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Acousto-optic bistability with fluctuations
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A newly developed numerical method of solving nonlinear Fokker-Planck equations is applied to
study an acousto-optic bistability with additive noise. The time evolution of the probability distribu-

tion for the transmitted light is calculated for a double-well potential. The time-dependent moments

are calculated.

I. INTRODUCTION

The nonlinear effect of optical bistability is currently
under extensive investigation in a variety of different ma-
terials and systems. ' This attention stems mainly from the
broad application of such systems in integrated optics and
telecommunication. In addition, a bistable system is of
theoretical interest as an example of an open system
driven to a stationary nonequilibrium state by an external
source. Bistable behavior has been observed in a number
of intrinsic all-optical interferometers —GaAs, InSb, CdS
platelets, and several hybrid optic-electronic elements.
Recently a new type of hybrid bistability has been pro-
posed by Chrostowski and Delisle. Among other charac-
teristics, self-pulsing and bifurcations to chaos have been
observed.

The purpose of our paper is to study the role of noise
on the time evolution of the acousto-optic bistability. A
great deal of previous attention has focused on solving
different aspects of the nonlinear bistable equations aug-
mented by the addition of noise to account for the fluc-
tuations in the system. Part of this work attacks the
much more general problem of macroscopic systems far
from a thermodynamic equilibrium state. Many of these
systems, including optical ones, can be described by the
nonlinear Fokker-Planck equation. In recent years a
major effort has been devoted to deriving a formal solu-
tion of the nonlinear Fokker-Planck equation in terms of
a path integral. Wehner and Wolfer have recently
presented a new, very efficient numerical method based on
the path sum. We present an improved version of this al-
gorithm and use it to calculate the time evolution of the
probability distribution of output light intensity in the
acousto-optic bistable system in several cases. Then the
mean light intensity (I ) —(q) and time-dependent vari-
ance (I ) —(I ) are calculated using the above probabili-
ty distribution.

In Sec. II the acousto-optic bistability is briefly
described. In Sec. III the Fokker-Planck equation is dis-

cussed and in Sec. IV the numerical method of Wehner
and Wolfer is outlined. Section V describes the results.

II. ACOUSTO-OPTIC BISTABILITY
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FIG. 1. Acousto-optic bistability of Ref. 2.

Figure 1 shows a schematic diagram of the experimen-
tal layout of Chrostowski et al. ' If the delay in the
feedback loop is small compared with the other time con-
stants in the system, the time evolution can be described
by the equation

=PKIg T(q —8)—(q PUp), —dq
dt

where the voltage q is proportional to the transmitted
light intensity, p is the gain in the feedback amplifier, K
is a geometrical factor which includes the sensitivity of
the detector ( V/W), IL is the laser intensity, —1 &8 & 1

is a constant controlled by the rf biasing, Uo is the bias
voltage, and r is the lumped time constant in the loop.
The nonlinear transmission T(x) for the Bragg-type
acousto-optic interaction can be written as
T(x)=sin [(n/2)x] with saturation for x & 1, and where
the voltage at the input of the rf driver is proportional to
the square root of the acoustic power within the crystal.

The steady-state solutions of Fq. (1) and experiment
show bistability and hysteresis in three modes of opera-
tion: input laser intensity, feedback gain, and bias voltage
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tuning. For the present purpose we restrict our analysis to
bias voltage tuning.

In this experiment the deterministic behavior governed
by Eq. (1) is influenced by at least two sources of noise:
electrical and/or laser intensity fluctuations. We will
simulate them by adding a white noise source to Eq. (1).

The Langevin equation, the stochastic equivalent of Eq.
(1), reads

(o)

q =k(q)+F(t), (2)
1.0

I I I
f

0.0 1.0 2.0 :3.0

where q =rdq/dt and the nonlinear drift or force function
1s

APsin [(~/2)(q —8)]—(q —PUo),
~ q —8

~

( I
k(q)= .

(3)AP (q —P—Uo), ~q 8~ &—1

The random force F(t) is assumed to be a real Gaussian
random process with zero mean and an autocorrelation
function of the form

( F(t)F(t') ) =Q5(t r') . — (4)
l

(:I. (I, ('I

l."&0 0.7'& 0.00 0.7, i l. &0:~. : & &.00

Similar one- or two-dimensional Langevin equations
have appeared in other physical realizations of optical bis-
tability. If information is needed only about certain
properties of the system such as statistical moments, the
Langevin equation can be solved by Monte Carlo tech-
niques. This involves generating a sufficiently large num-
ber of trajectories, evaluating the functional form for
each, and then appropriately averaging the moments. To
obtain a full description of the stochastic evolution of the
system, the Fokker-Planck solution is needed.

III. FOKKER-PLANCK EQUATION

The Langevin equation (2) is linear in the fluctuating
force, hence the stochastically equivalent Fokker-Planck
equation can readily be written by following the prescrip-
tion of Stratonovich. The evolution of the probability dis-
tribution P(q, t) which describes both the deterministic
path as determined by the drift function (3) as well as
fluctuations away from this path as defined by the dif-
fusion constant Q, is given by

2

[k(q)P(q, t)]+ —,
' Q, P(q, t) . (5)

t t)q Bq

Even in the case of constant diffusion, Eq. (5) calls for nu-

merical analysis since it is exactly or approximately solv-
able only for specific forms of the drift function k(q).
The potential II'(q) corresponding to the drift function (3)
is defined as

8'(q) = —f dq'k(q') . (6)

Depending on the choice of parameters it can have one or
two or more minima —the latter cases leading to bistabili-
ty or multistability.

Figure 2 shows the deterministic characteristics of
acousto-optic bistability with the experimentally sound
parameters A =2.03 8=0 Uo = —0.5473 p= 1. It,

shows three possible steady states: metastable q3, unstable

q2, and stable qt indicated by the zeros of the drift func-

030

-4.0 2.0

tion and the extreme of the potential function. In an ex-
periment only the stable states q& and q3 can be observed
yielding a hysteresis curve when one of the parameters is
varied back and forth. In Fig. 2(c) the zeros of the drift
function are plotted as a function of the bias voltage Uo
for fixed A, p, and po to illustrate how the bistability can
be switched on and off by varying such an external pa-
rameter.

The stationary solution of Eq. (5) can be written as

P„„(q)=C exp ——8'(q)2

'3 0 0.0 4.0

U,
FIG. 2. (a} k(q) is plotted vs q for the values A =2.03, P= 1,

and Up = —0.5473. Note the three zeros: q3, metastable; q2,
unstable; and q&, stable. (b) The potential 8'(q) corresponding
to the drift function in (a) is shown as a function of q. (c) The
zeros of k(q) are plotted vs Up for the values A =2.03 and
P= 1.0,2.0,5.0.
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where+ the normalization constant
= J P„„(q')dq'and W(q) is given by

q A . A+ —sin [m.(q —8)]—pq Uo+—
~( )

2 2 Ir 2

steady state is very long. This reflects the relative "stiff-
ness'* of the Fokker-Planck equation. As will be seen in
Sec. IV, due to requirements of the numerical method, the
computer time required to fully investigate this case
would be prohibitively long. However, by simply increas-
ing the noise by a factor of 2, i.e., Q =0.1 and keeping all
other parameters unchanged, the mean first-passage time
is reduced to T2 ——580. This case is easily handled by the
requirements of the numerical techniques. It should be
noted that the unit of time is dimensionless and is con-
vcrtcd to real time through n1ultiplication by 0.5 @sec.

2
pq(U—o+A)+pA, q &8+1.

d
[k(q)u„(q)]——,

'
Q u„(q)=A,„u„(q),

dq
(10)

with u„(q)—+0 for q~+ oo.
Let us assume that the eigenvalues of Eq. (10) are or-

dered in such a way that A,2&A,3&A,q& . Then for
times t y 10/A, 2 all but the first two terms on the right-
hand side of Eq. (9) may neglected, resulting in

1
P(q, t)=P„„(q)+u,(q)u, (qo) exp( —a,t) .

It is possible to give an explicit analytical form for the
eigenvalue A,q in the case when

8'(q3) —8'(q2)

Q/2
&&1 .

Namely ""
Q f

W"(q3)
f f

8"'(q2)
f

exp ——[8'(q2) —8'(q3)] .
2&

(13)

Here, 8"' denotes the second derivative of the potential
W(q). The explicit form of the eigenfunction ui(q) in the
general case was given by Matkowsky and Schuss.

The mean first-passage time or mean escape time T2,
the time scale of diffusion from an initial state located in
the vicinity of the metastable state q3, to a final state near
thc stable state g~, is related to k2 by

The long-time evolution of the probability density

P(q, t ) in the case when initially the system was in the
state given by P(q, t =0)=5(q —qo) can be represented in
the form9

u„(q)u„(qo)
P(q, t) =P„„(q)+g exp( —A,„t), (9)

A,„+0
where u„(q)(n =2,3,. . . ) denote the eigenfunctions of the
following eigenproblem:

IV. DETAILS OF THE NUMERICAI.
PATH-SUM SOLUTION TO NONLINEAR

FOKKER-PLANCK EQUATIONS

The nonlinear Fokker-Planck equation possesses a for-
mal solution in terms of a Feynman or path integral. '

Wehner and Wolfer have developed an iterative numeri-
cal technique to evaluate this type of functional integral
based upon its discrete equivalent, the path sum. In this
previous work the probability distribution function was
represented as a histogram composed solely of vertical
and horizontal elements. In the next higher-order repre-
sentation a linear relationship between the points of the
probability distribution is specified. Hence, the resulting
figure is composed of a series of trapezoidal rather than
rectangular elements.

The path sum for the one-dimensional nonlinear
Fokker-Planck equation under natural boundary condi-
tions is given as

P(q, t+v')= I dqo G(q, qo, r)P(qo, t) .

The short time propagator G(q, qo, r) must satisfy the
Fokker-Planck equation to order 0(H), and hence can
take on a variety of forms. The simplest form, given by
Dekker, ' is

1 [q —qo —k(qo)&]
G(q, qo, r)= CXP

+2m Q(qo)~ 2Q(qo)v

The trapezoidal representation of the probability-
distribution function is defined as

(q +i —q)
P(q t ) = P +(t)+ P {t),

qi+ i qt—
q; &q &q;+i (17)

where the q axis has been subdivided into a. discrete grid
network. Putting Eq. (17) into Eq. (15), integrating dq
over the interval q; &q &q;+~, and dividing the integral
over dqo in the same manner as the grid, the following re-
lationships between the nodal points result:

For Q=005, A=2 03, 8=0, P=10, and
Uo ———0.5473 (as in Fig. 2), we find that

A.2
——0.476&10, hence T2 ——2)&10 . Hence the time re-

quired for the probabihty distribution to converge to the

P;(t+~)+P;+,(t+r)= g [P,(t)A;;(~)

+PJ+i(t)&J(~)], (18)
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FIG. S. (a) Same as Fig. 4(a) except q0 ——1.4864. (b) The
mean value (q ) of the system described by (a) as a function of
time. (e) The variance (q ) —(q)2 of the system described by
(a) as a function of time.

the trapezoidal representation these averages are approxi-
mated by the algorithm

f f(q)P(q, t)dq

FIG. 6. (a) Numerical calculation of the distribution function
I'(q, t) at various times subject to the steady-state solution

P(q, r= ao) for the values Q=0. 1, 2 =2.03, p=1.0, and

Uo ———0.5473. At time t=0 the value of U0 is perturbed to
U0 ———1.515. As is evident from Fig. 2(c), this destroys the bis-

tability. By the time t=10.0 the distribution function has
reached the steady state. (b) The mean value (q ) of the system
described by (a) as a function of time. (c) The variance

(q ) —(q )2 of the system described by (a) as a function of time.

Probability distributions for various values of the exter-
nal parameters and at various times were calculated. In
Fig. 3(a) the distribution function at time r =10000 for a
very stiff system is shown. In this figure the initial condi-
tion is a delta function near the metastable point. As is
evident, fiuctuations drive this system toward bistability

but as mentioned before, the time required to approach
the steady state is significantly longer than this. Figure
3(b) shows the same system with an initial condition near
the stable point. This configuration crosses the potential
barrier of Fig. 2(b) considerably slower than that of Fig.
3(a) due to the slightly lower depth of the potential well.

In Fig. 4(a) the distribution function at various times is
shown for a system characterized by the same drift func-
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tion, potential well, and initial condition of Fig. 3(a) but
subject to increased fluctuations. The mean escape time
for this system was given before as T2 ——580. However, a
somewhat greater time than T2 is required for the system
to fully approach the steady state as illustrated by the dis-
tribution function itself and by plots of the experimentally
measurable quantities, the mean and variance [Figs. 4(b)
and 4(c), respectively]. In Figs. 5(a)—5(c), the same sys-
tem as in Fig. 4 was solved subject to an initial condition
in the vicinity of the stable point.

To investigate the effect of bias voltage switching, this
same system is allowed to reach the steady state. Then, at
t=0 the bias voltage Uo is perturbed from —0.5473 to
—1.515. As can be seen from Fig. 2(c), the system is no
longer in the bistable regime. The numerical time evolu-
tion, shown in Figs. 6(a)—6(c), reveals that the time scale
for the bistability to be destroyed is much shorter than
that required for it to develop.

VI. CONCLUSIONS

The effects of additive noise on a recently proposed
acousto-optic bistability model have been studied numeri-
cally. The numerical technique utilized is based on the
formal path-integral solution of the Fokker-Planck equa-
tion. Various initial conditions leading to either an ap-
proach to or a degradation of a bistable configuration
were investigated revealing vastly different time scales for
these two phenomena. Time scales are also greatly influ-
enced by the relative magnitude of the fluctuations.
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