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The stability is investigated of helical trajectories of relativistic electrons in combined axial guide
and helical wiggler magnetic fields appropriate for studies of free-electron lasers without using the
frequently invoked assumption of evaluating the wiggler field on the laser axis. This is the first
analysis of such trajectories which is free of this approximation. It is found that the helical trajec-
tories are unstable with the possible exception of one value of the orbital radius. The instabilities are
of two types corresponding to different properties of the eigenvalues of the matrix associated with

the linearization of the equations of motion. These properties, in turn, depend upon the relative

signs and magnitudes of the physical parameters that occur in the problem. At the exceptional radi-
al value the trajectories can be either unstable or linearly stable depending upon the values of these

parameters. For the linearly stable situations it is not known whether the trajectories are nonlinearly
stable or unstable. We also prove that the trajectories of one of the instability types are of a particu-
lar kind called conditionally stable. This type of unstable trajectory has the property that it is ap-
proached by some (but not all) solutions of the equations of motion as time approaches positive or
negative infinity. This type of instability is found to be more severe for larger values of the orbital

radius. Even so, it still appears to be significant for small radii, of the order of &oo of the wiggler

wavelength.

I. INTRODUCTION

The study of trajectories of relativistic electrons in
periodic magnetic fields forms an important source of in-
put data for the theory of free-electron lasers. In the
present paper we will be interested in magnetic fields
which are combinations of uniform guide fields and
wiggler fields generated by a bifilar helical current wind-
ing:

8=(B„cos(kz),8~sin(kz), BO ), (1.2)

where we now use Cartesian coordinates. This is a guide-
wiggler combination commonly used in investigations of
properties of free-electron lasers.

The classical equations of motion have helical trajec-
tories as steady-state solutions for each field (1.1) and (1.2)
for suitable ranges of the parameters 80, 8, and electron
energy. Indeed, in the case of (1.2) it can be shown that

8„=28 I', (kr)cos(kz —P),
I i (kr)

Bp ——28~ sin(kz —P),kr

8, =Bo—28~I&(kr)sin(kz —P),
where we have used cylindrical coordinates ( r, P,z) and I&
denotes the Bessel function of imaginary argument of or-
der one with the prime indicating differentiation with
respect to its argument. Bo and 8 denote the (constant)
magnitudes of the guide and wiggler fields, respectively,
and the constant k denotes the wave number of the axially
periodic wiggler field. In the limit r ~0 (1.1) reduces to
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such trajectories are the only steady-state solutions. This
does not mean, however, that these trajectories are fol-
lowed by electrons in free-electron lasers because there
usually exist inhomogeneous regions in these devices
which are not taken into account in (1.1) and (1.2). There-
fore, studies of the stability of electron helical trajectories
are very important for the theory of free-electron lasers,
especially in view of the fact that these trajectories are
commonly used in calculations of the radiative properties
of these devices.

Several studies of the linear stability of helical trajec-
tories corresponding to the expression (1.2) have been
done. Also, in an interesting paper on the effect of re-
placing the field (1.1) by (1.2) in the equations of motion
of the electron, Diament uses what one might call a hy-
brid approach which consists of a linearization of the
equations of motion corresponding to (1.1) about the heli-
cal trajectories corresponding to (1.2). As we shall see in
more detail later, the validity of his procedure is restricted
to the case of helical trajectories with sufficiently small
radius. We are able to remove this restriction by the use
of a more general method.

In the present paper we investigate the stability of elec-
tron helical trajectories in the magnetic field (1.1) without
making the assumption of replacing this expression by
(1.2). This is the stability problem that should be studied
because the trajectories followed by real electrons are ob-
tained by solving the equations of motion corresponding
to the field (1.1), at least to the extent that this field is a
good approximation to the actual magnetic field in a
free-electron laser. If these trajectories are perturbations
of a helical trajectory, the latter will be a solution of these
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same equations rather than of the equations correspond-
ing to the expression (1.2).

We are able to bypass the approximation of passing
from (1.1) to (1.2) by applying some results of the qualita-
tive theory of ordinary differential equations to
Hamilton's equations describing electron motion in the
magnetic field (1.1). By using these powerful techniques,
we are able to generalize Diament's results and also to ob-
tain some additional ones.

We find that helical trajectories corresponding to (1.1)
are unstable with the possible exception of one value

~

a
~

of the orbital radius. The instabilities are of two types,
called I and II herein (corresponding to Diament's strong
and weak instabilities, respectively), associated with the
respective cases when the matrix A associated with the
linearization of the equations of motion does or does not
have an eigenvalue with positive real part. For the excep-
tional value of

~

a ~, the trajectories can be either unstable
of type II or linearly stable depending upon the values of
the parameters Bo, B, and electron energy. For the
linearly stable situations it is not known whether the tra-
jectories are nonlinearly stable or unstable.

We also prove that the helical trajectories of instability
type I belong to a particular class called conditionally
stable. ' Roughly speaking, a solution g(t) of a system
of ordinary differential equations is called stable if every
solution of the system which starts sufficiently close to
P(t) at t =0 remains close at all other times. A solution
f(t) is called unstable if there exists at least one solution
of the system which starts near f(t) at t =0 but does not
remain close at all other times. A solution P(t) is called
conditionally stable when some (but generally not all) solu-
tions of the system approach P(t) in the limits" t~+ ~.

In order to facilitate our discussion of the instability of
the helical trajectories corresponding to the magnetic field
(1.1), we find it convenient to divide this topic into two
parts. In Sec. II we first briefly discuss these helical solu-
tions and then give a qualitative analysis of their instabili-
ty in terms of some naturally occurring auxiliary parame-
ters. Then, in Sec. III we proceed to a quantitative discus-
sion in terms of normalized versions of the physical pa-
rameters Bo, B, and electron energy. We summarize our
results in Sec. IV and an Appendix is devoted to the
derivation of some estimates needed to establish the con-
ditional stability of the type-I unstable trajectories.

II. HELICAL TRAJECTORIES
AND THEIR INSTABILITY

We consider Hamilton's equations for the Hamiltonian
2 1/2

H= c P ——A +m c
c

where e & 0 denotes the electronic charge, m the electron
mass, and c the speed of light in vacuum. A denotes the
vector potential corresponding to the magnetic field (1.1):

28„ Ii (kr)
cos(kz —P),

Bo~ 2B
A& = — I', (kr)sin(kz —P ),

2 k

we write Hamilton's equations in the following form:

V, . Vpr'= V,

V„=[—Qp+2Q Ii(kr)sin(kz P)]V—
~

I, (kr)
+20„V, sin(kz P)+(—ry) 'V&,

Vy = —[—Qp+2Q Ii(kr)sin(kz —P)] V„

—2Q~V, Ii(kr)cos(kz P) (ry)—'V&—V„,

Ii(kr)
V, = —2Q V„sin(kz —P)kr

(2.1)

—V&I', (kr)cos(kz —P)

where the overdot denotes differentiation with respect to
time, and we have introduced the frequencies

I

e
I
&p

Q
mcy mcy

where y denotes the usual relativistic factor.
We will consider the following helical solutions of (2.1):

V, =O,

+
y 2' y'

V~ ——kau, V, =u,
(2.2)

where a and u are constants and we have, without loss in
generality, chosen z to vanish at t =0. The two signs in
(2.2) correspond to the fact that two types of solutions to
(2.1) are possible, the negative sign corresponding to neg-
ative values of ka.

We will confine our attention to the study of the insta-
bility of the trajectories (2.2). Although these admittedly
form a very restricted class of solutions of (2.1), with their
guiding centers along the wiggler axis, they are, neverthe-
less, commonly used in investigations of properties of
free-electron lasers. ' Since one of our objects in the
present work is the study of the validity of the procedure
of replacing (1.1) by (1.2), generalizing some aspects of the
work of Diament, we want to investigate the instability
of solutions of (2.1) that reduce to appropriate solutions of
the equations of motion corresponding to (1.2) in the limit
ka —+0. As we stated in the Introduction, these analogs of
(2.2) are the only steady-state solutions of the equations of
motion corresponding to (1.2). Thus (2.2) are the ap-
propriate solutions of (2.1) to study in order to delineate
the domain of validity of the replacement (1.1)~(1.2).

In the case of (1.2), it is possible to obtain additional
solutions of the equations of motion. This is possible be-

A, =O

expressed in the cylindrical coordinates (r,P,z). After
changing from momentum to velocity variables,

V=—P ——A
m c
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cause in this special case these equations have an addition-
al invariant besides the electron energy which allows one
to reduce the system to a single nonlinear differential
equation which can be solved by means of Jacobi elliptic
functions. This procedure is not possible in the case of
the system (2.1). One could, of course, follow Diament's
procedure and study the instability of one or more of
these non-steady-state solutions of the equations of
motion corresponding to (1.2) by using them as zero-order
terms in an expansion of solutions of (2.1). However, this
procedure would only give results for a limited range of
values of the parameters. We do not believe that this is an
appropriate course of action and so have restricted our-
selves to a study of the instability of the solutions (2.2).

Substitution of (2.2) into (2.1) yields the following rela-
t1ons between Q and Q:

Lct xQ —(xQI ~ xQ6 ) denote the solutions (2.2) and
write x; =xo;+w; (i =1,2, . . . , 6) so that xo
=(

~

a ~,kut/y+m/2. ,ut/y, O, kua, u) and the w; (i =1,
2, . . . , 6) denote perturbed values of the variables
(r,P,z, V„,V~, V, ), respectively. The variational system is
then (i = 1,2, . . . , 6)

wan=A(XQI+wl .Xo6+w6) —fl(XQI . Xo6)

and the solutions (2.2) of (2.1) correspond to the solution

w; =0 (i = 1,2, . . . , 6) of (2.5). We now rearrange (2.5) in
the form

w;=(Aw);+f (wl, . . . , w6), i =1,2, . . . , 6, (2.6)

where 3 is a constant matrix depending upon the parame-
ters g, p, and ka, and the f; (i =1,2, . . . , 6) contain only
terms nonlinear in the m;. Explicitly,

=Qo+2Q I)(ka)[1+(ka) I] .
y

(2.3) 0 0 0 0 0

One obtains another relation between these parameters by
noting that the quantity V, + V~+ V, is an invariant
equal to y P c where Pc denotes the speed of the elec-
'tl'oI1. Comblnatlon of these I'clatlolls I'cadlly yields thc
following expression:

(2.4)

fQ

0

0 0

0 0

which is valid for either sign in (2.3). The parameter
g =kPe/Qo can be thought of as an energy parameter
normalized to the cyclotron frequency of the uniform axi-
al guide field and II =Q /Qo B /8Q de—n—otes the ratio
of the wiggler and guide-field strengths. The above equa-
tions for the helical trajectories have been discussed in
greater detail by Diament.

We study the instability of the trajectories (2.2) by pass-
ing from (2.1) to the corresponding variational system of
equations. ' Thus, suppose that (2.1) is written in the
fol'Bl

x;=y(XI, . . . , X6), i =1,2, . . . , 6.

(2.7)

a= ku t Qo+2Q—[II(ka)+II (ka)(ka +(ka) ')]I,
g=QQ+2Q I)(ka)[1~2(ka) ],
a =+2Q~kuI I (ka),

Il (ka)f=+2Q

and (2.3) has been used in obtaining these expressions for
a and g. The functions f; are as follows:

(2.9a)

f2 — [(a+WI) ' —a '+Wla ]+ [(a+Wl) ' —a '],
y y

f4 —+2Q kau [II{k(a +w, ))—cos(kw3 —w2) —I, (ka) —kw II I (ka)]

+2Q~w5[I (k (a +w 1 ) )cos(kw3 wI )—I~ (ka)]

I 1 (k (a +w 1 ) ) II(ka)
+20~@ cos(kw3 —

w 2 )—— —kw,k(a+w~) ka

I)(k(a+w))) I)(ka)
+2Q~w6 cos(kwhr —w2)—

k a+wl ka

I 1 (x)

[(a+w, )- —a- +w, a- ]+2kau [(a+u, )- —a- ]~ (a+u, )-,(kau) —1 —1 —2 L05 —1 —1 —1

y y y
(2.9c)
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fs=+2Q w4[I, (k(a+w~)}cos(kw3 —wz) —I&(ka)]

+2Q u[I~(k(a+w~))sin(kw3 —wz) —I&(ka)(kw3 w2)]

W4W5
(a+w, )

y

f6 +2——Q w4 +2Q w31~ (k (a +w ~ ))sin(kw3 w2)

W4
+2Q w61'~{k(a+w&)}sin(kw3 —w3) —kau [(a+w&) ' —a ']-

r
I&(k(a+wt)) I ) (ka)

cos( kw 3
—w 3 )—

k(a +w& ) ka

(2.9d)

+2Q kau [I'& (k(a +w&))sin(kw3 —wz) —II (ka)(kw3 wz)] . (2.9e)

g; =(A g);, i =1,2, . . . , 6 .

For an arbitrary n vector, y, we use the norm

(2.10)

(2.11)

We will use the well-known result that many aspects of
the instability of the solution w;=0 (i =1,2, . . . , 6) of
(2.6) can be studied by considering the simpler problem of
the instability of the solutions of the corresponding linear-
ized problem

where

and

b =Qp I 1+2PI~(ka)[1+(ka) z]I2

I ) (ka}
+4p [1+(ka) ]

(ka)

ku I ) (ka)
d =+2Qpp [(ka) +pZ(ka}]

(ka)

(2.12)

(2.12)

(2.13}

Then the results that we want to use can be summarized

by the following. '4

Theorem 1. Suppose that the f; ( w, , w6 )

(i =2,4, 5,6) are continuous functions of the
(j=1,2, . . . , 6) and that //f(w)////[wf/~0 as //w[(~0.
Then we have the following:

(i) The solution w; =0 (i =1,2, . . . , 6) of (2.6) is un

stable ifat least one eigenvalue of A has positive real part.
(ii) Suppose that all eigenvalues of A have nonpositive

real part and that l eigenvalues AJ (j =1,2, . . . , l &6) have

zero real part. Then every solution of (2.10) is stable if
each eigenvalue A3 (j =1,2, . . . , I) has equal algebraic and
geometric multiplicities. Otherwise, every solution of (2.10)
is unstable.

Estimates proving that the functions f; defined in (2.9}
satisfy the conditions of this theorem will be derived in
the Appendix. We note that the instability of the solu-
tions of the linear problem (2.10) implies the instability of
the solution w; =0 (i =1,2, . . . , 6) of (2.6). However, we
cannot conclude that the latter solution is stable on the
basis of the stability of the solutions of the corresponding
linearized problem because we are dealing with a Hamil-
tonian system. In such a situation, it is possible that arbi-
trarily small nonlinear terms can destroy the stability of
the solutions of the linearized problem. '

We also note that the instabilities of the solutions of
(2.10) referred to in parts (i) and (ii) of Theorem 1 are of
qualitatively different types. Such solutions described by
(i) are exponentially increasing as a function of time,
whereas such solutions covered by (ii) generally have a po-
lynomial time dependence. For ease of reference, we will
refer to these instabilities as types I and II, respectively.

The matrix A has two zero eigenvalues with the
remaining four being solutions of the equation

k +bi. +d =0,

with

I, (ka)
Z (ka) =2[1+ ( ka) ] 3 —Ip(ka) [1+(ka) ]

(2.14)

In obtaining these expressions we have used (2.3) and the
identity

I)(ka)II (ka) =Ip(ka)—

We now discuss the two types of instabilities indicated
in Theorem 1 as a function of the parameters g, p, and
ka. In order to facilitate this discussion, it is convenient
to divide it into two parts. In the remainder of the
present section we give a qualitative discussion of the
various cases in terms of the quantities b and d. Then, in
Sec. III we discuss the quantitative dependence of each
case in terms of the parameters g, p, and ka.

In general, both situations listed in Theorem 1 occur.
We see from (2.12}that b & 0 for all values of the parame-
ters g, p, and ka. Thus, the various possibilities which
may occur relative to the qualitative behavior of the
eigenvalues of A reduce to the determination of the signs
of d and b 4d as function—s of the three parameters.

When d &0 (and hence also b 4d &0}, A has o—ne
positive, one negative, two imaginary, and two zero eigen-
values so that Theorem 1(i) applies and the solutions (2.2)
of (2.1) are unstable of type I. In addition, as a conse-
quence of the fact that A has a negative eigenvalue, we
can prove that the helical trajectories are conditionally
stable in the sense that some (but not all) solutions of (2.1)
approach the trajectories (2.2) as t~+ao. There is a
one-parameter family of such solutions. In order to prove
this conditional stability property, we must show that the
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nonlinear terms (2.9) in (2.6) satisfy a Lipschitz condition
in addition to the conditions stated in Theorem 1. The es-
timates required for this will be derived in the Appendix.
In this discussion we are referring to a result on condi-
tional stability proved by Perron in Satz 10 of Ref. 8 and
further discussed by Bellman.

When d & 0 and b & 4d, all four nonzero eigenvalues of
A are imaginary and distinct so that we must consider the
eigenvalue problem for the zero eigenvalues to determine
which possibility in case (ii) of Theorem 1 applies. Simi-
larly, when d =0, A has four zero eigenvalues and two
distinct imaginary nonzero eigenvalues so that we must
consider the eigenvalue problem for the zero eigenvalues
also in this case.

Let X denote an eigenvector for this problem with com-
ponents X; (i =1,2, . . . , 6). From the form of A in (2.7)
and the equations defining X as an eigenvector of A corre-
sponding to eigenvalue zero, we find X4——O=X6,
X5 ——kuX), X2 ——kX3, and

(a+gku)X, =0 (2.15)

using the fact that a&0 since we assume that Q~, u, and

~

a
~

are nonzero. From (2.15) we obtain X~ ——0 provided
that

a+gku ~0
so that X has the form

(2.16)

X=X3(O,k, 1,0,0,0)

which we write as a row vector for typographical conveni-
ence.

Thus, the zero eigenvalues have only one eigenvector up
to a normalization constant provided that (2.16) holds.
Subject to this proviso, it follows from Theorem 1(ii) that,
in the cases d &0 and b —4d &0, all solutions of (2.10)
are unstable and so, in particular, the trajectories (2.2) are
unstable of type II.

From (2.8), we see that (2.16) can be written in the form

+20~ku Io(ka)3+(ka)2 Ii (ka)

ka kaIO(ka)

1+(ka)
3+(ka)

~0 . (2.17)
In accordance with the discussion following (2.15), the
only factor in (2.17) that can vanish is the one in the large
parentheses on the right. Note that the function
(1+x )/(3+x ) has the value —,

' at x =0, increases
monotonically on the interval [0, ao ), and approaches uni-

ty as x~+ ao. On the other hand, the function
I~(x)/xIO(x) is monotonically decreasing on [O, ao), has
the value —, at x =0, and approaches zero as x~+ Do.

Since these functions are continuous, it follows that the
quantity in the large parentheses on the right in (2.17)
vanishes at one (and only one) value ka & 0. By graphical
methods we determine this value to be approximately
ka =(ka)0-=0. 850.

Hence, for the cases ka =+(ka)0 the condition (2.15)
does not require that X~ be zero. If X~&0, the eigenvector
7 becomes

X=X3,k, 1,0,0,0
X$

' X3''''' (2.18)

III. FUNCTIONAL DEPENDENCE
OF THE EIGENVALUES OF A ON THE

PARAMETERS g, p, AND ka

In order to complete our discussion of the instability of
the helical trajectories (2.2) we need to determine the signs
of d and b 4d as func—tions of the parameters g, p, and
ka when ka&+(ka)o. We first derive conditions on the
three parameters such that d &0. We find from (2.13)
that this is true if and only if

p [ ~

ka
~

—pZ(ka)] & 0 . (3.1)

It is seen from (2.14) that Z(ka) approaches unity in the
limit ka~0 so that (3.1) agrees with Diament s condition
in the cases that he considers. We note from Fig. 1 that
the curves of

~

ka
~

and
~

ka
~

/Z(ka) begin to separate
at approximately

~

ka
~

=0.36. For p &0 our condition

p &
~

ka
~

/Z(ka) obtained from (3.1) gives a larger range
of p values at a given value of

~

ka
~

for which the type-I
instability occurs compared with Diament's condition

p &
~

ka
~

. The function Z (ka) is negative for
~

ka j
&0.652 so that, for this range of values of ka, in-

stability occurs for all p &0 which satisfy (2.4). This is a
striking contrast to the corresponding conclusion obtained
from Diament's condition.

When p & 0 we find from (3.1)

One can easily find two normalized (to unity) eigenfunc-
tions of the form (2.18) that are linearly independent.

simple example is the pair

X, =(2+k ) 'i (l,k, 1,0,0,0),
Xb ——(2+k )

'i
( —l, k, 1,0,0,0) .

It follows from Theorem 1(ii) that every solution of (2.10)
is stable when d & 0, b 4d &—0, and ka = +(ka)0.

In the situation d =0 we still have instability for the
cases ka =+(ka)0 because it is not possible to find four
linearly independent eigenvectors of the form (2.18).
When d =

4 b the nonzero eigenvalues are all imaginary
and occur in doubly degenerate complex conjugate pairs.
However, since this equality is not satisfied when
ka =+(ka)0 so that the above analysis of the zero eigen-
value problem shows that the trajectories (2.2) are un-
stable of type II, an analysis of the problems for the de-
generate eigenvalues is not necessary.

The remaining cases to be considered are those for
which d ~0 and b —4d &0. In this situation all nonzero
eigenvalues of A are complex, two having positive real
part and two having negative real part. Thus, we have a
case of type-I instability and we can prove that the
relevant helical trajectories are conditionally stable. There
is now a difference, however, compared with the type-I
unstable conditionally stable trajectories in the case d &0
mentioned previously in that we now have, due to the ex-
istence of two eigenvalues with negative real part, a two-
parameter family of solutions of (2.1) which approach the
trajectories (2.2) as t~+ ~.
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35

which cannot be satisfied for values of ka such that
Z (ka }& 0. However, when Z (ka) & 0 (i.e., when

f
ka

f
&0.652) we have

fka f'
f
Z(ka)

f

Thus, we can summarize the conditions for d &0 in the
orm

fka f'
Z(ka)

(3.2)

for p&0, or p &0 and Z(ka) &0.
These inequalities only give conditions for the type-I in-

stability with d &0 when (2.4) is satisfied. We see by
comparison of Fig. 1 with results obtained from the inver-
sion of (2.4) (see Ref. 3) that this is most likely to occur,
in the cases g&1, for relatively small g and relatively
large

f
ka f. For example, one finds that the type-I insta-

bility with d &0 begins at
f
ka

f
=0.65 for g =4,

f
ka

f

—=0.57 for g=3,
f
ka

f

=-0.525 for g=2, and at

f
ka

f

-=0.35 for g = 1.25.
In the case of the type-I instability defined by the con-

dition d &0, let A, denote the single positive eigenvalue of
A. Then A,

' is the e-folding time for the unstable trajec-
tory, i.e., the time required for a solution of (2.1) to differ
from a helical solution' (2.2) by a factor of e in the sense
of the norm (2.11). These times are so short (of the order
of nanoseconds or smaller) that we find it more con-
venient to present the results in terms of distances. We
will use the quantity c/A, which can be interpreted as an
approximate e-folding distance, i.e., the approximate dis-
tance required for the magnitude of a trajectory satisfying
(2.1) to be greater than the corresponding magnitude of a
helical trajectory (2.2) by a factor of e in the sense of the
norm (2.11).

In Figs. 2—4 we have plotted c/A, versus p for various
values of ka. In each case the permissible values of p are
determined by the quantity

f
ka

f
/Z(ka) as indicated in

(3.2).

We now make several observations concerning the
curves in these figures.

(i) The curves for the relatively large value ka = 1.0 in

Figs. 3 and 4 are monotonic for both positive and negative
values of p whereas this is not the case for the plots of
c/A, versus p &0 for the smaller value of ka shown in

Fig. 2.
(ii) The e-folding distance c/1, has its largest values for

smaller values of
f

ka
f

. On the other hand, the required
values of p in order that the d &0 type-I instability exist
are much smaller for these cases than for larger ka values.

(iii) It is seen from Fig. 4 that the slopes of the curves
of c/A, versus p for negative p is much steeper near the
maximum allpwed value of p (minimum allowed value of

f p f
) than for the other portions of these curves or for

the curves corresponding to positive values of p shown in

ka = 1.0

10

10

0-3 I I I I I I I I I

0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0
P

FIG. 3. c/A, vs p. ka =1.0, p ~0, Qo/c =12,20, 75, 130
cm-'.
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Figs. 2 and 3. Thus, in Fig. 4, c/iL is relatively large over
a significant range of values of p near the maximum al-
lowed value of this quantity.

The conditions for the existence of type-II instabilities
are that b 4—d &0 and that the inequalities (3.2) are
violated, coupled with the additional conditions

t

ka&+(ka)0 when the parameters correspond to the case
d)0. It will be seen that we can make some general
statements concerning the validity of the inequality
b 4d—&0 when p &0, but the cases p &0 generally re-
quire detailed numerical investigation. From (2.12) and
(2.13) we have

&4O It(ka) Ii(ka)
b 4d —= 16 [1+(ka) ] p +8g [1+(ka) ] [1+(ka) ] I', (—ka)z(ka) p[1+(ka) ] (ka) (ka)

+8g [1+(ka) ]I&(ka)
~

ka ip+g (3.3)

It follows from numerical considerations that the part of the coefficient of p in brackets is positive when
i

ka
~

&0.478
so that b 4d &—0 for this range of ka when p & 0 and the pair (g,p) satisfies (2.4).

For further investigation of the positivity of (3.3) it is advantageous to use the constraint (2.4) to eliminate g. Some
tedious algebraic manipulations yield the following expression:

r

1600Ii(ka)ID(ka) 2(ka)2[1+(ka)']'D p'+
(ka) Ii(ika i)D

I2[1+(ka) ]—5[8+(ka) ]+85 Ip

+ (ka) I2[l+(ka) ]—25[4—(ka) ]+5 [10—(ka) ]I
2I i (ka)[1+(ka) ]D

/ka f' 1+, p
5

(ka)

2IO(ka)I&(ka)[l+(ka) ] D 16IQ(ka)I&(ka)[l+(ka) ] D
(3.4)

ka = 1.0
Ii(ka)

kaID(ka)

D =4[1+(ka) ] —45[1+(ka) ][4+(ka)2]

+5 I 16[1+(ka) ]+(ka) J .

10 "E

10

10 —2
) I I l I I I ( l

-1.6 -1.2 -0.8 -0.6 -0.4
p

FIG. 4. e/A, vs p. ka =1.0, p(0, Qo/c =12,20, 75, 130
CII1

The coefficients of the quartic expression in (3.4) are
positive when 0 &

i
ka

i
&0.50 so that, by combining this

result with that stated following (3.3), we conclude that
b 4d & 0 when p &—0 and the inequality (3.2) is violated.

Finally, we consider the cases when p(0. These are
best analyzed by direct numerical investigation of (3.4).
In the range of values 0 & i

ka
i
( 10 we find that

b 4d &0 whe—n 0.059&
i
ka

i
(8.25 and 9.80

&
i
ka

i
(10.0, but that there are subintervals of the in-

tervals J&, 0&
I
ka

I
&0 059 «d ~2

~9.80, in which the inequality b —4d &0 is valid. The
situation when

i
ka

i
belongs to either of these intervals

is very complicated. Generally, both cases b —4d ~ 0
occur as one passes to finer subintervals of J& and J2.
Thus, these results show that when p &0 and

i
ka

i
be-

longs to either of the intervals Ji or J2, the helical trajec-
tories can change from type-I unstable to type-II unstable
{or vice versa) as a result of a very small change in the
value of ka.
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IV. SUMMARY

In the present paper we have investigated the instability
of electron helical trajectories in the magnetic field (1.1)
without replacing this expression by (1.2). This is the first
analysis of such trajectories which is free of this approxi-
mation. Our results are of two kinds.

First, we have shown that helical trajectories corre-
sponding to (1.1) are unstable with the possible exception
of one value

I
a

I
of the orbital radius. The instabilities

are of two types, called I and II, corresponding to the
respective cases when the matrix A associated with the
linearization of the equations of motion does or does not
have an eigenvalue with positive real part. For the excep-
tional value of

I
a I, the trajectories can be either unstable

of type II or linearly stable depending upon the values of
the parameters Bo, B, and electron energy. As one ex-
pects, these results are in qualitative agreement with those
of Diament when

I
ka

I
is small. However, there are

significant quantitative differences between his results and
ours even for values of

I
ka

I
that are not exceedingly

large —of the order of 0.4. This is surprising because
a priori one does not expect Diament's approximations to
break down until

I
ka

I
is of the order of unity. In gen-

eral, the parameter ranges over which the two types of in-
stabilities occur are quite different in the two analyses.
We may conclude that the approximation of replacing
(1.1) by (1.2) is worse than that stated by Diament. The
exceptional value of

I
a

I
for which some of the helical

trajectories are linearly stable does not show up in
Diament's analysis because the relatively large value

I
a

I
=0.850/k, at which this situation occurs is outside

the domain of applicability of his approximations.
Second, we have shown that the unstable trajectories of

type I belong to the special instability type called condi-
tionally stable. ' This means that, even though these
helical trajectories are unstable so that not all solutions of
(2.1) which are close to them at t =0 remain close at all
other times, there are some solutions which remain close
to them at all other times and in fact approach them in
the limits t~+ ~.

In Figs. 2—4 we have plotted some typical values of e-
folding distances as a function of p for several values of
ka for type-I unstable trajectories corresponding to the
case d g 0 when the matrix A has a single eigenvalue with
positive real part. The order of magnitude of these dis-
tances decreases as

I
ka

I
increases, indicating that the in-

stability is more severe for larger values of
I

ka
I

. Even
so, this type-I instability appears to be significant also for

I

relatively small values of
I
ka I, being of the order of

2—27 cm for typical values of the guide and wiggler field
magnitudes when ka =0.1, as shown in Fig. 2. We have
discussed some numerical results which indicate that,
when p&0 and

I
ka

I
belongs to certain intervals, the

helical trajectories can change character between the insta-
bility types I and II as a result of a very small change in
the value of ka.
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APPENDIX: CONDITIONAL STABILITY

In this appendix we show that the helical trajectories
(2.2) are conditionally stable in the case of the type-I in-
stability, a circumstance made possible by the fact that A
has at least one eigenvalue with negative real part in this
case. The result on conditional stability that we use is due
to Perron, and a nice discussion of it has been given by
Bellman. We must show that the functions f;
(i =2,4, 5, 6) defined in (2.9) satisfy the conditions of
Theorem I and also the following Lipschitz condition:

I lf ( w" ') —f ( w"')
l I

&s
I I

w" ' —w"'l
l

for llw'"ll &h, llw"'ll &h (Al)

where s~O as h~O. It is clear from (2.9) that the f;
(i =2,4, 5,6) are continuous functions of the variables wj
(j = 1,2, . . . , 6) so that we can proceed directly to a verifi-
cation of the conditions in Theorem 1 and (Al). To ob-
tain the required estimates, we use the fact that the func-
tions occurring in the f; (Bessel, trigonometric, and ra-
tional functions) have series expansions that converge ab-
solutely. Our method is to expand these functions in their
series representations, obtain estimates for the summands,
and then sum the resulting series. This procedure, al-
though straightforward in principle, is quite tedious in
practice due to the complicated nature of the f; functions.
Therefore, in order not to encumber the paper with exces-
sive complicated expressions, we will only state the final
results for the estimates obtained by the procedure out-
lined above.

Consider first the condition in Theorem 1. Since we are
interested in the limit

I
Iw

I I
~0 we can assume, without

loss in generality, that llwll &
I

a I. We then find

llfll & llwll (1+ lk„ I) I (2+Iku f+la I

')

+210
I

2I, (
I
«

I +
f
k

I llwll)cosIhl(1+ Ik
I )llwll]

&& I: I+(
I
«

I
+

I
k

I
llw I f) ']—2Ii(

I
«

I
)(1+

I
«

I

+2I
& ( I

ka
I
+

f
k

I f I
w

f I
)sin I h [( I +

I
k

I
)

I f
w

I f ] I
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+ &(1+ I« I)(I'i(I« f+ Ik
f fluff»inII I:(1+ Ik I)ll~lllI

—Il(I«
f
&(1+ Ik I)lltofl&

+Ii(I« I+ Ik I fftofl)cos{ltl:(1+ fk I)lltolllIC f« I+(f« I+ fk I lltoll) '&

—Ii(
I
«

I
)(

I
«

I +
I
«

I

') I —I
k"

I I
« II t( I

«
I

&+
x= jku j

The validity of the condition in Theorem 1 follows easily from this estimate.
ln «d« to verify (Al), we consider the situation ll~'"ll (~ and lite'"ll &»n the hmit ~ 0 so that we can, without

loss in generality, assume that h &
I
a

I
. Then, using the identity

~n bn (u b) y un 1 lbl— —

and the triangle inequality, we obtain the first inequality in (Al) with

s = (1+
I
ku

I
) 2— h (2+ lku I+ fa I

')

+41&
I

I1(I« I+ Ik II)l:1+(I« I+ Ik II ) '&

+
I
k

I
)I sinI &t I (1+

I
k

I )&31+cos I ~ I (1+
f
k

I
)I I I &

—I, (
I
ka

I
)(1+

I
ka

I

-')

+II(I« I+ Ik I~)(»nI&'tl:(1+ Ik I +lj+(1+ Ik I
+cosII I:(1+ Ik f)ltlI&

+ Ik I
I ', cosI& I:(1+ Ik I »&I Il(

I
« I+ Ik I

&)+
L

r

I,(x)

+»nIIt t:(1+ I
k

I
)It&II 1'(

I
«

I
+

I
k

I
I )

+ f(1+ Ik I
&(1+ I« I)+k'I& Il«osf~f:(1+ Ik I)I jIIt(I« I+ Ik II)—I'1(I«

I »

+»nI~ [(1+
I
k

I )~ll I I
k

I
(1+ 1« I

»l'(
I
«

I +
I
k

I
&)

+(1+
I
k

I )l I
«

f
+(

I
«

I + I
k

I
~) 'Vt(

I
«

I +
I
k

I
~) l

+ lk I cos[h[(1+ Ik I
)1't]j

It(x)
, x= jka j+ jk jh

Ii(lka I)
lka

I

One easily shows that s ~0 as It —+0 thereby verifying condition (Al).

~J. P. Blewett and R. Chasman, J. Appl, Phys. 4I8, 2692 (1977).
2L. A. Vainshtein, Zh. Tekh. Fiz. 49, 1129 (1979) [Sov.

Phys. —Tech. Phys. 24, 625 (1979)].
3P. Diament, Phys. Rev. A 23, 2537 (1981).

~T. Kwan and J. M. Dawson, Phys. Fluids 22, 1089 (1979).
L. Fricdland and J. L. Hlishfield, Phys. Rcv. Lett. 44, 1456

(1980).
6L. Friedland, Phys. Fluids 23, 2376 (1980).



29 INSTABILITY OF RELATIVISTIC-ELECTRON HELICAL TRAJECTORIES. . . 3233

7H. P. Freund and A. T. Drobot, Phys. Fluids 25, 736 (1982).
O. Perron, Math. Z. 29, 129 (1929).

9R. Bellman, Stability Theory of Differential Equations
(McGraw-Hill, New York, 1953), theorem 4, p. 90.

toE. A. Coddington and N. Levinson, Theory of Ordinary Dif
ferential Equations (McGraw-Hill, New York, 1955), theorem
4.1, p. 330.

~~This intuitive description of stability is taken from Ref. 14.
%e have chosen to give these definitions in lieu of more pre-
cise ones of e-5 type.
Actually, one usually uses the analog of (2.2) corresponding to

(1.2).
See for example, L. Cesari, Asymptotic Behavior and Stability
Problems in Ordinary Differential Equations (Springer, Berlin,
1963), p. 10.

~4M. Braun, Differential Equations and Their Applications, 2nd
ed. (Springer, New York, 1978).

tsV. I. Arnol'd, Mathematical Methods of Classical Mechanics
(Springer, New York, 1978), p. 385.

6This interpretation arises because the representation of the
helical trajectories (2.2) in the variational system (2.5) is given

by m; =0 (i =1,2, . . . , 6).


