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We investigate the interaction of spontaneous collective radiation with incoherent pumping and
damping mechanisms. In discussing a recent experiment of two-color superfluorescence, we allow
for two optically active level pairs which have their upper level in common. Satisfactory agreement

with the experimental results is achieved.

1. INTRODUCTION

The wealth of experimental information on super-
fluorescence has been increased impressively by the recent
observation of collective spontaneous radiation of O,~
centers in KCl crystals.! This experiment deserves special
interest for a variety of reasons. One is the joint appear-
ance of two pulses, one red and one yellow, in many
events. A strong coupling between the two pulses in a
pair is indicated by their perfect synchronization. Fur-
thermore, the excited state of the O, center from which
the alternative transitions originate is not populated in-
stantaneously. Rather it is filled by incoherent leakage
from an initially populated level higher up in energy, the
corresponding time constant being small but not negligible
compared to the duration of the pulses. Finally, the lower
levels in the two transitions are part of an incoherent
damping cascade. For sufficiently high temperature and
for low O, -center concentration this damping cuts off
the collective radiation. Even for temperatures and densi-
ties allowing for the generation of superfluorescent pulses,
the damping remains effective in determining the relative
intensities of the two pulses in a pair.

The complications incurred in discussing the experi-
ment mentioned are intriguing indeed. Instead of initially
inverted two-level systems we have to treat collections of
systems with at least four levels. Rather than facing a
monochromatic pulse emerging from an effectively fric-
tionless medium we are confronted with two pulses of dif-
ferent colors which interact with each other and compete
with incoherent pumping and damping mechanisms.

We propose to study, in the present paper, the effects of
pumping and damping on the dynamics and the statistics
of superfluorescence, as well as the peculiarities of two-
color superfluorescence. Before confronting all of these
complications together (Sec. V) we shall discuss them in
sequence one at a time. Section II is devoted to the inter-
play of pumping and superfluorescence. We consider sys-
tems with three levels, the uppermost of which is popu-
lated initially, while the lower two are the optically active
ones. Radiation can arise only after some population has
leaked incoherently from the uppermost level into the in-
termediate one. In Sec. III we turn to initially inverted
two-level systems, allowing for the lower level to suffer
incoherent depletion. The problem of two competing
colors is taken up in Sec. IV. To account for two transi-

29

tions we consider two pairs of levels with the upper level
in common. The lower two levels are subjected to in-
coherent depletion.

Our methods will be very similar to those of Ref. 2.
We shall not derive the Heisenberg equations which gen-
eralize the Maxwell-Bloch equations pertinent to two-level
systems. The derivation involves no concepts other than
the ones amply laid out in Ref. 2. The damping and noise
terms showing up below can be established in a variety of
equivalent and well-known ways.® We shall mostly use
dimensionless variables based on units introduced in Ref.
2. In contrast to our previous work, here we use a retard-
ed time coordinate, (x,t)—(x,t —x /c).

II. INCOHERENT PUMPING AND COLLECTIVE
RADIATION

To study the effect of an incoherent pump mechanism*

on the buildup of collective radiation we propose to con-
sider a three-level system (Fig. 1). Initially, all atoms are
assumed in the uppermost level, labeled as 4, while the ra-
diatively active levels, 3 and 2, are empty, and all polari-
zations are zero. Following the preparation of that initial
state the atoms start to fall incoherently into level 3, thus
building up an inversion in the pair 3 and 2. Collective
radiation due to cooperative transitions from level 3 to 2
can then start and continue until no atom is left in either
level 4 or 3.

In the limit of an infinitely fast relaxation, 4—3, the
model in question will describe superfluorescence from in-
itially inverted two-level atoms. Here, we shall be in-
terested in the change of the dynamical and statistical
properties of the radiation as the “pumping” time 743 be-
comes comparable with, or larger than, the time constant
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FIG. 1. Three-level system considered to discuss pumping
and superfluorescence.
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of the cooperative radiation, 7.

For the sake of simplicity we assume the incoherent
pumping 4—3 to be due to a weak coupling of the atoms
to some heat bath at low temperatures,

/743 <<kpT <<E4—Ej; ,

with no resonance near E;—E3;. The pumping of level 3
is then Markovian in nature. The Heisenberg equations of
motion read, with the dimensionless pumping rate
Y =Ts/T43

2.1

d
—Ny=—YNs+&4,

at

%N3=__(R§*2E§‘"2+R5‘2E3'2)+‘VN4—§4 )
%Nz=+(R§E§+R§E§) , 22)
%R:}2=+(N3 —N))EL+£E5,

%E;Fz—_—R;_rz .

The quantum-noise fields &, and £; are independent,
white, and Gaussian, and have zero means and the second
moments

(EHEH) =(Engn) =(EnthH) =0,

(2.3)
(Ealx,DE4(x",1")) = (EH(x,1)E7(x",1"))
1 '
=F(N4(t))‘}/5(x —x")8(t —1t')

- -}Ve—wya(x —x"8(t —1") .

Apart from the irreversible terms, the Heisenberg equa-
tions (2.2) are the usual Maxwell-Bloch equations for uni-
directional propagation of a plane-wave pulse generated
by the level pair 3 and 2.2 The pumping mechanism
yields no upward transitions 3—4 and does not explicitly
affect the polarization R3; except through a noise term in
the low-temperature limit (2.1). The appearance of (N,)
in the noise moments in (2.3) shows that we are dealing
with a multiplicative stochastic process.

The initial state |0), with respect to which we shall
have to evaluate expectation values, is the vacuum for the
electromagnetic field and an eigenstate of the occupation
number operators N4, N3, and N, with eigenvalues 1, O,
and O, respectively,

E$(x,0)|0)=N;(x,0)|0) =N,(x,0)|0)=0,
(2.4)
N4(x,0) | 0)=1.

This initial state, in contrast to the one pertinent to super-
fluorescence from initially inverted two-level atoms, is not
an unstable equilibrium state. Rather, the relaxation of the
atoms out of level 4 would set in immediately even if the
noise were neglected. However, in such a classical ap-
proximation Egs. (2.2) would not yield radiation. Atoms
leaked out of level 4 would accumulate in level 3 and stay
there forever. It is this intermediate level, therefore,
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which corresponds to an unstable equilibrium. Collective
radiation as the signature of the decay of the unstable
equilibrium eventually sets in due to the noise source §;—'2.

We can find the radiation statistics in two steps. First,
for the early stage during which the intensity is still weak,
(EnE} ) << 1, we linearize the Heisenberg equations (2.2)
and construct closed-form solutions. Then, once the fields
have grown out of the noise-dominated regime we invoke
the correspondence principle, i.e., drop the quantum-noise
operators and treat the further dynamics classically.
Since we assume N >> 1, this classical regime begins long
before the nonlinearity of Egs. (2.2) becomes appreciable
and lasts until most atoms settle in the final state, 2.

In contrast to the case of superfluorescence from initial-
ly inverted two-level atoms we have not found a special
representation in which the dynamics looks classical from
the beginning, all quantum effects being accounted for as
initial uncertainties of Ri and/or E ;52.2 This is because
the unstable equilibrium is not realized initially, here, but
is rather built up by pumping as the noise-induced decay
is already taking place.

In the linear regime the occupation-number operators
are immediately found as

Ny(x,0)=N4(x,0)e ~""+ fotd:'e—ﬂ'—"@(t') ,
N3(x,t)=N3(x,0)+N4(x,0)—Ny(x,2) ,
N2(x’t)=N2(x,0) .

(2.5)

When inserting the inversion N;—N, from (2.5) into the
Heisenberg equation for R3, we neglect the noise term in-
volving &,. This is possible because E 3, is of first order in
the noise £3;, while the product £,E3, is of second order.
Moreover, with respect to the initial state specified in (2.4)
the initial operators N,(x,0), N3(x,0), and N4(x,0) can
be replaced by the respective eigenvalues 0, 0, and 1. The
coupled equations for the active polarization and the elec-
tric field then take the form, with the indices “23”
dropped,

—(ij—Ri=(l—e_"‘)E¢+§i iE¢=Rt .

at 7 Ox

In these linearized Heisenberg equations the pumping of
level 3 appears as an imposed process.

Moreover, we could obviously interpret (2.6) as classical
Langevin equations for complex classical stochastic fields
R (x,t)2R *(x,t) and E (x,t)=E ~(x,t), which are driven
by the complex classical noise £(x,t)= &% (x,t). The noise
&(x,t) is nonstationary, white, and Gaussian, and has zero
mean and the second moment given in (2.3). The correla-
tion functions

(E(xy,t1) - E(xpytyE*(x,1,) - - - E¥(x1,11))

(2.6)

for this classical process are identical with the correspond-
ing normally ordered correlation functions of the quan-
tum operators, provided the classical analog of the quan-
tum initial conditions (2.4) are used, i.e.,
E(x,0)=R (x,0)=0.

The linearized equations (2.6) immediately yield to solu-
tion by Laplace transformation. The electric field opera-
tor comes out as
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E*(x,r):fotdt' foxdx'10(2[(x —x")F(5,t)])EX(x",t') + foxdx'Io(z[(x —x")F(£,0)]"*)R *(x",0)

+ [, drTx /F ()]0 QxF (4,8) ) 1 —e ~7)EF(0,1)+ E¥(0,1) ,

where I, and I, are modified Bessel functions, and

F(t,t) =t —t'+(e ""—e ") /y . (2.8)
The polarization R *(x,?) follows from (2.7) as the deriva-
tive of E F(x,t) with respect to x.

We shall not allow for external signals impinging on the

atoms, and can thus set

E¥(0,1)=0 2.9)
in the result (2.9).

Were we dealing with an initial state of complete inver-
sion of the active level pair, we would have (N,)=0 at
all times and thus, due to (2.3), a vanishing noise strength.
Only the second term in (2.7), the one well known to
describe superfluorescence from two-level atoms, would
thus survive. For the initial state defined in (2.4), how-
ever, this term does not contribute to expectation values of
electric field operators and can therefore be dropped from
(2.7).

With the electric field thus represented by the first term
on the right-hand side in (2.7) we quickly find the dynam-
ical and statistical behavior of the radiated electric field.
Similar to the source £7, the field E ¥ has zero mean and
Gaussian statistics. The mean radiation intensity at the
right end of the active volume results from (2.4) and (2.7)

as
I(t)=(E~(1,DE*(1,1))

t ,
=31:7 fo dt'e “Y'[{Io(2[F(1,t")]'/?)}2

—{L2[F(4,t)]V)}?], (2.10)
and the higher-order intensity moments as
(E~(LO"EH(1,0)™) =8,,,n' ()" . 2.11)

In the limit of very fast pumping, ¥ — 0, the intensity
(2.10) reduces to

limI(t)=-1:7{[10(2\/f)]2~[11(2\/?)]2} , 2.12)

Yo
a result well known from two-level—atom superfluores-
cence. In fact, we can formally carry out that limit in
(2.7) and obtain
lim E¥(x,0)= [ dx'To(2[(x —x")]' )R &(x",0) ,

Y— o
with
R (x,00= [ " dr £*(x,1)

as an effective initial polarization. The precise meaning
of Eq. (2.13) is that it entails the correct y — oo-limits for
all electric field expectation values.

We gain more insight into the radiation statistics if we
define, for the equivalent classical random process

(2.13)

2.7)
r
x t
E(x,t):fo dx’ fo dt'ly(2[(x —x")F(t,t")]V*)E(x",t") ,
(2.14)
a passage time by
|E(1,2)| %=1, , (2.15)
with a suitable reference intensity
1/N <<l <1. (2.16)

Actually, the condition (2.14) does not determine a unique
passage time. Owing to the white noise £, every trajectory
(2.14) will, in fact, cross any reference threshold infinitely
often. We expect all passages of one trajectory to cluster
together in time relatively tightly, at least for reference in-
tensities well above the noise-dominated regime, i.e., in the
range (2.16). The time rate of change of the probability
for finding the intensity above the reference level,

W(t)=g?(9( [E(1,8) |2—1I)) , 2.17)
where the average ( ) is one over the Gaussian white
noise £ with the second moments (2.3), should thus not be
an absurd approximation of the probability density of, for
instance, the first-passage time. Since the electric field
vanishes initially and appears, in the linearized description
in question, to be growing indefinitely, the function W (t)
is normalized to unity,

[awa=1.

Every trajectory is thus assigned one effective passage
through the reference level.

The Gaussian functional average in (2.17) is easily car-
ried out and yields the simple result

(2.18)

1 ref

p|— 10 (2.19)

’

where I (¢) is the mean intensity (2.10).

By inspecting the mean intensity (2.10) and the
passage-time distribution (2.19) we can infer the following
qualitative properties of the mean and the variance of the
passage time. For fast pumping the mean passage time at
finite ¥ is larger than the mean passage time at infinite y,
by roughly the pumping time 1/y, while the variance of
the passage time is roughly independent of 7,

(1), =ty +1/y

var, (1) =var ,(t)

for 1/‘;/5((1‘)7,)1/2 . (2.20)

These results are intuitive since the pumping process
enters the linearized equations of motion (2.6) as a deter-
ministic effect.

In the limit of slow pumping, on the other hand, we
have the crude asymptotic approximations
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(), ~y~122

<t2>y N’)/—l

The estimates (2.20) and (2.21) are confined by the numer-
ical results drawn from (2.10) and (2.19) which we display
in Fig. 2.

The foregoing discussion of the early-stage linear re-
gime should be complemented with an investigation of the
subsequent nonlinear behavior. To that end we must solve
the classical versions of the field equations (2.2) by nu-
merical means. Statistical statements become possible
once we have calculated a large number of solutions
which represent, at early times, the Gaussian ensemble
characteristic of the linear regime.

In order to construct the nonlinear trajectories with
minimal labor we first calculate, for a fixed time ¢,, the
correlation functions

<E(x,to)E*(JC',to)) s
(R (x;tO)E*(x’;t0)> ’

for 1/y>(t), . (2.21)

and
{R(x,t)R*(x',t0))

by using the linear result (2.14) and
R (x,t))=0E(x,ty)/0x .

These correlation functions, together with

<N§>_<N3>2=<N‘2¢)——(N4)2—_-%(e‘2”’0_e‘3?"o) ,

(N?)—o. (2.22)
and the first moments
(Ng)=1—(N3)=e" T,
(2.23)

(R)=(E)=(N,)=0,

define a Gaussian ensemble at the time ¢,. Actually, since
the variances of the occupation numbers (2.22) are very
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FIG. 2. Mean (solid line) and relative variance (dashed-dotted
line) of the passage time as functions of the dimensionless
pumping time derived from (2.19).

much smaller than the ones of R and E we can, without
noticeable error, regard N3 and N, as sharp.

We have employed a random-number generator to pro-
duce, on a grid of points x;, a set of configurations
R (x;),E (x;) corresponding to the Gaussian ensemble de-
fined above. For each such configuration as a set of ini-
tial values at time #, we have integrated the classical ver-
sions of the nonlinear equations (2.2). Assuming the time
to to be sufficiently large for the fields E and R to have
risen well above the noise-dominated regime, we have, in
computing the nonlinear trajectories, neglected the noise
forces &€, and &3,=E.

The statistical results thus obtained are depicted, to-
gether with the corresponding ones of the linear analysis,
in Fig. 3. The histograms show, for three values of y, the
delay times of the first pulse maxima. Each histogram
represents an ensemble of 160 nonlinear trajectories. The
smooth curves are the corresponding distributions (2.19),
the reference intensities I, chosen such that the mean
passage time agrees with the mean delay time (drawn
from the histogram).

The agreement between the linear and the nonlinear re-
sults in Fig. 3 is a rather satisfactory one. There is, how-
ever, a slight tendency, as the pumping gets slower, of the
linear result (2.19) to underestimate the delay-time fluc-
tuations. This tendency is due to the fact that an increase
of the pumping time tends to make the (nonlinear) pulses
flatter in shape, as is illustrated, for the mean intensity, in
Fig. 4.

III. INCOHERENT DAMPING AND COLLECTIVE
RADIATION

We now investigate two-level superfluorescence as in-
fluenced by an incoherent depletion of the lower level.
For the sake of simplicity we assume an initial state of
complete inversion in the active level pair which we again
label as 3 and 2. Imagining the depletion to be due to a
low-temperature heat bath such that the depletion rate
constant I of level 2 obeys

w(t)

005

' 100 ' 200 t

FIG. 3. Delay-time statistics for different values of the
pumping rate (Y=o, 0.001, and 0.005). The histograms
represent ensembles of 160 nonlinear trajectories, while the
smooth distributions are calculated from (2.19).
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ﬁr<<k3T<<E3—E2 ’ (3.1)

we have the following Heisenberg equations of motion:

iN3=--(R3*5E;5 +RRE3),

at
3 3
e Ne=—3 NI N2+52,

(3.2)
2 RE=V,—NEF—4TRE 465,
2 pE-R%.
ox

The Gaussian-noise forces have zero means and strengths
defined by

(§2(x,t)§2(x',t'))=71;:(N2(x,t))8(x —x")8(t —t'),
3.3)
<§§5(x,t)§3_z(x',t')>=%(N3(x,t))8(x —x8(t—1") .

All second-order noise correlations except the ones in (3.3)

vanish.
The initial state |0) of the system is the vacuum for

the electromagnetic field and the fully inverted state for
all atoms. We therefore have

N3(X,0) [0)= IO) ,
(3.4)

N,(x,0)|0)=R%(x,0)|0)=E#(0,0)|0)=0.
I
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FIG. 4. Comparison of linear (diverging) and nonlinear
(bounded) trajectories for the mean intensity at the end of the
sample for various values of the pumping rate (y = «, 0.01, and
0.005).

By assuming the limit of a high number density of atoms
we provide the initial polarization with Gaussian statistics
with

(0] RE(x,0R5(x,0)] 0) =-8(x —x' (3.5)

as the elementary correlation.
The damping mechanism can affect the radiation pro-
cess quite drastically. In fact, the inequality

9 i — r 1 —
> J, dx{0| REx,DR5(x,0|0) < & +2=T) J, @x (0| R%(x,0R 5(x,|0) , (3.6)
implied by (3.2), rules out the possibility of coherent amplification for sufficiently strong damping, I" > 2.
In the early-stage linear regime the equations of motion (3.2) simplify to (with all indices dropped)
%Ri=E*—%FRi+§i, %E*=Ri. (3.7

Up to terms not contributing to normally ordered moments, we then find the electric field operator as the sum of two
terms, one involving the initial polarization, the other proportional to the noise which accompanies the damping process,

E*(x,t):fo'dt'r“/z’“‘—")foxdx'lo(z[(x —x')t —t)]V)EX(x" 1) e~/ foxdx’IO(Z[(x —x")]"*)R*(x',0) .

By using the initial condition (3.5) and the noise correla-
tions (3.3) we find the mean intensity at the right end of
the medium,
I(t)=(E~(1,nE*(1,1))
1

_1 o —Tt N1/292 o0
= [14 [ are=mr,w) v

(3.9)

Obviously, I(t) approaches a time-independent value
I(w) for t>>1/I". Individual intensity trajectories will,
of course, not approach a constant limiting value, but
rather they fluctuate randomly around 7(w ). Physically,
the saturation of I(¢) at large times represents a balance
between energy dissipation into the heat bath and genera-
tion of radiation energy out of an effectively inexhaustible

(3.8)

(due to the linear approximation!) reservoir. In the limit
of a vanishing depletion rate constant I" such a balance is
not possible and the intensity found in the linear approxi-
mation must increase beyond all bounds as t— .

For strong damping we have I( )<< 1. The linear ap-
proximation then remains valid as long as the radiated en-
ergy is smatller than the initial atomic excitation energy,
i.e., for dt'I(t')<N. This regime is customarily re-
ferred to as that of amplified spontaneous emission.’

In Fig. 5 we display the mean intensity I(z) as calculat-
ed from (3.9) for various values of I". Rather modest
values of T" obviously suffice to reduce I(z) drastically.
In Fig. 6 we compare, again for various values of I, the
mean intensities predicted by the linear theory and a nu-
merically generated ensemble of nonlinear trajectories.
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FIG. 5. Mean intensity (linear theory) for various values of
the depletion rate I'. Only for the strongest damping (I'=0.2)
is the stationary value I () reached within the scope of the di-
agram.

We also infer from Figs. 5 and 6 that reliable delay-
time statistics should be accessible through the early-stage
linear theory, provided the limiting intensity /(o) ob-
tained from (3.9) is much larger than the maximum inten-
sity implied by the nonlinear theory. We may then use
the distribution (2.19) to approximate the probability den-
sity of the first-passage time with respect to a reference
intensity in the interval

1/N «< I <<I(0), (3.10)
since the normalization integral,
[ arw=e e e TN (3.11)

is sufficiently close to unity for W(t) to reasonably
represent the delay-time statistics.

However, if the damping is sufficiently strong, the devi-
ation of the normalization integral (3.11) from unity be-
comes appreciable. More specifically, for the distribution
(2.19) to be applicable we must require

1/T25 (t)r . (3.12)

)]

=01

0 100 ) 200 " t

FIG. 6. Comparison of linear and nonlinear trajectories for
the mean intensity at the end of the sample for various values of
the depletion rate (I"'=0, 0.1, and 0.15).

Wi(t)

T

FIG. 7. Delay-time statistics for different depletion rates.
Only for strong damping there is noticeable disagreement be-
tween the linear (smooth curves) and the nonlinear (histograms)
theories.

Interestingly enough, it is not the linear approximation to
the exact dynamics which breaks down when (3.12) is
violated. We rather have neither exact nor asymptotic re-
sults for the first-passage—time problem. The failure of
(2.19) for large T is displayed in Fig. 7.

It is instructive to compare the influence of the pump-
ing (discussed in Sec. II) and the depletion (discussed in
this section) on the radiation process. Both effects tend to
increase the delay and to reduce the radiated intensity.
There are, however, characteristic differences, which we
show in Fig. 8, for the maximum of the mean intensity
and the relative variance of the delay time, and in Fig. 9,
for the correlation between the delay time and the intensi-
ty maximum. In superfluorescence from fully inverted

Varl 1o
20
depletion
10
pumping
1 ' §h>
. ' 3 3 G
pumping
-1 depletion
o943

FIG. 8. Effects of pumping and depletion on the delay-time
statistics and the mean maximum intensity. The units {z;) and
(I,) refer to the case of no damping and instantaneous pump-
ing. The curves result by varying either the pumping rate ¥ or
the depletion rate I'.
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(b) (c)

pumping

depletion

I

70 80 90 150

200 170 180 190

FIG. 9. Effects of damping and depletion on the correlation between delay time and maximum intensity. (a) Instantaneous pump-
ing (¥ = o) and no depletion (I"=0), (b) instantaneous pumping and finite damping (y = o and I"=0.15), and (c) slow pumping and

no damping (y =0.006 and I"=0).

two-level atoms there is a slight tendency of “late” pulses
to have low maxima [Fig. 9(a)]. This trend becomes much
more pronounced if the lower level incurs incoherent de-
pletion [Fig. 9(b)]. For a pumped system without de-
pletion, however, we find this trend completely suppressed
[Fig. 9(c)].

IV. TWO-COLOR SUPERFLUORESCENCE
IN COMPETITION WITH DAMPING

As our next step towards explaining the Diisseldorf ex-
periment! we now consider two optically active level pairs,
32 and 31, which have their upper level, 3, in common.
The pair of levels 21 is assumed optically inactive.> As an
interesting complication we allow for incoherent processes
depleting the levels 2 and 1 either independently [see Fig.
10(a)] or in cascade [see Fig. 10(b)]. At any rate, the
three-level atoms in question will all be taken to be in the
state corresponding to the uppermost level initially.

The pertinent Maxwell-Bloch equations can be written
in the following dimensionless forms:

0
ath— (EfiR$i+E$HRS+H.c.), 4.1)
B N EERE A H )
atN2—+(E32R32+H‘C') I')N,+§,, (4.2)
0
%Riz(N;;—Nz)E;FZ—E;ﬁR;—%F2R$+§3iz, 4.4)

3 3

(a) g g (b) 6 |,
2 v 2
1 J §TZ 1 ._J g‘Tz

N

FIG. 10. Level schemes for two-color superfluorescence: (a)
independent and (b) cascadic depletion.

D RE=(N,—N)EL—EZRH —ATWRS 485, 49
‘E%Rzi =EJRH+E5R3 — (D \+D)R5 +£5,  4.6)
iEi':giRi with i=1,2. @4.7)

ax

The term in the square brackets in Eq. (4.3) appears only
if the damping mechanisms are in cascade. The coupling
constants g; and g, in the Maxwell equations (4.7) are
proportional to the dipole matrix elements for the transi-
tions 3<«>1 and 3«2, respectively, and also depend on
respective transition frequencies. Since g; and g, will, in
general, be different from one another there is no choice
of units for which they both take on the value 1. We shall,
however, be interested in the case where g;,8, ~1.

The most noteworthy feature in the above field equa-
tions is the appearance of the optically inactive polariza-
tion component R 3;(x,t). Owing to the assumed absence
of a correspondmg dipole matrix element, R21 does not
glve rise to an electric field component E3;. However,
R has the important effect of couplmg the radiated
fields E3; (the “yellow” pulse) and E3; '3 (the “red” pulse).
Note that the yellow polarization R3; is driven not only
by the yellow field E §;, but also by the red one, E7,, since
the product E $R3 corresponds to an oscillation at the
yellow frequency as well. Slmllarly, the product E 31R 21
drives the red polarization R32 The red and the yellow
pulses are, of course, also coupled by drawing on the same
energy reservoir, i.e., the initial population of level 3.

The Langevin forces §(x,?) in (4.1)—(4.7) can again be
taken to have white spectra, zero means, and Gaussian
statistics. We shall have to use

(E5165) = (EHEDH) =(EhEH) =0,
(4.8)

I;
<§3‘¥(x,t>§37<x',t')>=7<N3(x,z))5(x —x")8(t —1t')
fori=1,2.

Since the initial state |0) corresponds to full popula-
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tion of level 3, we have

N;(x,0)|0)=|0) , N,(x,0)|0)=N;(x,0)|0)=0,

(4.9)
and mdependent Gaussmn statistics for the initial polari-
zations R3;(x,0) and R 5(x,0) with

(O|R3’§(x,O)R3_,~(x’,O))=—]—V—8(x—x’) fori=1,2. (4.10)

During the early-stage linear regime (N;=1,N;,=0)
the two pulses evolve independently from one another.
Both Ej3, and E7, are given by (3.8), with appropriate in-
dices on the Langevin forces, the initial polarization
operators, and the damping constants. Similarly, the
mean intensities I3; =Iyejiow and I3, =14 can be obtained
from (3.9). There are, of course, no cross correlations be-
tween the red and yellow pulses in the linear regime.

As soon as the nonlinearities become effective, the two
pulses lose their independence. Whichever one of them
has grown faster during the preceding linear regxme, due
to stronger boosts to the random fields 531 x,t) and
R3(x,0) and/or due to a larger coupling constant g;, will
tend to dominate the other. As the most obvious manifes-
tation of the interdependence we must expect both pulses
to have their intensity maxima at times rather close to
each other. The maximum values of the two intensities,
on the other hand, cannot develop any strong correlation
since the partition of the energy between the two pulses is
already determined, to a large degree, when their non-
linear coupling sets in.

The above qualitative expectations are indeed borne out
by a numerical analysis of the classical versions of the
Maxwell-Bloch equations (4.1)—(4.7). In Fig. 11 each
cross represents the difference At=t,—t, and the arith-
metic mean

At

(a)

{b) wl M

T * T T
M + 40 60
< N

FIG. 11. Difference (At) vs mean (T) of the delay times of
pulse pairs plotted for (a) undamped systems and (b) the case of
independent depletion with I'=0.15.

T=5t,+t,)—3(t, +1,)

of the delay times of the yellow and the red pulses in a
single pulse pair. If the two pulses in each pair were in-
dependent, the variance of At in an ensemble of pulses
would be twice the variance of T. The actual cloud of
points in Fig. 11 displays, instead, a rather pronounced
compression along the At axis, and thus indicates a strong
tendency towards synchronization of the two pulses in
each pair. By comparing Figs. 11(a) and 11(b) we find the
synchronization to be impeded by the incoherent depletion
process.

Because of the strong coupling mentioned no informa-
tion on the statistics of the delay-time difference At can be
gained from a passage-time analysis of the early-stage
linear regime. It is a meaningful question, though, wheth-
er the fluctuations of the arithmetic mean T of the delay
times can be understood within the framework of the
linear approximation. As the simplest and most intuitive
attempt to answer this question we have studied the sta-
tistics of the minimum of the passage times of the intensi-
ties | E3 (1,¢)|2 and | E3(1,2) |2 with respect to suitable
reference intensities. By regarding the fields Ej; as in-
dependent classical processes obeying the linearized ver-
sions of (4.4), (4.5), and (4.7), we obtain, using arguments
similar to those used to construct (2.19), the distribution
function

W (t)=Ws (1) ft'” dt' W (') + Wy(t) ft” dr'wi(t')
4.11)

where the single-pulse distributions W3;(¢) are given by
(2.19) with the respective mean intensities 7;;(¢) as in (3.9),

2
&i t., It N1/242 s
=L [1+foa't e T,(2(g;t") Y/t ] .

I(8)= (4.12)
Performing the time integrals in (4.11) we find
W)= Tl (1) - ZEURS - ZON
I3 (2)?
+(I3113; and T oTig) . (4.13)

As reference intensities, I', those adopted to their respec-
tive one-color calculation should be taken. Note that this
result simplifies for the symmetric case in which I'|=T,
and g, =g;.

It is quite rewarding to find that the result (4.13) of the
linear analysis agrees well with the histogram of the pair
delay obtained from an ensemble of numerical solutions of
the nonlinear Maxwell-Bloch equations.

We should note that the clouds in Figs. 11 have been
obtained for the case of full symmetry between the two
colors, i.e., for independent depletion mechanisms (rather
than a cascade) and I'y=T",, g, =g,. The most probable
delay-time difference is therefore zero. We have also
studied ‘asymmetric cases. The most probable delay-time
difference then no longer vanishes. Relatively small
differences between the damping constants and/or the
coupling constants turn out to shift the Az—T clouds
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along the At direction quite appreciably. The tendency of
one color (the one with the smaller I" and /or the larger g)
to emerge earlier than the other can, incidentally, be un-
derstood qualitatively from the linear early-stage analysis.

An interesting asymmetry between the two colors arises
even for I'y/=T, and g, =g, if the damping mechanisms
are in cascade. The red pulse then tends to precede the
yellow one. For g;=g,=1 and I'y=I',=0.15, we have
found (At)/Var(At)=~—0.25, a quite sizable shift
indeed. The sign of the shift is easily understood from the
structure of (4.3). With respect to the case of independent
damping mechanisms the cascade tends to fill level 1 and
thus to decrease the inversion N;—N; which drives the

yellow polarization.

V. TWO-COLOR SUPERFLUORESCENCE
VERSUS DAMPING AND PUMPING

We can now discuss the bearing of our investigation on
the experiment performed by Florian, Schwan, and
Schmid.! We shall be concerned with three features of the
observations. (i) One is the joint and rather synchronous
appearance, in most shots, of a yellow and a red pulse.
The delay time of the pulse pair, in contrast to the delay-
time difference for the two pulses in each pair, undergoes
large shot-to-shot fluctuations. (ii) There is a range of
values for the number density » of initially excited atoms
for which the two pulses in a pair tend to be equally in-
tense even though their maximum intensities fluctuate
considerably and rather independently. When n is
lowered out of this range the red pulse acquires larger in-
tensities than the yellow one, while an increase of n leads
to a domination of the yellow pulse. A complete color
change takes place as n is varied by about an order of
magnitude. (iii) Finally, there is a rather pronounced
correlation between the intensity maxima and their delay
times: long delays tend to go along with small intensities.

While the three observations just mentioned will find
more or less satisfactory explanations below, we shall not
discuss a fourth experimental finding, a strong synchroni-
zation of the pulse pairs radiated in the forward and in
the backward direction.

The simplest level scheme pertinent to the experiment
in question is shown in Fig. 12. Initially, level 4, the up-
permost one, is the only one populated. Incoherent leak-
age downwards in energy then fills level 3, from which
optical transitions lead to level 2 and level 1. The latter
two levels are part of a damping cascade which eventually
drains all population towards states irrelevant to the radi-
ation process. The rate constants for the pumping of level
3 and the damping cascades can be controlled, to some de-
gree, by varying the temperature of the surrounding medi-
um. The temperature is sufficiently low (~10 K) for no
incoherent upward-in-energy transitions to occur. The
number density of initially excited atoms is controlled by
the laser pulse used to lift the potentially active atoms
from their ground states to level 4.

An attempt to explain the statistics of the measured
pulses quantitatively meets with several difficulties. For
one, the relaxation times for the pumping (74) and the
damping cascade (7, and 7;) are not known with great

4
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FIG. 12. Level scheme for two-color superfluorescence with
pumping and depletion processes.

precision. Similarly, the natural linewidths 1/73;, and
1/73; of the optical transitions are not well known. Prob-
ably, 7, <40 ps, 7, andr; of the order of 100 ps, and 73,
and 73; near 2 us are not unreasonable choices. Absolute
values for the number density n are also somewhat uncer-
tain, while relative changes should be under better control.
We shall assume 7 to lie in the range 10'*—10" cm~3.
There is no uncertainty, of course, about the wavelengths
of the red and the yellow transition, A3,=593 nm and
)\,31 =629 nm.

The Maxwell-Bloch equations relevant to our five-level
system are (4.1)—(4.7) augmented to account for the
pumping as in the first two equations in (2.2). The di-
mensionless rate constants y, I'y, and I'; are related to the
times 74, ; as

Y=74/74, L12=74/T12 . (5.1

The unit of time appearing here is the so-called super-
fluorescence time

T¢=8m7/3A%n , (5.2)

where 7 and A are the mean natural lifetime and the mean
wavelength for the two optical transitions, respectively,
while / denotes the length of the active volume. It is
worth noting that the dimensionless damping constants ¥,
I';, and I'y, as well as the superfluorescence time, are in-
versely proportional to the number density 7.?

The dimensionless coupling constants g; are given by
the wavelengths A3; and the lifetimes 75; as

g=—T (5.3)

The observed sychronization of the two pulses within
each pair finds its explanation in the results presented in
Sec. IV. Even though the pumping of level 3 is not an in-
stantaneous process, it is fast enough for the considera-
tions of Sec. IV to apply quite well. The calculated as
well as the measured delay times have the order of 1 ns,
while the experimental pumping time is probably shorter
than 40 ps. The experiment thus undoubtedly refers to
the fast-pumping limit (2.20) rather than the slow-
pumping limit (2.21) where the delay times would scale
with n as n ~1/2
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FIG. 13. Color change with varying number density.

The damping cascade, in contrast to the incoherent
pump, is of importance for the experiment. Especially, for
runs in the low-density limit, the superfluorescence time
Tg¢= ~1/n becomes so large that the incoherent damping
can effectively impede cooperative radiation.

The observed color change can be interpreted as a non-
linear effect, due to the competition of the cooperative ra-
diation with the incoherent damping. We must assume
the yellow transition to be favored over the red one by a
slightly larger coupling constant,

g1=11, g,=09, (5.4)

but, on the other hand, more strongly impeded by the
damping cascade,

71=200 ps, 7,=400 ps . (5.5)

Since the delay time scales with n as 1/n, apart from log-
arithmic corrections,” the yellow pulse must dominate for
high densities at which the collective radiation develops
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faster than the damping. For low densities, however, the
superfluorescence sets in so slowly that the damping can
compete and discriminate against the yellow pulse. Even-
tually, for sufficiently low n, no superfluorescence of ei-
ther color can develop any more. The color change is il-
lustrated in Fig. 13 where we show the ratio of the mean
maximum intensities for the two colors as a function of
the density n.

Finally, the damping cascade is also effective in pro-
ducing the observed pronounced correlation between long
delays and low intensities. Actually, this effect is not ex-
clusive with two-color superfluorescence as can be in-
ferred from Fig. 9. The qualitative remarks at the end of
Sec. III apply here as well.

We should add that our calculated ensembles of pulse
pairs show a somewhat smaller relative variance of the de-
lay times than was observed experimentally. In the densi-
ty range from 10'° to 10'* cm—3 we find, using 7,3=10
ps, 7=2 us, Tgn=2.25X10° cm=3 and (5.4) and (5.5),’
the mean delay to grow from 0.4 to 1.2 ns, while the rela-
tive variance of the delay increases from 6% to 12%. The
experimental variances are larger than ours by about a
factor of 5. This discrepancy may well be due to uncon-
trollable shot-to-shot fluctuations of the density n. The
experiment is, after all, performed in a density range rath-
er close to the effective cutoff of superfluorescence by the
damping, i.e., in a range where the density enters in a
much more sensitive way than in previous experiments on
atomic vapors and beams.
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