)'~, p ««1
exact 1 1/(2~ )+. . .

which compares well with {5.7) for which

(2p/a)'i, p ««1
bclltlda~ lapeI' 1 tz /2p p

(5.8)

(5.9)

Again, the choice o, = 1 is sensible in the large-p limit.
A slm11ar analysis ls easy to perform ln three d1IHen"

sions if we assume that the solidification front is a surface
of revolution centered on the z axis. In this case, the cur-
vature It appearing in the equation of motion {5.5) must be
reinterpreted as the sum of the two principal curvatures
(twice the mean curvature), a1+a2. Here, it'1 ———t)8/t)s is
the curvature of the generator of the surface, and ~z is
given by

(5.2)

f sin8]K2= (5.10)

Note that the w dependence in (5.2) is evaluated at con-
stant 8 so that the h field remains invariant in the frame
of reference which moves at speed v. The relation be-
tween this r derivative and the normal derivative defined
following (1.3) is

B&n B

Be Be

dA =v„(1—5—It:h) .
GT

(5.5)

The combination of (5.4) and (5.5) with (5.1)—(5.3) yields
simply

~=—(1—b, )cos'8,
A

The relative simplicity of the boundary-layer method is
apparent in the fact that we can use {2.11) and (5.1) to
eliminate h from the problem, thus reducing this steady-
state version of the free-boundary problem to a single non-
linear differential equation for a as a function of 8.

The Ivantsov limit is obtained by eliminating capillary
corrections proportional to do, that is, by setting u, equal
to 6 wherever it appears in (2.4) and (2.7). Translating
this prescription into our dimensionless notation, we find

where r is the radius of a circular section normal to the z
axis. That ls~

r= cos8 s' = (5.11)

v(1 —b, )K= cos 8,
2A'

(5.12)

(5.13)

The exact Ivantsov formula for A(p) for this three-
dimensional case is identical to our earlier result for the
growing circle, Eq. (3.20). There is now a more serious
discrepancy in the relation between 6 and p in the small-p
limit; the boundary-layer approximation (5.13) predicts
5 ~@'~ whereas the exact result is 6 ~p ln(1/p).

Parabolic needle crystals in the Ivantsov limit seem to
be about as far as one can go in finding exact analytic
solutions to the full solidification problem; and it is en-
couraging that these solutions are recovered almost com-
pletely in the boundary-layer model. These solutions are
completely unstable, however, as has been shown rigorous-
ly both for the full problem and for the boundary-layer
model at do ——O. ' Thus it is absolutely essential that
capillarity be included in our equations of motion. This

where s =0 is fixed at the tip. The quantity It. appearing
in the geometrical relation (5.3) is just It1, however. All of
the above ingredients combine to yield simply
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brings us to the first really new result to be obtained by
the boundary-layer technique: a demonstration that exact,
steady-state needle-crystal solutions in this model do not
survive the inclusion of capillary corrections.

For simplicity, we restrict the following analysis to the
two-dimensional version of the steady-state problem in the
limit of very small b, . We also choose a= 1. That is, we
look for solutions of the following set of differential equa-
tions:

and that there is no symmetry or other constraint which
might cauSe thiS trajectOry to interSeCt the K axiS aS iS re-
quired by the starting conditions. Thus, except possibly
for special values of v, there is no reason to expect needle-
crystal solutions to exist.

The uniqueness of the trajectory at the fixed point can
best be seen by rewriting Eqs. (5.19)—(5.21) in terms of
w=cosO, eliminating s in favor of w as the independent
variable, and keeping only the leading terms near w =0:

l
v~ = =vcosO ) (5.14)

dK k A,

K(1 —w )~ (5.22)

aI V aK». aa=v„(1—hK) — h +K =0 .
07 g 8$ Bs 80 Bo

v(K —vw ) A,

wK(1 —w )

Rewriting (5.23) in the form

v —k v w2 2

(5.23)

Using (5.14) to eliminate v„and h, and noting that WK~
V—A, —Wdk/dw

(5.24)

as= ae '

we find

(5.16)

Kcos 6 3 K BK

BO cos0 BO
(5.17)

—9v cos' 0(425 cos 0—148)+ (5.18)

Evaluating (5.18) at 0=0, we obtain an expansion for
K(0) = I/p in powers of v. This is the kind of approxima-
tion that has been used (or implied) in studies of the full
problem. ' It is clear, however, that the capillary correc-
tion is a singular perturbation, and that this expansion is,
at best, asymptotic.

For an examination of the solvability of (5.17), it is use-
ful to rewrite this partial differential equation in the form
of three coupled ordinary differential equations in the in-
dependent variable s:

d8 = —K,
ds

dK

ds

(5.19)

(5.20)

Equation (5.17) has purposely been written in a form that
suggests that the Ivantsov limit is the first term of an ex-
pansion of K in powers of the dimensionless velocity v.
The second term on the right-hand side of (5.17) is for-
mally of order v, and the first iterations of this equation
give

K-=vcos 0+3V cos 0(Scos 0—4)

makes it clear that K=vw to leading order in w; the only
alternative would require that the quantity wdA, /dw
diverge, which would be inconsistent with the requirement
that k vanish at w=0. It remains only to show that
K=vw defineS a unique trajeCtory aWay from the fixed
point. This must be true because (5.17) can be used to
generate a unique eXpanSiOn far K in pOWerS Of W =COSH,

K=W Q~W
n=0

(5.25)

Inserting (5.2S) into both sides of (5.17) and equating coef-
ficients of w", we find a recursion relation in which the
formula for a„generated by the right-hand side of (5.17)
involves only the lower order coefficients a„5,a„6, etc.
Thus, all of these coefficients are unambiguously deter-
mined as functions only of v. Of course, this series is un-

likely to converge at w=1; note the singular factors
(1—w )

'~ in (5.22) and (S.23) which are related to the
expected appearance of odd powers of sin0 in the exact
solution of (S.17).

Although the above analysis has been restricted to the
limit of vanishingly small 5, there seems to be no reason
to expect that the qualitative nature of the result would
change for arbitrary undercoolings. It also seems interest-
ing to speculate that, if the introduction of capillarity de-
stroys the needle-crystal solutions in the boundary-layer
model, the sam. e thing might happen in the more realistic
versions of the solidification problem. We see nothing in
any of the approximate solutions of this problem or in the
numerical calculations of Nash and Glicksman' that
would preclude such a possibility.

dX
ds

(vcos 0—K)+KktanO.
cos8

(5.21)

VI. PRELIMINARY NUMERICAL RESULTS
Here (5.19) is our previous expression for K, (5,20) defines
A(s), and (5.21) is identical to (5.17). An acceptable
needle-crystal solution is a trajectory in O, K, A. space which
starts at s =0 with 0=0, A, =O (by symmetry), and moves
to a fixed point with K =A, =dA, /ds =0 as s increases to in-
finity. From (5.21) we see that, as expected, this fixed
point can occur only at 8= —m./2. The crux of the argu-
ment is that only a single trajectory flows to this point,

%e turn now to a few comments about numerical tech-
niques for dealing with the boundary-layer model. These
remarks have to be considered in the context of the fact
that, to the best of our knowledge, it has not been possible
numerically to integrate the full diffusion problem far
enough to see dendritic behavior. The difficulties of deal-
ing with moving boundary problems using conventional
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grid or finite element techniques stem in part from the
representation and tracking of the interface, and have been
discussed elsewhere. ' The underlying philosophy of our
approach obviates Inany of these difficulties at the ex-
pense, however, of introducing a new problem associated
with the parametrization of the interface. At first sight,
the equations of motion (1.3) and (2.7), supplemented by
the relations (2.1), (2.3), and (2.4), appear to constitute a
complete system of coupled partial differential equations
in one space and one time dimensions. Unfortunately this
is misleading because the spatial variable s itself obeys an
equation of motion, Eq. (2.6), which is coupled to the
remaining equations.

Suppose that we have somehow discretized (1.3) and
(2.7) on a spatial grid of points s;(t)=s; &(t)+be;(t)
(i =1,2, . . . , N) taking into account the fact that bs; is
truly a function of the label i. The time evolution of the
discretized equations drives the grid points away from re-
gions of positive curvature and toward regions of negative
curvature. This tendency is undesirable not only because
the computational error is unevenly distributed along the
boundary, but also because of "numerical surface ten-
sion. " The grid size artificially restricts the length scales
probed by the dynamics, and even if there exists a natural
short-wavelength cutoff in the system, the modification of
the dispersion relation induced by the grid can couple to
the long-wavelength behavior via the nonlinearity. In the
present example this can lead to an overstabilization of the
dendrite tip.

We have dealt with these difficulties by using interpola-
tion to redistribute the grid points evenly along the
boundary after each time step. Furthermore, we continu-
ously add new grid points as the boundary expands so that
the grid spacing remains constant. The most stable way
that we have found is to interpolate the boundary in the
space of (s,«) rather than real space. Our time-step algo-
rithm is a fully implicit scheme with linearization, so that
the only limitation on the time step is the rate of change
of the quantities we compute.

We have numerically integrated the boundary layer

100

y 0—

-100
-100 100

FIG. 5. Time-ordered sequence of the pattern of Fig. 2 plot-
ted in real space, showing grooving. The thick Hne corresponds
to the (s,~) graph in Fig. 2.

model for values of b, in the range 0—1 starting from a
variety of initial shapes. These include circles, ellipses,
and closed curves of the parametric form (we return now
to dimensionless variables):

«(s)=a+b cos(ms) . (6.1)

In order to minimize the effects of transients we choose
the initial h field such that

h(s r =0)=hp[«($)] (6.2)

where Ir(s) is given by (6.1) and hp(«. ) is the steady-state
solution (3.15) (with const=0) for a growing circle of ra-
dius pp=K

The limit of small 5, although somewhat artificial, is
relatively simple and will be discussed first. We have veri-
fied numerically that the interface undergoes the Mullin. s-
Sekerka instability, the effect being most conspicuous in

0.2 0.08

0.04—

K(s) -0.2— K(s)

-0 4—

0-

-0.6
0 250

S
500

-0.04
0

I

100
S

200

FIG. 4. a vs s at 1=435 in the small-6 limit, showing the
Mullins-Sekerka instability. The structure corresponds to the
formation of grooves in real space.

FIG. 6. Region in Fig. 4 enclosed by the dashed square at
t =520, showing the emergence of a complex fractal-like pattern
in (s,v) space.
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1+e cos(m 8)
1+@

(6.3)

where m is the crystalline symmetry. This factor inhibits
growth in the nonsymmetry-related directions and thus
causes the grooving instabilities to occur in those direc-
tions rather than at the dendritic tip. For 5-1, this
model does show dendritic behavior, with a smooth tip
starting to leave a trail of side branches behind it (Fig. 8).
By following the tip velocity as a function of time, we are
able to check that the system is out of the initial transient
stage. The behavior is particularly interesting in (s,v)
space, as shown in Fig. 9. The evolution of the dendrite
appears as a periodic state modulated by an envelope func-
tion propagating away from the tip back down the den-
drite. This is reminiscent of the behavior of the one-

(s,~) space, as shown in Fig. 4. In real space, Fig. S, the
interface develops thermal grooves which resemble those
seen in undercooled crystals. Ultimately the opposite
sides of the grooves intersect, but this is not important
from our point of view. Correlations are absent between
points close to one another in two-dimensional space, but
distant along the boundary, so that the model is strictly
accurate only when the groove width is much larger than
the width of the boundary layer at the groove walls. As
discussed in Sec. III, the small-6 limit is not expected to
be realistic. Nevertheless, the mathematical features of
the small-6 limit are related to those of the boundary
layer model for b, -l, and may actually be a better
description of some pattern-forming system other than a
dendrite. For example, a single-ce11 organism, Mi-
crasterias, evolves by grooving in quite a similar way to
the small-b. model. The grooves create fingers which
themselves become grooved at the tip, thus splitting into
two fingers. If continued indefinitely, a fractal or Cayley
treelike structure would form, but in practice the growth
ceases as the food supply becomes exhausted. The small-
6 model continues to grow, of course, and the structure in
(s,K) space becomes increasingly complex and suggestively
fractal-like. In order to follow the evolution far enough
for this to become apparent, it was necessary to evolve
successively smaller and smaller portions of the boundary
with more and more grid points as shown in Fig. 6.

Even for b,&0, the boundary does not appear to evolve
toward a more dendritic structure. This is shown in Fig.
5, where the initial shape was an ellipse and 6=0. Also
shown in Fig. 7 are the outer edges of the boundary layers;
the dashed curves are drawn at distances l(s) along the
outward normals from the solidification fronts. It is clear
that the growth is isotropic, and that the tip flattens,
presumably because diffusion is too effective in stabilizing
the boundary. We were careful to check that this result is
not an artifact of our numerical scheme. What seems to
be lacking in the model is a mechanism allowing instabili-
ties to grow only in certain preferred directions as is ob-
served experimentally. The most plausible origin of such
an effect is the crystalline anisotropy. In order to verify
that this could be important, we modified the boundary
layer model in a simple way by allowing the factor a in
(2.11) to be a function of angle 8:
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FIG. 7. Evolution of an ellipse at t =0 (lower diagram) until
t =100 (upper diagram), with 5=0.5 and no anisotropy. The
solid line is the interface; the dashed line is the edge of the
boundary layer.

dimensional partial differential equations mentioned in
the Introduction. We have not yet succeeded in calcu-
lating the tip velocity for the boundary-layer model, so
that a comparison with the marginal stability hypothesis
is not presently available.

It is also interesting to compare the structures generated
by the anisotropic boundary-layer model with a real
snowflake. We started from a circle with a small sixfold
perturbation and in addition to this symmetry, we im-
posed a sixfold anisotropy, with b, =0.99. In Fig. 10 we
present the time development showing that many of the
qualitative morphological features of a real snowflake are
indeed reproduced by the anisotropic boundary-layer
model. The penultimate stage shown did not evolve
directly from the earlier stage (due to lack of computer
time), but was inserted by hand so as to simulate an inter-
mediate stage of growth at smaller undercooling. The fi-
nal stage did, however, emerge from the preceding stage,
again at 5=0.99. Although real snowflakes are not
grown in two-dimensional melts at 6-1, it is quite likely
that the parameters in our phenomenological model, par-
ticularly 6 itself, require interpretation and are not neces-
sarily the actual experimental values.

A more natural way to introduce crystalline anisotropy
into the boundary-layer model is to modify the interfacial
boundary condition (2.1) so as to include anisotropic at-
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FIG. 8. Sequence of dendritelike structUres with 5=0.99,
@=0.25, and I=4, at times 0, 50, 75, 100, 115. The solid line

is the interface; the dashed line is the edge of the boundary
layer.
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FIG. 10. Evolution of a snowflakelike structure (top) com-
pared to sketches of real snowflakes. 5=0.99, a=0.25, and
m =6. The penultimate stage did not evolve directly from the
earlier stage (due to lack of computer time), but was inserted by
hand.
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tachment kinetics. At large undercoolings, the growth
rate increases, and the assumptions of diffusion control
and local equilibrium at the interface may break down. It
is precisely in connection with such effects that the crys-
talHne anisotropy is expected to play a crucial role. We
can account for it, in the first approximation, by assuming
that the effective temperature at the interface is reduced
in an anisotropic manner. Thus we replace (2. 1) by

us =b doIC V„f(B), — —
where

(6.4)

-0.02
0

I

100
S

I

200 f(B)=P[l—cos(mB)] . (6.5)

FIG. 9, Evolution of the dendritelike structure shown in Fig.
8, plotted in (s,v) space. The tip of the dendrite is at s =0.

The condition (6.4) is nothing more than the fact that
above the roughening temperature, the growth velocity is
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proportional to the chemical potential difference across
the interface. This addition to the model is more difficult
to handle numerically, but our preliminary results show
similar behavior to that found with the cruder inclusion of
anisotropy discussed here.

It is still not completely clear what the role of the aniso-
tropy actually is. One possibility is that an infinitesimal
anisotropy is all that is required to trigger instabilities in
the preferred directions, while suppressing growth in other
directions, and that the actual amplitude is not crucial.
Alternatively, the amplitude of the anisotropy may need
to be above some threshold in order to ensure the suppres-

sion of instabilities in the unfavored directions. Work
currently in progress should be able to clarify this point.

ACKNOWLEDGMENTS

This research was supported in part by U.S. Depart-
ment of Energy Contract No. DE-AM03-76SF00034 and
by National Science Foundation Grant No. PHY-77-
27084, supplemented by funds from the U.S. National
Aeronautics and Space Administration. One of us (J.S.L.)
especially acknowledges discussions with J. W. Cahn at
the Institute for Mathematics and Its Applications,
University of Minnesota, during a visit there.

J. S. Langer, Rev. Mod. Phys. 52, 1 (1980).
J. S. Langer and H. Miiller-Krumbhaar, Acta Metall. 26, 1681

(1978); 26, 1689 (1978); 26, 1697 (1978).
J. B. Smith, J. Comp. Phys. 39, 112 (1981).

4G. Dee and J. S. Langer, Phys. Rev. Lett. 50, 383 (1983).
5E. Ben-Jacob, H. Brand, and L. Kramer (unpublished).
J. S. Langer and H. Muller-Krumbhaar, Phys. Rev. A 27, 499

(1983).
7For example, see C. Zener, J. Appl. Phys. 20, 950 (1949). For

an early example of the use of curvature as a dynamical vari-
able in metallurgical free-boundary problems, see W. W. Mul-

ling, ibid. 27, 900 (1956); 28, 333 (1957).
8E. Ben-Jacob, N. D. Goldenfeld, J. S. Langer, and G. Schon

(unpublished).
H. Miiller-Krumbhaar, Proceedings of the NATO Workshop

on Chemical Instabilities, Austin, Texas, 1983 (unpublished).
R. Brower, D. Kessler, J. Koplik, and H. Levine, Phys. Rev.
Lett. 51, 1111(1983).

W. W. Mullins and R. F. Sekerka, J. Appl. Phys. 34, 323
(1963); 35, 444 (1964).
J. S. Langer, Acta Metall. 25, 1121 (1977), especially Sec. V.
G. P. Ivantsov, Dokl. Akad. Nauk SSSR 58, 567 (1947). See
also G. Horvay and J. W. Cahn, Acta Metall. 9, 695 (1961).
N. D. Goldenfeld and J. S. Langer (unpublished).
H. Muller-Krumbhaar and J. S. Langer, Acta Metall. 29, 145
(1981);see also Ref. 2, Part 3, Appendix.
G. E. Nash and M. E. Glicksman, Acta Metall. 22, 1283
(1974).

~7Proceedings of the Conference on Fronts, interfaces, and Pat-
terns, Los Alamos, 1983 [Physica D lto be publishedi].


