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Comparison of atomic potentials and eigenvalues in strongly coupled neon plasmas
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A self-consistent, completely-quantum-mechanical formalism has been developed that character-
izes the fundamental atomic properties of ions in dense plasmas. This theory is applied to neon
plasmas under strongly coupled conditions and the results are compared with those obtained from
the hypernetted-chain approximation employing a semiclassical two-body interaction. The compar-
isons point out the lack of validity of simple approximations for atomic calculations in strongly cou-
pled plasmas and indicate that the self-consistent theory provides a method of obtaining meaningful
results even when the plasma ion coupling parameter is of order 5.

I. INTRODUCTION

Since it is now possible to produce very hot plasmas at
greater than solid density in the laboratory, it is meaning-
ful to construct theoretical models of such systems that
allow for accurate determination of the systems' proper-
ties. For calculations of atomic properties the usual ap-
proach is to iteratively solve a set of coupled equations
statistically describing the charge distributions and an ef-
fective electron-ion interaction potential. Incorporating
this potential, the bound- and free-electron distributions
are found from the Schrodinger equation. Thus, given an
ion where the bound orbits are not externally specified,
the solution of the equations directly gives orbital energy
eigenvalues and (fractional) populations. The wave func-
tions and the effective electrostatic potential obtained in
this manner can be used to find spontaneous decay rates
and cross sections for various atomic processes character-
izing radiation, the spectrum of which can be employed to
diagnose the plasma environment. '

Thomas-Fermi and Hartree-Fock statistical models
have been applied to highly ionized atoms in dense
plasmas ' and subsequently applied to a strongly coupled
neon plasma. However, ion correlations were neglect-
ed in these approaches. A self-consistent set of
Schrodinger-Poisson equations including ion correlations
was developed by Skupsky to study the plasma micro-
field effects on a high-Z impurity ion embedded in a
dense fully ionized low-Z plasma. An improvement over
this method —the quantum-mechanical treatment of the
free electrons —was made by Davis and Blaha. In a simi-
lar manner, density-functional theory (DFT) has been em-
ployed to investigate level shifts and screening effects in
the impurity problem. "'

The inclusion of ion correlations in these latter models
is accomplished using a Boltzmann distribution under the
assumption of nearly classical ion interactions. In the

case of the one-component plasma (dynamic ions in a neu-
tralizing background charge), the assumption of a
Boltzmann-like form for the ions would be erroneous for
values of the ion coupling parameter

(Z)eP
ro

greater than about three. ' Here Z is the effective ionic
change, ro is the ion-sphere radius, and P= 1/k&T. This
discrepancy is not as significant for a "real" two-species
plasma because the mobile electron fluid is able to provide
more effective screening, but has yet to be investigated in
the two-species model for I &2 and for ions other than
hydrogen. If one can utilize a model that is expected to
provide accurate distributions for a strongly coupled sys-
tem, one can also use that model to examine the vaildity
of using self-consistent statistical models in the strongly
coupled regime.

Implicit in all the methods discussed here is the as-
sumption that the lifetime of the ionic state is long
enough so that the plasma has time to be polarized by the
ion. Since the polarization (correlation) time is of the or-
der of the inverse of the plasma frequency, all of the cases
we are considering can be considered long-lived (a typical
state lifetime —the most rapid destruction mechanism be-

ing collisional deexcitation —may be of the order of
10 ' —10 ' s; to&

' is about 10 ' s). Each model also
assumes that since the ion state exists through many plas-
ma periods, the concept of a time-averaged potential for
atomic calculations is meaningful.

It should be noted that the calculations involving the
self-consistent method presented below, like those of Ref.
8, form an "average atom" ion model, in contrast with
models which detail the ionic configuration. The eigenen-
ergies obtained below do not represent the spectrum of an
ion in a specific configuration (i.e., hydrogenic), but
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represent an average over many ions in partially ionized
states.

We investigate here the energy eigenvalues, charge dis-
tributions, and effective electron-ion potentials for strong-
ly coupled neon plasmas using a self-consistent DFT
model similar to that described in Ref. 8. These results
are compared with those obtained from the solution of the
two-component plasma hypernetted-chain (HNC) equa-
tions, which are assumed to be valid at these densities and
temperatures. The results will indicate the inadequacy of
the Debye-Huckel (DH) and ion-sphere (IS) calculations
when 13&1 &1.

In Sec. II we describe the atomic and plasma models we
will consider. Section III contains the results of computa-
tions employing these models. The results are discussed
in the concluding section.

II. MODELS

the time-independent Schrodinger equation, i.e.,
00 00

p, = — r8' 2 +1FkI rk'&'
I =0

where

k k2
IV(k) = 1+exp —p, P~2 2

(4)

f dk W(k)=p, (oo)= n—, , (6)

where n, is the mean electron density. The free-electron
wave functions Fki are solutions of Eq. (3) with the re-
placement of the eigenenergy E„I by the electron kinetic
energy k . The ion charge density is assumed to take the
Boltzmann form

here p is the chemical potential of the free-electron gas
determined from

We consider an ion of nuclear charge Z in a plasma in
which the average effective charge is Z. Z is equal to Z
minus the mean number of bound electrons per ion and is
a result of the model. Density-functional theory leads to a
system of equations that must be solved self-consistently.
The electrostatic potential is given by the Poisson equa-
tion

Z2
V(r) = +4me —f dr r (p, +pb+p;)

p 0

+ f dr r(p, +pb+p ) . (1)

The plasma is assumed to be in thermal equilibrium and
all electrical charge distributions are assumed to be spheri-
cally symmetric. In Eq. (1), pb is the local density of
bound electrons

pb = —(4~&') ' g bnIPni(r)
n, l

The b„~ are the state occupation numbers (g„ib„~
=Z —Z) and P„I(r) are the radial wave functions found
from solving the Schrodinger equation where the interac-
tion potential is V(r) from Eq. (1) with pb set equal to
zero,

d l(l+1)
dp r

—V„,(r) —V„,(oo)+E„( P„I(r)=0,

(3)

where E„& is the energy eigenvalue of state nl. Here, the
exchange-correlation potential V„,(r) has been calculated
by Gupta and Rajagopal" and by Dharma-wardana and
Taylor. "

p, is the local charge density of free electrons. It is
represented by a Fermi-Dirac energy distribution beyond a
spherical boundary large enough so that the plasma at the
boundary may be considered neutral. Inside this sphere
the free electrons may be treated quantum mechanically
and are described by wave functions that are solutions of

[1—exp( r ll/ f3)];—(8)

is the charge of species a, and k~p fi/(2mp~pkpT——)'
where p~~ is the reduced mass. This potential is finite at
the origin and is expected to give reasonable results for
nondegenerate plasmas so long as k,„/ro « 1 (k„ is the
smallest of the three P ~). This condition is equivalent to
I &9(Z)'/(T, v)' '

In order to include the plasma many-body effects, the
binary interactions defined in Eq. (8) are used in the HNC
equations. ' This is an approximate integral equation
Inethod for calculating static correlation functions for sys-
tems of particles with long-range potentials and has prov-
en to be accurate for strongly coupled hydrogen plas-
mas. ' The quantities of interest are the radial distribu-
tion functions (RDF s) g p(r), which contain the static
structural information in the TCP. The HNC approxima-
tion for the RDF's is

g p(r)=exp[ I3V ~(r)+h p(r) cp(r)—], —

—PV(r)
p —ze

At r = ao, p; = —p„ensuring neutrality; we also have the
boundary conditions r V(r) ~0 and P„I~0 as r ap-
proaches infinity. Equations (1)—(4), (6), and (7) are
solved self-consistently with these boundary conditions to
yield E„~,p„p;, and V(r). Details can be found in Ref.
6.

In order to gauge the reliability of the above model in a
strongly coupled plasma, we turn to a semiclassical treat-
ment of particle correlations that has been found to accu-
rately reproduce molecular-dynamics calculations in this
regime. In this approach —the two-component plasma
(TCP)—the ions and electrons are treated as classical par-
ticles that interact through effective two-body potentials
which deviate from pure Coulomb barrier at short dis-
tances such that the essential quantum diffraction effects
are simulated. A particular form has been suggested by
Deutsch' and used in the computer simulations. ' This
form uses the reduced mass de Broglie wavelength pop,
where a and P are species labels, as a quantum-
mechanical cutoff parameter, i.e.,
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where the total correlations

h p(r) =g p(r) 1—
are related to the direct correlations c p by the Ornstein-
Zernicke equations

i, e

h p(k)=c p(k)+ gh r(k)crp(k) .
r

Here the Fourier transform is defined as

z sin(kr)
h~p(k) =4~n~ dr r h p(r) .

0 kr
(12)

24m.e Z
k e(k)

(13)

Equations (9)—(12) are solved iteratively for a,P=i, e.
The RDF's generated by this procedure reduce to their
DH forms in the limit of weak coupling (I «1), but are
considerably different from the DH approximation when
I is order 1 or larger.

The TCP is a model system of point charges, ions with
charge +Z and free electrons with charge —1. Formally
the HNC scheme requires the exact Z as an input param-
eter; this is necessary if the ionic and electronic distribu-
tion functions are to be examined. In order to find the ef-
fective potential, however, only a rough guess of Z will
suffice to determine much of the V(r) curve.

If the particle distributions are required (therefore an
accurate value of Z is needed) two steps are necessary.
First, a guess of Z is made and the HNC equations are
solved for S;;(k) and S;,(k). A "guess" of the potential is
then found from Eq. (13) below. This potential can then
be used in Eq. (3) to find wave functions for all bound
states. The integrated wave functions provide a new Z,
which, when used in the HNC code a second time, pro-
vide a new potential and the needed distributions. Gen-
erally, only the one such iteration is required.

The effective electron-ion potential and the screening
function e '(k) are defined via Poisson's equation, the
Fourier transform of which is given by

[S,, (k) —S,,(k)/(Z)'"~ .

VDH(r). The Debye potential itself is known already to
predict excessive screening in plasmas where the validity
of the DH approximation is questionable. A plasma in a
near metallic state (where the ion-sphere model might be
used) shows a form very similar to the potential defined
via Poisson s equation, which is qualitatively and quanti-
tatively distinct from an effective interaction derived from
the FDT. The IS model ' assumes complete ion shield-
ing within an ion-sphere radius by a uniform cloud of
electrons. Poisson's equation in this case yields

V,s(r) =Ze 2 1
(15)

r
1 r

3 2
rp2rp

For extreme densities, VIs should be approximately
correct.

In this paper we compare a self-consistent density-
functional atomic model with calculations gained via a
solution of the two-component plasma HNC system of
equations. We should mention that Dharma-wardana and
Perrot' have included an HNC scheme (for ions only)
within a density-functional model in an effort to incorpo-
rate ion correlations. Their results for g;;(r) and g;, (r)
compare favorably with molecular-dynamics results for
fully ionized hydrogen.

III. RESULTS

We consider a strongly coupled neon gas plasma. Table
I summarizes the conditions under which the runs were
made, the value of Z being a result of the self-consistent
(SC) model. All cases have I"s in excess of 2. We note
that both the HNC and SC models reduce to correct
Debye-Huckel results in the limit of weak coupling
(I «1).

The ion charge density from the self-consistent model
normalized to the background density, p; /p( oo ), is
equivalent to the ion-ion radial distribution function g;;.
Figure 1 displays the ion distributions resulting from SC
solutions for the I =2.2 and 4.9 cases. These figures are
compared with g;; from the HNC approximation using
the effective binary interaction in Eq. (8) and with the De-
bye form

The static structure factors are defined by

S p(k) =5 p+(
~ g gp ~

)'~'h p(k) . (14)
g,D"(r)=exp

—Ze —r/A. D
2

e
r

The use of the nuclear charge Z in the definition of VHNc
requires some justification since the HNC charge distribu-
tions that make up S p are based on ions with charge Z.
This point is discussed in the Appendix.

The definition' of V(r) in Eq. (13) implies a form of
the dielectric function significantly different from that
obtained using the Auctuation-dissipation theorem'
(FDT), although both forms reduce to DH forms in the
proper limits. For dense plasmas, VHNC from Eq. (13)
agrees much more closely with results from the ion-sphere
model (described below) and with Thomas-Fermi calcula-
tions, as well as the "potential of mean force" approxima-
tion VM„(r) =(Ze /r)ln[g„(r)], than an effective interac-
tion derived from the FDT. In fact, VFDr(r) shows
screening that everywhere has a larger magnitude than

where

D=4mn, e ,(Z+1).P . (17)

g;; shows the tendency of the DH approximation to

Electron density
(cm )

1024

2X 10'4
5X10'4
5X10"

Temperature
(eV)

400
250
250
210

Z

8.77
7.61
7.85
8.02

2.2
3.4
4.9

13.1

TABLE I. Summary of selected neon plasma conditions
described by the models. Z is the mean charge per ion. I is the
ion-coupling parameter.
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FIG. 1. Ion-ion radial distribution functions for (a) I =2.2 and (b) I =4.9 in HNC (dotted curve), SC (solid curve), and DH
(d88hed CUrvC) SppfOX1Q18tlOM. 018fRQCC f 18 1Q Urn(8 Of 41M BOhr rRd108 00.

excessively screen the iona in dense plasma, an effect pre-
viously seen in the one-component plasma {OCP) and
the two-component plasma (TCP). ' The HNC RDF is
assumed to be the most accurate of the three representa-
tions because, since A,;;/ro-10, the ions are essentially

classy. cal particles and the computer simulations have sup-
ported the use of the HNC approximation for classical
systems. In spite of the fact that p; in the SC method-
Eq. {8)—cannot reproduce the oscillations around g;; =1.0

for 2&rlaq &4 in the larger I case, the agreement be-
tween the SC and HNC methods even at I =4.9 is very
good. The small difference between these two forms is
not expected to alter the effective potential; ' we will test
the significance of the difference below.

Figure 2 compares the electron density profile {includ-
ing both bound and free electrons) provided by the self-
consistent method around an ion with the ion-electron ra-
dial distribution function produced by the HNC code for
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FIG. 2. Electron distribution around an ion for I =2.2.
Solid curve is the SC model, dashed curve is the HNC approxi-
mation. Smallest radius used in the Fourier transform within
the HNC scheme was r/ao ——0. 125

I =2.2. The profiles are very close for r/ao) 0.25. The
innermost r point calculated on the Fourier transform
mesh in the HNC code is r/ao ——0. 125. This also corre-
sponds to the innermost r mesh point of the potential;
since V(r =0)/e =Z, interpolation between r =0 and
the first mesh point is possible for VHNc(r) Extrapola-.
tion of the HNC g;, to smaller radii, however, would not
be meaningful, since A,;, /ao ——0. 12; thus quantum-
mechanical details are important in this region. Rogers
has investigated this subject for hydrogen, as well as few-
times ionized argon and xenon. ' Since our goal is a
many-body effective potential with which to examine
average atom calculations, we find that the present model
is adequate.

The SC effective potential is a consequence of the solu-
tion of the model. This function in the form rV(r) ap-
pears in Fig. 3 for I =2.2 and 4.9. The HNC-Poisson
potential —Eq. (14)—is also presented. The two forms are
seen to be very similar in both cases, indicating the ap-
parent validity of the quantum-mechanical model even at
very high densities. The Debye potential reveals much
stronger screening except for large distances where rV(r)
tends to 0 for all models. The ion-sphere approximation
is included for comparison. It agrees rather well with the
SC and HNC-Poisson methods at short distances, but
predicts even larger than Debye screening farther as r be-
comes larger —a tendency very much distinct from the SC

and HNC methods. The overall form of the IS function
is very different from the exponential behavior of the DH,
SC, and HNC-Poisson functions, a result of its constraint
of fixed ionic volume.

Having now seen that the self-consistent formalism can
provide reasonable charge distributions and potentials
(compared with the HNC data) for these strongly coupled
plasmas, we now look at the energy levels of the neon
ions. Table II is a compilation of negative energy eigen-
values arising from the solution of the Schrodinger
equation —Eq. (3)—within the method. All negative
(bound) energies are noted. The less deeply bound or ab-
sent DH values (resulting from more severe screening) as
well as eigenvalues found by using Vis(r) and VHNc(r)
are presented for comparison.

As a test of the significance of the difference between
the two forms of the ion-distribution functions —the SC
[Eq. (7)] and HNC [Eq. (9)]—a run of the SC model was
repeated for I =3.4 using g;; as a fixed function in-
stead of Eq. (7). Those figures are set in parentheses in
Table II. The difference is indeed minor and of the order
of the numerical accuracy of the coded formalism.

As an example of neon plasma at extreme conditions,
we examined the case in which n, =5X10 cm and
T =210 eV, giving a I of 13.1. In this regime one ex-
pects to see considerable difference between the profiles
produced by the SC and HNC methods. In Fig. 4 the ion
distributions of the HNC, SC, and DH theories are repro-
duced. The HNC RDF shows that in this case ion corre-
lations are not Boltzmann-like. The non-negligible oscil-
lation about g;; =1 shows that there is now a strong indi-
cation of ion ordering. Since the SC method utilizes Eq.
(7), this effect is not seen in those results. Quantitatively
the SC and HNC RDF's are more dissimilar than the
less-coupled cases, although the DH curve is considerably
more distinct from both of these.

Figure 4 indicates that the effects of non-Boltzmann
ion correlations are expected to be seen in the potential
only at distances of r/ao greater than 1. Inside this ra-
dius the SC and HNC ion distributions are similar enough
that the potential, which here depends on the electron dis-
tribution, is not expected to be greatly affected. The De-
bye potential is expected again to be overly screened. Fig-
ure 5 provides the calculated potentials for I =13.1. The
ordering seen in Fig. 5 is obviously manifested as the r-
space oscillations in V(r). For purposes of atoinic calcu-
lations, this effect will have little significance as the spa-
tial extent of the is wave function is limited to the
volume inside r/ao 0 15. For co——mp. arison we have plot-
ted the ion-sphere potential (crosses), which is seen to
coincide closely with the SC and HNC effective potentials
up to r/ao 0 5. ——.

IV. DISCUSSION

Our primary goal is to investigate the applicability of
the SC quantum statistical method to strongly coupled
neon plasm. as. As points of comparison we include poten-
tial calculations from Debye-Huckel and ion-sphere ap-
proximations. The solution to the HNC equations incor-
porating a semiclassical binary pseudopotential, ' which
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(b)

FIG. 3. Effective electron-ion potential resulting from the SC model (solid curve}, HNC-Poisson model (dotted curve), ion-sphere
model (crosses), and DH theory (dashed curve) for (a) I"=2.2 and (b) I =4.9.

has been found to be accurate in strongly coupled hydro-
gen plasmas, ' is the plasma model whose statistical prop-
erties the SC method must mirror in order to be con-
sidered valid in this regime.

The SC method incorporates ion correlations via a
Boltzmann factor with the self-consistent potential in the
exponent. Although this form is approximate and cannot
predict strong correlations which result in spatial oscilla-
tions in g;;, the SC ion distribution is very close to the
HNC profile for all cases considered, with the exception

of I =13. The DH profiles predict more closely packed
ions due to considerably more screening. The IS form is
nearly correct for I'=13 (ro=0.64ao). Of course the
structural oscillations are absent in the IS model but this
should not be very important for calculations involving
only bound electrons.

The SC potential is found to be very similar to VHNc(r)
for the lower I cases. The HNC potential is less screened
than the SC potential in the region r &ro/2, where the
electron distribution essentially determines the form of the
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TABI.E II. Energy eigenvalues in atomic units of neon plasmas at I =2.2, 3.4, 4.9, and 13.1 from
self-consistent Inodel (using g;; in place of p; for the parenthetical values under I =3.4), and the
HNC-Poisson rnodcl, Dcbyc IQodcl, and ion-sphcI'c IQodcl predictions. All bouIK1-lcvcl cnclgics alc
given.

HNC IS
I =2.2

DH DH

1$
2$
2p
3$
3p
3d

—42.3
—6.15
—5.93
—0.64
—0.50
—0.22

—43.1

—6.35
—6.24
—0.57
—0.44
—0.18

—43.8
—6.45
—6.40
—0.23
—0.12

—39.7
—4.40
—4.00
—0.16
—0.01

—34.6 ( —34.6)
—2.88 ( —2.89)
—2.31 ( —2.41)

—39.4
—3.77
—3.41

—41.8
—4.65
—4.55

—33.7
—1.54
—0.77

—39.0
—2.40
—2.13

potential. The SC electron distribution and thus the effec-
tive potential in this region are probably more accurate
than the HNC results. For larger r, however, the ion dis-
tribution begins to effect the potential. The ion-ion RDF
curves in Figs. 1 and 4 show the ions generally less packed
ln the HNC approximation than in the SC Inethod, bQt

the structure is not simple. The enhanced (non-
Boltzmann-like) ion correlations shorten the range of the
calculated potential. The HNC potential in this region is
probably the more accurate of the two.

Figure 5 indicates the presence of very strong enhanced
correlations affecting the potential. Using the HNC ion
distributions in the SC method in place of the Boltzmann

fornl docs Ilot allow g-(N) to adjust, to cllallgcs 111 t11c clcc-
tl'oil dlstrlbutloll 111 each ltcratloll (ulllcss tllc two-
component HNC code is coupled directly to the SC
scheme, a project we have not undertaken). Only for large
1 might this be important. For bound-state energies at
I =13, the differences between the HNC and SC poten-
tials are not important (see Table II). Calculations of con-
tinuum potentials will, however, be affected. This prob-
lem will be investigated in the future.

s
s
s

s
s

+
0 yI y+ o+~~~+e4 4
0 ~ g 4 ~ ~eye+~yg, ~s

4' 0

~os~

0
0

FIG. 4. Ion-density distribution function for the I =13.1
case in three approximations. Symbols are the same as in Fig. 1.

PIG. 5. Effective electron-ion potential foI' I =13.1 neon.
Symbols are identical to Fig. 3.
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The inner region is more important for obtaining infor-
mation on bound states. Here, the ion-sphere approxima-
tion is hampered by the assumption of uniform electron
density, with the result that Vts(r) predicts more deeply
bound state than the HNC or SC potentials (which are in
turn more deeply bound than the inappropriate DH
values). This is true even at the extreme case of I =13.1
as indicated by Table II. At the temperatures and densi-
ties for the cases listed, the HNC and SC potentials
predict the same number of bound states with approxi-
mately the same energies. The IS approximation predicts
more deeply bound inner levels but may result in less ener-
getically bound outer levels (as in I =2.2) if the wave
functions extend into the region where the range of the IS
potential is foreshortened by its definition of a fixed ionic
volume. The Debye values all indicate more shallow
states because of large screening. [If in the definition of
A,D in Eq. (17) Z were used instead of Z, the result would
be even more severe screening. Setting Z=0 in Eq. (17),
i.e., using the electron Debye length, produces a potential
devoid of any ionic contributions to the correlation func-
tions. The result here is a potential that lies much above
all of the curves; this approximation provides too little
screening. ]

Since the HNC-Poisson potential appears to be accurate
for atomic calculations in neon for I & 2.2 (see Fig. 3 and
Table II), this approximation, which is very easy to gen-
erate, can be use to examine other properties of such
strongly coupled systems requiring a many-body potential.
For calculations at higher coupling and details of electron
distributions very close to the nucleus, the self-consistent
method is needed.

We have shown the self-consistent model produces reli-
able results for strongly coupled plasmas compared to
hypernetted-chain results in neon up to I of order 5 and
higher if HNC ion distributions are employed. In addi-
tion, we have shown that the HNC method of generating
correlation functions provides an effective potential that
can be used in calculations of atomic properties up to I of
order 2 (for neon). Debye-Huckel theory is not a mean-

ingful approximation in strongly coupled plasmas. Nor
can we recommend the use of the ion-sphere potential for
any of the cases examined here.
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APPENDIX

Here we briefly discuss the use of Z (and not Z) in the
definition of VHNc. The mean charge Z is used in the
HNC model to find the charge distributions which define

~HNC '

Close to a test point ion of charge Z, the free-electron
distribution determines VHNc(r); the ion-ion RDF is
negligible out to a distance of about Tro. In this region
Poisson's equation is

V VHNc(r)=4me Z 5(r) h;,—(r), r &rc/2
Z

(Al)

VHNC(r) =47M Zf(t)' (A2)

where f (r) is a function nearly independent of Z. This is
the rationale behind the form of the potential in Eq. (13);
VHNc(r) is a screening function dependent on density and
temperature scaled by the nuclear charge Z. We find that
this form very nearly reproduces the potentials found in
the quantum-mechanical self-consistent model described
earlier.

where the primes on VHNc(r) indicates the test ion has
charge Z, not Z. For a given temperature and electron
density, a higher value of Z simply pulls the electron dis-
tribution h;, (r) in tighter, an effect that essentially com-
pensates the Z prefactor to h;, . The result is that the
function in parentheses in Eq. (Al) is nearly insensitive to
the mean ionic charge, i.e.,
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