
PHYSICAL REVIEW A VOLUME 29, NUMBER 6 JUNE 1984

Multiphoton autoionization under strong laser radiation: Three-photon autoionization
of strontium as a test case
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A theory of two- and three-photon autoionization is presented for intermediate resonant and non-

resonant cases, stressing the laser-intensity effect on the configuration mixing of the final state.
Sample calculations are performed for the Sp 6s 'P autoionizing state. The involvement of the 5s 5d
intermediate state includes the effects of ac Stark shifts on the ionization rate, the line shape, and

the photoelectron angular distributions.

I. INTRODUCTION

The first observation' of multiply charged ions created
by multiphoton ionization has by now been corroborated
by a number of further experiments. It has been estab-
lished that alkaline earths and rare gases undergo even tri-
ple multiphoton ionization under laser intensities in the
range of 10' —10' W/cm and frequencies ranging from
near infrared to ultraviolet. Although most reported ob-
servations dealt with either alkaline earths or rare gases, it
appears that most atoms will behave similarly. In some of
the more detailed experiments on alkaline earths, ' it has
been established that doubly excited and autoionizing
states play perhaps the most significant role in this
phenomenon which occurs at surprisingly low intensities,
low in the context of multiphoton high-order processes.
It has also been observed that such states undergo signifi-
cant changes under the influence of the exciting radiation
as evidenced by the substantial distortion of their line
shape. Aside from the interest generated by these experi-
ments from the standpoint of multiphoton spectroscopy,
the high degree of excitation involved presents a challeng-
ing prospect for the creation of short-wavelength lasers.

There exists virtually no quantitative theoretical under-
standing of these processes. Going beyond the single-
electron model of multiphoton ionization is the first step
towards such understanding. For the alkaline earths this
requires the inclusion of doubly excited states (above or
below the first ionization threshold) in the description of
the process. It further requires the inclusion of laser-
intensity effects on such states beyond lowest-order per-
turbation theory. Given the observation of triply ionized
species, it also raises the question of core excitation. In
the case of rare gases, core excitation is of course the first
question raised by multiple ionization.

Our purpose in this and following papers is to address
these questions, beginning with an investigation of the
participation of doubly excited states in the overall pro-
cess. %e formulate the problem in a way that permits the
inclusion of intensity effects on the observable quantities.

The specific system chosen for these calculations is atom-
ic Sr because of the rather detailed experimental data
available to us.

The results presented here aim at an assessment of the
magnitude of observed and/or predicted effects. The
work of Feldman, Welge, and collaborators ' has provid-
ed the valuable stimulus and data for this analysis. More
refined data will, however, be necessary if we are to arrive
at quantitative comparison of theory with experiment.

Some of our initial results have been presented in an
earlier paper. Related calculations on H2 have also been
reported elsewhere. A general discussion of this area of
problems with more extended reference to related work
can be found in some of our previous papers ' on this
subject.

II. MULTIPHOTON AUTOIONIZATION

A. Nonresonant two-photon autoionization

Autoionization can be formulated in terms of a transi-
tion from an initial bound state to a discrete state whose
energy lies above the first ionization threshold and in-
volves the excitation of at least two electrons. Usually,
such an excited state couples to the continuum via config-
uration interaction and one must calculate the transition
to both the discrete and the continuum parts. These two
transitions interfere. In the usual treatment of autoioniza-
tion, as given, for example, by Fano, ' the discrete state is
first coupled to the continuum by configuration interac-
tion. The resulting new continuum states include the
discrete, and the transition is then calculated through the
appropriate transition matrix element between the initial
bound state and the new prediagonalized continuum state.

For multiphoton autoionization, especially when the
field is strong —in a sense to be specified below —this ap-
proach is insufficient. The field is no longer a weak probe
that simply causes a transition proportional to its intensi-
ty. It is part of the interacting system, and since the cou-
pling can be comparable to or even larger than the config-
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D= er ES'(t):—pS'(t), — (2.1)

where e is the polarization vector of the field and 8'(t) its
amplitude. In terms of creation and annihilation opera-
tors, we have

uration interaction, the two must be treated on an equal
footing. In that case, new behavior of the system is to be
expected, while for a weak field, a generalization of the
conventional equations to the multiphoton case should be
obtained. Two new aspects should be incorporated, there-
fore, in the new formalism: The multiphoton aspect and
the possibility that the field may become strong. Obvi-
ously, the latter can also occur when an autoionizing state
is excited by a single-photon strong-field transition from a
bound state. Formal aspects of this question have been
discussed in recent papers. '" ' Here we outline first the
derivation of two-photon autoionization which then is
easily generalized to the multiphoton case.

Let ~g) be the initial (usually the ground) state, ~a)
the autoionizing state, and

~

c) the continuum to which

~

a ) autoionizes. The two-photon transition from
~ g ) to

~
a) and

~
c) occurs through a set of intermediate states

[ ~

b ) I of the appropriate symmetry; which means that we
have nonvanishing electric dipole matrix elements between

~ g ) and
~

b ), as well as between
~

b ) and the states
~

a )
and

~

c). They are here denoted by Di~, D,i„and D,&,
respectively, with D being the dipole operator written as

(z Eg )G—g QDs—b Gb 1——,
I

(2.4a)

Db—x Gs+(z Eb —)Gil' Db~ 6
dE, Db, G =0,

—g D~ b Gb +(z E~ )G—~ f dE—, Vll, 6, =0, (2.4c)
bl

(2.4b)

—gD, i, Gi, V, , —G, +(z E, )6,—=0 .
b'

(2.4d)

From these equations we derive the transition probability
for autoionization, assuming first that none of the inter-
mediate states b are in resonance with a single-photon
transition from g. We assume, that is, a nonresonant
two-photon transition from g to a and c. Eliminating
Gi, , by solving Eq. (2.4b) for Gi, and substituting into the
other equations, we obtain

that only the matrix elements Uxs, Ubx, U, x, and U, x
are necessary for the prediction of the dynamical behavior
of the sy stein. Because of the initial condition,
Uxx(t=0)=1, all others being zero for t=0. It follows
then that we need only the corresponding matrix elements
of 6 which, in an obvious abbreviated notation, we denote
by Gs, Gb, 6, , and 6, . Writing Eq. (2.3) in the form
(z H —D ——V)G=1, and taking the above matrix ele-
ments of both sides, we obtain

E(t) = e 8'(t) =i(2vrRco)' [a(t)e a(t)e "—], (2.2)

6(&)= 1

z —H' —D —V
(2.3)

in terms of which we obtain the time evolution operator
U(t) as the inverse Laplace transform of G(z). At time
t =0, the wave function of the system is ~g'), while for
t &0, it is obtained from 4'(i)= U(t) ~g ) which implies

where m is the frequency of the field. Autoionization
occurs through the interaction e /r&2, and the respective
matrix element, including all the constants, is denoted by
V„. The total Hamiltonian will be denoted by

H=H +H +D+ V,

where H" and H are the Hamiltonians of the free atom
(molecule) and radiation field, respectively. The states

~ g ),
~

a ), and
~

c ) are to be understood as eigenstates of
H . If

~

n ) denotes the initial state of the radiation—
which is assumed to contain n photons in a single mode
of frequency co—the states of interest for the uncoupled
system "atom plus radiation" are the product states
~g) ~n), ~b) ~n —1), ~a) ~n —2), and ~c) ~n —2), for

which we also use the abbreviated notation g', b', a', and
c'. Their respective energies are

E,, =E,+ne, Eb.=Eh+(n 1)e, —

E, =E, +(n 2)fuo, E—, =E,+(n 2)fico, —

where Es, Ei„E„and E, are the energies of the bare
atomic states. The states g', b', a', and c' are eigenstates
of H:—H" +H

Now let 6(z) be the resolvent operator defined by

—g f dE, 6, =1, (2.5a)
bl

c E E c

D lbl Dbl
Gg+(z —E, )6,

bl Eg' Eb'

C ~ C

D lbl Dbl l

dE, V, , + g 6, =0, (2.5b)
Eb,

Dc'il' Db'g'

Eb,

+(z E, )6, =0, (2.5c)—

which are valid on the condition that the energy differ-
ences Eb Es —flu for all b be —much larger than the
width (spontaneous as well as induced) of state

~
b). On

the basis of this condition, we have also neglected terms
that involve ~D~b ~

and ~D, & (
which represent Rabi

frequencies (induced lifetimes of
~

b )) and
~
D, i, ~

which
represents the ionization width of

~

b). Nonresonant
two-photon ionization (or equivalently, large detuning)
implies that such quantities are small compared to
Es Eh+fico. When this—condition is satisfied, the energy
differences E, Eb —fun are also la—rge since we assume
2Aco=E, —E~, i.e., we examine the behavior around an
isolated autoionizing resonance. It is the same condition
that also enables us to replace z by E in the denomina-
tors z Ei, which result from—solving Eq. (2.4b) for Gi, .

We introduce now the following effective two-photon
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matrix elements:

D(2) + a'b' b'z' +2 + PobPbg g 2 (2)

g' b' b g b +
(2.6a)

c'b' b'g'
Dc'g'—

b' Eg —Eb

&~b&bz &2 (2)

b Eg —Eb +
(2.6b)

(2) ~ c'b' b'a' ~2 ~ I cbI ba ~2 (2)
I I I caE —E ~ E —E +%co

(2.6c)

where, as usual, summation over b implies integration
over the continuous part of the spectrum. An additional
effective matrix element of a different type is suggested by
Eq. (2.5) and is defined by

The integrals over E, separate then into a real and an
imaginary part according to the identity

lim . =P— i m—.5(y ),1 1

g~+0 P+l'g
(2.10)

where P denotes the principal value. Letting z~Eg +iq
in the denominators, we note that Eg —E,
=Eg+2hco —E, and that Eg+2ficu is the energy above
the initial state to which the two absorbed photons raise
the system. It is the excitation energy and will be denoted
by E. Since we are dealing with transitions above at least
the first ionization threshold, E is a continuous variable
as is co and all quantities of interest for the description of
the phenomenon will, in general, be functions of E. In
particular, it is the transition probability that we wish to
describe as a function of E. Another useful parameter is
the detuning from resonance with the state a) defined
by

V, , —:V, , +D, , = V„+8' p„.(2) 2 (2) (2.7)
5=E E,=E—g+2fico E, =2fico—(E, —Eg) . —(2.11)

Using the above definitions, we have
Since V does not operate on radiation states, we have
V, , = V„. It must be kept in mind that Vca is indepen-
dent of the laser, while D,',' is proportional to the laser
intensity I.

In terms of the above effective matrix elements, Eqs.
(2.5) now read

D(2) 2 I2 (2) 2

C C

l—=Sg ——yg,2
(2.12a)

(z Eg )Gg Dg—, G, ——dE, Dg, G, =1,(2) (2)

D, s Gg+—(z E, )G, —dE, V,—, G, =0,(2)

(2.8a)

(2.8b)
f dE, ~P f dE, imV„~E—E.

C C

(2)D, z Gg ——V, , G, +(z E, )G, =0—. (2.8c)

In form, these equations seem identical to those that cou-
ple an initial state

~
g ) to an autoionizing state

~

a ) and a
continuum

~

c) via a single-photon transition, as can be
readily verified by comparing with Eq. (4.8) of Ref. 11.
In the present case, however, the coupling matrix ele-
ments, instead of being simple matrix elements of D and
V, are effective matrix elements of second order in D and
therefore dependent on laser intensity. As we will see
below, this introduces significantly new behavior.

The continuum can be eliminated now by solving (2.8c)
for 6, and substituting into the other equations, thus ob-
taining

(D( ) (2
z Eg f dE, — —

z —E ~

C

Gg

(2)

Dg, + dE, G, =1,(2) gc ca
c E a

C

(2)

Dag + dEc 6 ~
(2) ac cg

z —E.C

(2.9a)

+ z E, —f dE,
' — G =0. (2.9b)c E a

C

By analogy with the single-photon case, we can proceed as
in Sec. IV of Ref. 11. We replace z by Ez+ig in the
denominators above and then take the limit for il~+ 0.

l

2
(2.12b)

and

(2)

D.",'+ f dE, . "
z —E ~

C

(2)g2

DEg (1 i /—q ), — (2.12c)

where I=
~

5'
~

is the light intensity. The quantities Sg
and yg are, respectively, the ac Stark shift and the ioniza-
tion width of state

~ g ) due to its direct (two-photon) cou-
pling to the continuum, very much like in single-photon
autoionization [see, for example, Eqs. (4.15)—(4.17) of
Ref. 11]. In the present case, however, these quantities
are not linear in the light intensity but quadratic because
they represent two-photon processes. The quantities F,
and I, are, respectively, the shift and width of a ) due
to its coupling to the continuum through V„. In usual
weak-field autoioniz ation, V„reduces to V„which
makes F, and I, field-independent parameters of the
bare atom. For arbitrary intensity, they again represent
the shift and width of

~

a ) due to configuration interac-
tion V modified by the field through the presence of the
term 8')M,', ' representing a two-photon matrix element
coupling

~

a ) to
~

c ). It corresponds to stimulated emis-
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(2)

DEs' 8' p,'s'+P ——f dE, (2.13a)

(2)
DEg

(2)m(V„p,s )g

p,'s'+P f dE, f V«p,'g'l(E E,)]—
2 (2) (2)~((V-+ &'p- )p., h, =E

(2.13b)

As in conventional single-photon autoionization, Dzz
represents a transition amplitude from the initial state to
the autoionizing state modified by an admixture of the
continuum. In the limit of zero coupling to the continu-
um ( V«~0), it simply represents the Rabi frequency be-

sion and subsequent absorption of a photon from
~

a ) to
~c) or vice versa as depicted pictorially in Fig. 1. It

modifies, therefore, the effect of V„and the resulting
width I, can no longer be viewed as the conventional au-
toionization width because now it depends on the field in-
tensity. We shall retain the term autoionization width,
nevertheless, in order to distinguish it from the direct ion-
ization width yz. Although these two quantities refer to
different states,

~

a ) and
~ g ), respectively, they both

represent ionization of the atom (transition into the con-
tinuum). All of the above shifts and widths, in principle,
are functions of the total excitation energy E. For the
moment we shall suppress this dependence, assuming it to
be very weak, and the above quantities shall be treated as
constants taking their value at E„or at E, +F,(E, ) if F,
is significant. This assumption is not necessary and can
easily be dropped in an actual calculation.

A note on the difference between S~ and I, is perhaps
useful at this point. The shift F, at 8'=0 is model
dependent in the sense that its value is affected very much
by how good the zeroth-order Hamiltonian and hence its
wave functions are in representing the energy of the au-
toionizing resonance. In that sense it can be viewed as an
artifact of the calculation. The energy of the physical
state is E, +F,. On the other hand, the shift Sz (or any
other ac Stark shift) is a real effect. It is unavoidably
caused by the same radiation that causes the transition
and is independent on the atomic model. Of course for
8'&0, F, also contains a field-dependent contribution.
Two additional quantities have been introduced in writing
Eq. (2.12c). They are

tween ~g) and
~

a). Here, however, it is a two-photon
(second-order) matrix element, because it takes two pho-
tons of the assumed frequency to reach a state above
threshold. In addition, it contains a new feature. It is not

simply proportional to some power of the field, but it in-
volves a more complicated nonlinear dependence through
the presence of V„. Similarly, the parameter q appears
playing the same formal role as the usual q parameter of
autoionization, except that now it depends on the radia-
tion intensity in a nonlinear fashion through V«. Thus it
no longer represents an atomic (molecular) parameter, but
one that reflects the interaction with the field as well.

Exploiting further the formal similarity with conven-
tional autoionization, we can write the transition probabil-
ity per unit time as

IV=2m
~

D"'
~

' ~ =2rrI'
~

p"'
~

'
2+1 62+1

(2.14)

where e is the detuning from the autoionizing state given
by

2fico (E, +F, —Es)—
-rI

2

(2.15)

As long as the intensity is sufficiently low for 8' p,', ' in
Eq. (2.7) to be negligible compared to V«, all of the above
equations are identical to those of single-photon, weak-
field autoionization and have the same physical content,
except that all matrix elements involving the interaction
with the radiation are of second order. In that case q and
I, are the usual parameters, and the transition probability
and line shape are features of the atom (molecule). For
higher intensities, 8' p,', ' becomes comparable to V„, the
transition probability and line shape will change as func-
tions of intensity in a nontrivial fashion. Equation (2.14)
is still vaild, but different q, I „and line shapes will re-
sult for different intensities. Such changes can be qualita-
tivel~ significant. Note, for example, that if the sign of
8' p„' happens to be opposite to that of V„, the quanti-
ties V„and I', may, in principle, vanish at the appropri-
ate intensity, while at the same time q~ oo. Whether I,
can actually be observed to vanish in an experiment is, of
course, doubtful because the competition with other chan-
nels as well as the finite laser bandwidth will tend to
smooth out such drastic changes of I, . The salient point,
nevertheless, is that qualitative changes are apt to appear
in line shapes and transition probabilities at intensities
such that I

/ p,', '
i

—=
i V„/ .

/////////// 'I'///

I

1(

pb

FIG. 1. Schematic diagram for two-photon autoionization.

B. Resonant two-photon autoionization

The previous derivation is valid as long as the photon
frequency m is far from resonance with any intermediate
state

~
b). If, on the other hand, for some b we have

Eb —E~ =-fm, then some of the previous approximations
are not valid. The most rigorous way of handling that
case is to return to Eq. (2.4) and retain only one (the
near-resonant) state

~
b), thus reducing the problem to

one with three discrete states and one continuum. The
continuum can then be eliminated as before by eliminat-
ing 6, , which leads to a system of three equations for
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Gg Gb and G These equations have been derived in
Ref. 11 following exactly this procedure [see Eq. (5.17) of
Ref. 11]. In the notation of Sec. IIA with the primes

dropped and z —Eg replaced by z, they can be written as

zGg —A)Gb ——1, (2.16a)

l—Q(Gg+ z+5)+ —
yb Gb —A 2 1 ——G, =0,

q

—0, 1 ——Gb+ z+5+ —I, G. =O,
q

a a

(2.16b)

(2.16c)

where 5,:fico E—bg, 5=:—2iruo —E,g, A, = 8'pbg,

~acPcb 202=8' P,b+P dE, , —,I,=sr
~

Vc,
~ Ec E—E

and

1 1 O 2
2 Vb YYb+~1 lPcb IE, '=z

The energy differences Ebg and E,g are the differences of
the respective atomic energies including the associated ac
Stark shifts as well as the shift F, of E, . The expression
for the width yb of the resonant intermediate state given
above differs slightly from that of Ref. 11 in that it con-
tains the additional contribution yb due to the spontane-
ous decay of

~

b ). This contribution may be of some sig-
nificance for low intensities in the applications of this pa-
per. Finally, Qi is the Rabi frequency for the transition

g )~
~

b), while Q2 is a generalized Rabi frequency for
the transition

~

b )~
~

a ). It is generalized in that it con-
tains the effect of the admixture of the continuum
through V„. The q parameter appearing in these equa-
tions is the usual q defined for autoionization from

~

b )
and is therefore given by q =Azlir V„D,b.

The general solution is obtained by solving Eqs. (2.16)
exactly, which involves finding the roots of the third-
order algebraic equation resulting from the determinant of
the coefficients. The inverse Laplace transforms of Gg,
Gb, and G, are then expressed as linear combinations of
three exponentials involving the three roots z&, z2, and z3.
The total ionization is then expressed as a function of
time in the form I';,„(t)=1— Ugg(t)

~

—
~

Ubg(t)
~

though formal analytical solutions can be written in terms
of the algebraic expressions for z&, z2, and z3, they are of
little value because of their complexity. Thus any useful
information about ionization must be obtained numerical-
ly. Part of this has been done in Ref. 11. For large field
intensities, ionization will be a function of time not ex-
pressible in terms of a time-independent transition proba-
bility per unit time. For relatively low intensities, on the
other hand, that satisfy the inequality Qi «yb, I „~02 ~,
the transition probability per unit time can be put in the
(time-independent) form

l l —2 lf(5i)=—5(+ —
yb 5+ —r, —n, 1 ——

2 a
q

2

(2.17b)

Although formally this equation allows for a detuning 5&,

from the intermediate state
~
b), it is understood that 5&

should not be so large as to make the presence of other in-
termediate states significant thus invalidating the approxi-
mation of a single intermediate state. It is worth noting
in passing that this equation is also applicable to the case
of strong coupling between

~

b) and
~

a) as long as II& is
weak, i.e., satisfies the above inequality. Experimentally,
this can be achieved by using two lasers so as to control
independently the strengths of the couplings ~g)~~ b)
and ~b)~~a).

C. Three-photon autoionization

The generalization to the three-photon case is straight-
forward. We do, however, present here a brief summary
of the main equations in order to underscore certain non-
trivial differences with the previous case and also to estab-
lish the formal framework for the specific calculations
that follow.

Since it takes three photons to cross the ionization
threshold, we have a double summation over intermediate
states. If the first or the second photon leads to a
resonant transition to a particular intermediate state, one
of the sums collapses to a single term. In that case, the
resonant formalism must be used, as we elaborate below.
We shall be particularly interested in the case of two-
photon resonant three-photon autoionization.

To set up the equation for the nonresonant case, we
consider the initial state

~
g), a set of intermediate states

I ~

b ) I connected to
~ g ) by a dipole transition and a

second set of intermediate states I ~

d) I connected to

~

b ), to the autoionizing state
~

a ), and to the continuum

~

c) by a dipole transition. In general,
~
g) will be con-

nected to
~

a) and
~

c) by an effective three-photon ma-
trix element which is obtained through the elimination of
the intermediate states. We would begin with the equa-
tions for the matrix elements of G which are the
equivalent of Eqs. (2.4). We would then eliminate Gb and
Gd, thus obtaining the effective three-photon matrix ele-
ments. Without showing here any of the tedious rnanipu-
lations, we proceed to quote the resulting equations under
the assumption that neither single nor two-photon reso-
nances appear. The equations are

D'g I

(3) 2

z —E — dE — — Gg C z —E ~

C

(3)

Dg", + f dE,
' "

G, =1, (2.18a)
z —E ~

C

D(3)
D' ' + dE - Ga'g'

C

dp 2 r, (e+q)
=Xbi

dt 4
~
f(5i)

~

2 (2.17a) + z E, f dE,
' '

G,'—=0,— (2.18b)
C

where where ~g')= ~g) ~n), /a')= (a) [n —3),
/

c')



3164 YOUNG SOON KIN AND P. I.AMBROPOUI. OS

=
l
c)

l
n —3), and E, =Eg +II~, E. =E.+(II —3)~,

E,.=E, + (n —3)Pug. The total excitation energy is
E=Eg, as 1n thc two-photon case. Thc continuum has
also been eliminated in the above equations. By making
the substitution z —+Eg +I,q and proceeding as in the pre-
vious case, we obtain the corresponding shifts, widths,
ctc., glvcn by tllc followlilg cxprcsslolls:

I3 (3) 2 2

c b g b

(3) 3
z 1'g=ir IPcg I E,=El

V 2

F.=P f dEc E E & 2 g

y D(3)
D.(3,)+ f aE,

I C

(3) 3

(2.19a)

—:D zz(1 —i/(I), (2.19c)

(2) ~2 PCdPdu
V,.= V,.+8' p,.= V,.+ g g

d Eg —Ed+Mal
(2.21)

because we are interested in retaining only the lowest-
order correction to V„which is of second order in 8'
even though the lowest-order coupling between

l g ) and
l
a ) is of order 8' . Thus one of the differences between

the two-photon and the three-photon (in fact the X-
photon with X& 2) case is that in the former the correc-
tion to V«due to the field is of the same order as the
transition to the autoionizing state itself which has some
implications about the observability of the effects to be
discussed later on. %"hy the leading correction to V„ is
always of order 8' is also evident from the schematic rep-
resentation of Fig. 2. The quantity D zz(1 i/q) appear--
ing in Eq. (2.19c) is defined by

where the three-photon effective matrix elements appear-
ing above are defined by

„(3) yg &c laid&&d l)LI lb&&b l)M lg& 22(),
(Ed Eg —2fuu—)(Eb Eg fic—o) '—

(3) yg &a II2ld&&d ls l&&&b l)(big&

(Ed Eg —21m )—(Eb Eg fico )——

Tllc modlfllcd V, llowcvcr, ls s'till glvcll by tllc cxplcssloll

{3)
D (3) g 3 (3)+p f dE ccP'cg

C (2.22a)

while g 1s now given by

(3)
DEg

m(V„p,g )E E

+~g + Ec ~QcPcg

~~( Vcc ++ Pcc )Pcg ]E =b
2 (3) (2.22b)

D. Two-photon resonant three-p4oton autoionization

As noted earlier, there is more than one possibility for
resonance in this case. We present a brief summary of
equations applicable specifically to one of such cases for
which we also report specific calculations, namely, two-
photon resonant three-photon ionization. The laser fre-
quency is assumed to be such that 2'=-(Ez Eg)/fi-
where

l
d ) is one of the previously defined intermediate

states which can be reached from
l g) by a two-photon

transition and from which
l
a) can be reached by a

single-photon transition. Assuming that the problem is
confined to a frequency range around this particular

l
d )

state, all other states of the type of
l
d ) can be ignored.

We have then, similar to that of Sec. II 8, a near resonant
transition to an intermediate state ld) and a single-
photon transition from there to

l
a) and the respective

continuum. The different feature of this case is the ma-
trix element for the transition

l g )~
l
d ) which now is a

two-photon matrix element. %e can then rewrite Eqs.
(2.16) in exactly the same form with a somewhat modified
meaning for some of the symbols. The Rabi frequency Q)
is now of second order in 8' and is given by

Thc meaning an«ole of these quantities are the same as
those of the two-photon case. They only differ in the way
they dcpcnd on flcld strength.

Since we have so far been considering a nonresonant (no
intermediate resonances) three-photon transition, we can
write a transition probability per unit time in the form

IV() 2 lD()l +0 2 I
l

()l +0 (223)6'+ I
"" 6'+1

with e defined exactly as in Eq. (2.15). This transition
plobab111ty pcr Unit time 1s a meaningful quantity as long
as

l
D Eg l & I, . Otherwise the procedure of Ref. 11 must

be employed in calculating ionization as a function of
time.

a
iI, i

////////. 'J///

~(2) g2 (2) g ~2
Pdg =

b Eb —E —~g
(2.24)

FIG. 2. Schematic diagram for three-photon autoionizaiion.

For thc dctun1Ilg 51 wc have 61——2' —Ebg, %'hllc the to-
tal dctlllllllg fl'olll flic alltololllzlllg state ls 5=3fK0 —Ecg ~

All other quantities appearing in Eqs. (2.16) retain their
definitions and meaning. The overall process is now of
third order in 8'. In the limit of low intensity in which a
transition probability per unit time is meaningful, Eqs.
(2.17) are still valid with fl) replaced by QI '.
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e reader may wonder why V«appears in the equa
tions for the nonresonant cases while the unmodified V«
appears in those for the resonant. The equations for the
resonant case contain explicitly the population of the in-
termediate state. Upon solution of these equations V„ is
modified indirectly because it enters the equations in a
complicated fashion and not simply as a decay constant.
The result for the nonresonant case containing V«can be
obtained from the resonant in the limit of large detuning
(or low saturation of the bound-bound transition). Large
detuning here is to be understood as larger than the
respective Rabi frequency A& or 0& .(2)

In the usual multiphoton resonant ionization, the reso-
nance refers to an intermediate state. Here, in multipho-
ton resonant autoionization, there is the resonance with
the autoionizing state as well. In fact, to talk about au-
toionization at all, we must assume that the frequency is
tuned around this resonance. On the other hand, we may
or may not have resonance with an intermediate state.
We have therefore two saturations to consider. One has
to do with the saturation of the resonant transition to the
intermediate state. It occurs when the respective Rabi fre-
quency Q& becomes comparable to or larger than the
spontaneous decay of the resonant state

I

d &. The conse-
quences of this type of saturation have been studied in the
context of multiphoton ionization, are generally under-
stood, and we shall draw upon those results when neces-
sary. The problem of saturation of the transition to the
autoionizing state (either single-photon or two-photon)
has also been studied. Saturation here implies (in the no-
tation of this section) ID' I

&I „which for a three-

photon transition translates to
I DEg I

& I,=~ V„
Since D z is of third order in 8', we expect that typically
V«will show departure from V„before B Eg becomes(3)

comparable to I, . In the two photon case the two are apt
to occur at about the same intensity.

In summary, we have four types of behavior appearing
successively with increasing intensity: Completely non-
saturated autoionization with I, determined by V«ex-
pected at low intensity, saturation of a real near-resonant
intermediate state expected even for moderate intensity
when the frequency 1s near resonant with a single-, two-,
or multiphoton transition with an intermediate state,
modification of V«at a higher intensity, and finally
saturation of the multiphoton autoionizing transition it-
self at relatively high intensity. The sequence of appear-
ance of these effects (or combinations thereof) depends
critically on the particular atom and the frequency of the
radiation. In the following sections, the opportunity will

be given to illustrate this by referring to specific numeri-
cal examples.

III. THREE-PHOTON AUTOIONIZATION OF Sr

A. Derivation of the generalized cross section
and angular distribution

We turn now to the application of the preceding for-
malism and ideas to three-photon autoionization of Sr. In
view of the availability of some experimental data we
shall emphasize the two-photon resonant situation. The
ground state

I g& has the configuration 5$ ('So). We are
interested in three-photon autoionization to the state
5@6 ($'P' )1with the possibility of two-photon resonance
wltll states of tllc collflgul atlolls 5$n$ ( So ), 5$nd ( D2 ),
and in particular the doubly excited states 5p ('So) and
5p ('D2). We will not be concerned with single-photon
resonances from the ground state. Thus we need to sum
over intermediate states of the type 5 $mp('P, ). In princi-
ple, none of such configurations are pure and we must
take cognizance of this fact whenever it is quantitatively
important. Tllc Rufololllzlllg stRtc a & =5p6$( P 1 ) cou-
ples and autoionizes to the continuum 5sE, I with l = 1 at
low laser intensities. Coupling of /=3 partial wave with

I
a & due to laser will be studied in a following paper.

These two partial waves are those which can be reached
from the ground state via three-photon absorption and
only 5sE,p interferes in this paper with the transition to

I

a &. The participation of the above states in the total ex-
citation is illustrated in Eq. (3.2) which defines the chan-
nels of the transition. Each arrow represents a matrix ele-
ment of the electric dipole operator. For light of given
polarizatj. on each matrix element can be written as a radi-
al matrix element multiplied by the appropriate coeffi-
cient resulting from the angular momentum algebra. The
coefficients shown with each arrow of Eq. (3.2) corre-
spond to light linearly polarized. If the second photon is
not in near resonance with any of the accessible states
mentioned above, we need to also sum over states of the
form 5$n$, 5$md, and 5p (myna, in general). We begin
with this completely nonresonant case. Two types
of three-photon matrix need be considered: pg, and pg,
each involving two sets of summations. For example, the
radial matrix element connecting

I g &
= 5$ with

c &
=5$E,p involves a sum of the form

&»'Ir
I

5$ns &&5$ns Ir»m$ &&5$m$ Ir15$E.s &

(E E —lruu )(E E —2~—)— (3.1)

which we abbreviate as

1/~3 1/~3 j. /~3
5s ~ 5snp —+ 5sms ~ 5sE,p,

with the angular momentum factors also indicated above
the arrow. Thus R

&
must be multiplied by the product

1 1 1

v3 v3 v3
of these coefficients before it is entered in an expression
for the transition amplitude because the defining equation
(3.1) contains only radial matrix elements. With the
above notation in mind, we define the following effective
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(three-photon) matrix elements:

1/~3 1/~3 1/~3
R1=5$ ~ 5snP ~ 5$m$ —+ 5$E,P,

1/~3 1/~3 1/~3
R1=5$ ~ 5snP —+ 5$ms ~ 5P6$,

1/~3 2/~15 2/~15
R 2

=5$ ~ 5$P1P ~ 5$md ~ 5$E~P

1/~3 2/~15 2/~15
R2=5$ ~ 5$nP ~ 5$md ~ 5P6$,

2/~15
R3—=5s —+ Ssnp ~ 5smd —+ SsE,f,

1/~3 1/~3 1/~3
R4—=5s ~ 5snp ~ 5p ('So) ~ 5sE,p,

1/~3 1/~3 1/~3
R~—= 5s ~ 5snp ~ Sp ('So) ~ 5p6s,

1/~3 1/~3 1/~3
Rs =5s ~ 5snp —+ Sp ('D2) ~ SsE,p,

1/~3 1/~3 1/~3
R5=5s —+ 5snp —+ 5p ('Dq) ~ 5p6s .

where P~(x) are Legendre polynormals, 5]3 is the differ-
ence 5]—53 of the phase shifts, and A] and A3 are de-

fined by

4 ~ 2 Sink
A] ———,(R]+—,R2+ , R4—+TRs)—

—(R ] + —,R2+ —,Rq+ —,R 5 )cosh, (3.5a)

2 (3.5b)

(3.2) where

(2) 2mamI 4(Q]+ TQz+ 3 Q3+ TQ4)
3

(3.5c)

We will leave the investigation of the effect of Q2 in a
more complete treatment of this coupled-continua prob-
lem to a following paper. The differential cross section
for photoelectron emission within the solid angle dQ and
hence the photoelectron angular distribution, is deter-
mined by

~

Mzs' ~, which after some algebraic manipula-
tion leads to

8~ 4 6(P2cos 8+Pecos 8+Pscos 8),
( 27rcxN )

(3.6)

In addition to the three-photon matrix elements that ex-
cite the atom above the 5$E, / threshold, we need the two-
photon matrix element p,', ' coupling the autoionizing state
to its continuum and modifying V«. It involves a sum-
mation over states 5sms, 5smd, 5p ('So), and 5p ('D2) as
intermediate states. Keeping with our notation, we define
the quantities

1/~3 1/~3
Q] =5p6s —+ 5sms ~ 5sE,p,

2/~15 2/~15
Q2 =—5p 6$ ~ Ssmd ~ 5$E,p

2/~15 3/~35

Q2
—=Sp6s —+ Ssmd —+ 5sE,f,

1/~3 1/~3
Q3=5p6s ~ 5p ('So) ~ SsE,p,

1/~3 1/~3
Q~—:Sp6s ~ 5p ('D2) ~ 5sE,p,

(3.3)

MEs' —— v4mie '[A]P](cos8—) —A'3e '9'3(cos8)]

(3.4)

which imply summation over m as in Eq. (3.1).
Now let Mz' be the overall transition amplitude from

the initial state to the modified continuum state %z. This
amplitude can be written in terms of the quantities de-
fined above and the spherical harmonics corresponding to
the final state of the outgoing photoelectron. In a system
of spherical coordinates where the z axis is taken along
the polarization vector of the linearly polarized radiation
and the x axis along the direction of propagation, the
photoelectron wave vector K is defined in terms of its
coordinates (K,8,4), and Mzs' is expressed in terms of
spherical harmonics of the unit vector E. The bound-free
radial matrix elements are multiplied by the appropriate
factor e where 6I is the phase shift of the Ith partial
wave.

The transition matrix element MEg' can now be put in
the form

p2 =A ] + g A 3 +3A ] A 3cos5]3

p4= 2 A 3 5A] A3cos5]32

p6= '4' A3 . —2

(3.7a)

(3.7b)

(3.7c)

Integration over dA leads to the total generalized cross
section for three-photon autoionization given by

(2waco) (477)03=
Sm

T ]+7 (3.8)

the usual expression in autoionization. Here, however, in-
stead of simply V„we have the intensity-dependent
V„=V„+D„appearing in all expressions.(2)

8. Calculation of matrix elements
and channel transition amplitudes

For each of the channels defined in Eqs. (3.2) and (3.3)
we need representations for the wave functions as well as
execution of the infinite summations. All wave functions
must be properly antisymmetrized and all matrix elements
will involve the two-electron operator r + r~. When the
two-electron wave functions are expressed as an antisym-
metrized linear combination of products of single-electron

The atomic structure information is contained in the coef-
ficients R and Q;. The latter are involved in the calcula-
tion of D„' whichas ,we have shown in Sec. II, contains
the influence of the intensity on V„. Note that Eq. (3.5)
contains trigonometric functions of b, which is given by

m
/

V„+D,', '
Ja= —tan '

E—E, —F,
(3.9)
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wave functions, a transition matrix element in two-
electron space reduces to one or two single-electron transi-
tion matrix elements multiplied by a factor representing
the overlap of the initial and final wave functions of the
other electron. Depending on the calculational model,
this factor can be unity. The summation over the inter-
mediate states of the type 5snp, 5sms, and 5smd is carried
out by means of a single-particle quantum-defect Green's
function. Recall that a summation of the type

(b
/
r

/
n)( n/ r /ci)

(E„E,—fico)—

can bc writtcQ exactly as

f d"2 f d"1 A(rz)rzG(rz rl Q)r14(rl)

if the Green's function G or a satisfactory approximation
thereof is known. For wave functions corresponding to a
central field, we can define "radial" Green's functions gi,
pcrtalnlng to a particular angulRf momentum~ by scpaI'at"
ing out the angular parts. From the defining equation

(3.10)

with iriQ being an arbitrary energy, we define gi through
the equation

gi(r 1,rz, Q)
G(rz, ri', Q)= g Fi* (rz)Y( (ri), (3.11)

I,m

where r~ are unit vectors along rj. It is the selection rule
for dipole transitions that determines which terms survive
in the double sum over Im. A double summation over in-
termediate states will involve a product of two Green's
functions, etc.

I.et us consider now, as an example, the channel ampli-
tude R1. We have a two-electron initial state p», (ri, rz)
to be understood as a product of two single-electron wave
functions denoted by itr z(rj). We also have a 5s wave
function appearing in the final state 5sE,10 which corre-
sponds to the ground state of the ion and will be denoted
by g»(r). In general, depending on the model, g»z is not
tlie same as '((&».

At the same time, a g» state occurs in the representa-
tion of the excited states Ssnl Al.though, in general, every
nl requires a slightly different 5s, we assume here one and
the same g». In calculating a matrix element of the form
(5smp

~

r +rp
~

5s ) between antisymmetrized wave
functions, we obtain products of the forIn
&&~p(~a)

l

r
l 4»z(~a)&&Ps (rp)

l &5 z(1 p)) where the
second (overlap) factor is different from unity. From
another viewpoint, it reflects the fact that 5s is not a
pure configuration, but contains admixtures of other con-
figurations as well. Since we are dealing with singlet
states, the spatial wave functions will be symmetric with
respect to spatial coordinates and, consequently, the two-
electron wave function 5snp is written as
(I/V2)[g»(r~)p~p(rE)+f»(rp)g p(r )], etc. With this
notation for wave functions, we can now write R'1 as

R 1 f drl f dr2 f dr3 t('E p(r3)r3go(r3 r2&Q2)+ Hs(r3)go(r3&rz&Q2) f dr eE p(r)res(r)

X rzgi(rz&r1&'Qi)+g»(rz) f dr p»(r)rgi(r, r1,Q1) rip, (r1)V 2 f dr 1t(&»(r)g, z(r), (3.12)

where g(r) is to be understood here as the radial part of the wave function multiplied by r. In a similar fashion, we write
the Q's in terms of a Green's function, as, for example,

Qi ——f «1 f «2QE p(rz)rzg0(ri&rz&Q2) Q6 (ri) fdr Q5 (r)r$5p(r)+r1$3p(ri) f dr /5 (r)Q{j (r) (3.13)

The parentheses contain two terms because in the channel represented by Qi we have states of the form 5sns as inter-
nlcd18tc states 1Q which botll clcct1ons can bc connected through a d1polc tI'ansltlon to Rn Pl@ or all E p state. Thc ovcI'-
lap (5s

~

6s ) has been retained as nonvanishing because, as noted earlier, 5s refers to the core of the doubly ionized atom,
while 6s refers to a "510+core" potential. All Green's functions above are evaluated at the appropriate energy, which
means Es+fm or Es+2firo depending on whether it represents summation over the first or second set of intermediate
states. For example, fiQ2 Es+2fico and iriQ——

1 Es+fico in Eq. ——(3.12). All other R's and Q's are given by similar expres-
sions differing in the final state and/or Green s function. Thus Rz involves 5p6s as final state and gz(r3, rz, Qz) instead
of g0(r3, rz', Qz) with only one term in each square bracket [see Eq. (3.12)] since in this channel we have intermediate
states of the type 5snd instead of 5sns. It explicit form then is

Rz ——f dr @6,(r)@»(r) f dri f drz f dr3@sp(r3)r3gz(r3, rz, Q2)rzgi(rz, r1,Q1)ri@»,(r, )v 2 f dr @»(r)it, ,(r) . (3.14)

The Green's function employed in our calculations are ex-
pressed in terms of the quantum defects of the respective
series of intermediate states and the Whittaker function.
Formal expressions for these Green's functions can be
found elsewhere. When the second photon involves 5p as
an intermediate state, no Green's function intervenes at

that step which must be handled separately with that par-
ticular single intermediate state. This is the case with
channels R4, R4, Rq, R3, Q3, and Q4. Strictly speaking
these correspond to the truncation of the infinite summa-
tion over states of the form nymph to a single term which
in this paper plays the dominant role owing to the near
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resonance with the energy of two photons.
Finally, the formal expression for the continuum wave

function of the l partial wave is
I

+E l(r ) =4IrI'e 'Gx'I(~) g &I~(8,$)Ff~(e,@),
m= —I

(3.15)
where GlrI(r) has been calculated numerically in all of the
results reported in this paper. The continuum enters in
the calculation of electric dipole matrix elements as well
as matrix elements of V, as in V„, which often imposes
different demands on the calculation of the wave function
as discussed in Sec. III C.

C. Calculation of wave functions
and configuration interaction

lm ln(2II r )
sj[n Er — +-

2 E +6(
2

uE, (r)- ~E
for 1'~ oo

Given that our wave functions have the above-
mentioned nonvanishing overlaps, V is not simply 1/r&2
as in other calculational schemes. Since we employ wave
functions that "see" different potentials, part of 1/r~2 is
already included and allowance must be made for its con-
tribution. To this end we study V„, the configuration in-
teraction between the discrete configuration

~

a ) = Sp6s 'P
and the continuum ~c)=SsEp separately. We consider
the matrix element V„=(SsEp 'P

~

H
~
SP6s 'P) in a

model Hamiltonian which we write as

1H =h)+h2+

where II;=(P; /2m) —(Z,rr/r;) with Z, r& being used as a
parameter. V„ turns out to be rather sensitive to the
value of ZdII as can be recognized in Table I. A better ap-

We have already seen that the intermediate states 5snp,
5sms, and 5smd are summed over via the single-channel
quantum-defect Green's function. This, however, does
not mean that configuration mixing is totally lost in the
transition. It appears indirectly through the overlaps
(Ss

~

Ss ), (Ss
~

6s ), etc , of th. e single-particle wave func-
tions. These overlaps are nonvanishing because of the
way our wave functions are calculated. The initial state
( ls —4p )Ss 'S is calculated in a single configuration us-
ing a multiconfiguration Hartree-Fock program
(MCHF). ' The doubly excited states Sp 'S, Sp 'D, and
Sp6s 'P are calculated with the core part (ls —4p )

frozen in single configurations in MCHF. The ionic
ground state (ls —4p )Ss is also calculated in the same
frozen core, and this Ss wave function is used in con-
structing the singly excited intermediate states 5sml. The
continuum states SsE,p 'P and SsE,f 'F are continuum
numerical solutions in the potential of (1s —4P )Ss and
are normalized per unit energy, i.e.,

1/2

proximation can be obtained by letting Z,~~ become a
function of r, thus taking into account the inner and outer
screening due to the core electrons. Thus we take

4S r
Z,rr(P) = g Q„I J Q„'I(1')Q„I(P')dI'

ni =Is +, ~nI " &nI ~r'

where n =1,2, 3,4 and a„I=2,6, 10 for 1=0,1,2, respec-
tively. Now as r increases from 0 to ao, Zd~ varies from
38 to 2 and the resulting value of V« is 5&10, while
the matrix element (c

~
1/r~2

~

a ) is 5.9&& 10 . One can
attempt to subtract the overestimated part of V since V
should be the difference between 1/r ~2 and the part of the
interaction between the two valence electrons which is al-
ready taken into account in the self-consistent potential
employed in the calculation of the wave functions. A typ-
ical result of such attempts is

5gEp

r
u 5,(r)u6, (r)dr

5p 6s —Ep

which could be taken as the square root of the width of
5p6s I' j if it were an isolated resonance. High resolution
data do not exist in that region. The existing single-
photon absorption data show a rather complex structure
which points to strong interference of 5p6s 'I"~ with the
state 4d( D5g2)4f[ —,'];. Thus in a single-photon experi-
ment it is not possible and probably not meaningful to as-
sign a width to the 5p6s resonance. On the other hand,
the resonance may appear more pronounced in a multi-
photon experiment owing to intensity effects. Some evi-
dence in that direction appears in the multiphoton data.
It would be premature to say that we are dealing with an
intensity effect. But it is definitely true that the broad
structure of single-photon absorption separates into rather
well-separated peaks when excited via three-photon ab-
sorption. One of those peaks appears approximately
where the SP6s 'P

~ should be. A complication arises from
the persistence of this peak under excitation with circular-
ly polarized light as well, which points to the presence of
total angular momentum 3. A significant contribution
from the state 5p6s 'P

~ should, however, be present in any
case. We adopt then the following program. We study
the resonance 5p6s 'I'& as isolated, we calculate the inten-
sity effects, and in a follow-up paper we address the ques-
tion of interference with other resonances and examine
how a separation of resonances can occur under multipho-
ton excitation.

For the present calculation, we estimate the width of
the 5p6s 'I'~ resonance from the uv absorption spectrum'
as being about 70 cm ' which correspond to a value of

TABLE I. Study of V„ in a model Harniltonian of 0=h~+h2+1/I'l2, where h;={8;/2m) —{Z,ff/r;).
Zeff 2.0

1.S X10—' 1.3X 10-'
S.3

1.3X10-' 8.6X10-'
S.S

4.SX10 4.4X10-4
S.8 7.0

—5.7X10 '
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17 10 In view of the experimenta

'
n of V is taken to be posi-

tive to be consisten wib t t with our model calculations. T e
sign is important in eth investigation of laser-intensity e-
fects [see Eq. (2.7), or (3.5) with (3.9)].
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D. Results and discussion &b

In this section we present samp. es o!es of results from three
1 1

'
Three-photon generalized cross sec-

tions, resonance line shapes (including the e ect o ac
shifts) and photoelectron angular distributions.

se as ects of theThe effect of laser intensity on all of these aspec
process has been calculated at each stage.

Be innin with the total generalized three-photon ioni-
za ion ct' cross section, we note that owing o e p

we ex ectintermedka e as wed' t 11 as autoionizing resonances, w p
hout thede endence on laser frequency throug ou e

range of frequencies considered in t is paper. is
ident in Figs. 3—5. Before elaborating on thetivity is evident in igs.

details of these figures, let us observe that the or e
d f 0 near resonance is about 5 X 10

cm sec which represents a rather high generalize d closs
. To ut this magnitude

tal context, note that a laser intensity oin an experimen a con
—10 W/cm in this frequency range correspon s o

f about 3X!0 photons/cm sec. Thisphoton flux F o a ou
er unit timeld ive a transition probability per unit irnewou give

F o3—- io sec w
'= io ' hich means that with a pulse d

O
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FIG. 4. Same as Fig. 3 with Ss5d state ac Stark shift of
(1 )/(10 /cm sec) included. a, low-intensity limit, same as acm

3' b I=9.54)&10 photons/cm sec; c, I=1.008&&in Fig.
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Tr of about 5—10 nsec, the ionization probability per
pulse (I' &~T~ ) is close to unity. This explains to a large
extent the copious amount of Sr+ observed in related ex-
periments. At the frequency range around the second
harmonic of the Nd laser (about 18790 cm '), total ioni-
zation should have taken place. On the basis of this evi-

dence alone, it might seem that Sr + also observed in the
experiments was produced through ionization of Sr+
which is an alkalilike ion, This requires a five-photon
ionization process whose generalized cross section we have
estimated through a truncated summation calculation,
with the result o.5-10 ' cm' sec". For a photon flux
3&(10, as above, we would have o.5F —=2.43&10
sec ' and for T~ ——10 nsec, &5F T=2.43)&10 ' which
implies that only 10 ' of the atoms Sr+ ions would have
been ionized during the laser pulse. This number would

suggest a rather small yield of Sr + contrary to the experi-
mental observation which showed large yield, close to
saturation. Our estimate cannot be taken literally. The
value of &5 could easily be off by 2 or 3 orders of magni-
tude, and if the experimental intensity is underestimated

by a factor of 10, the signal is off by a factor of 10 or
10. We cannot, therefore, say more about Sr + until a
more accurate experimental number becomes available, in
which case a calculational effort for a more reliable
theoretical estimate will be justifiable. It is worth noting
at this point, however, that new recent preliminary results
have shown small Sr + but large Sr + yields almost com-
parable to Sr+.' This is new evidence compatible with
our conjecture that there is significant involvement of
transitions between autoionizing states which we will ad-
dress in a follow-up paper.

Let us return now to the resonance aspects of Figs. 3—5
and consider first the behavior around the 5p6s('P) au-
toionizing resonance without including the ac Stark shifts.
As the intensity changes, the dominant expected effect, in
the absence of such shifts, is the line distortion due to the
modification of V. This is demonstrated in the sequence
of curves from a —e in Fig. 3 which show a transition
from a line about 23 cm ' wide (curve a) to an extremely
narrow (curve c) and then to a wide curve ( e) as the inten-

sity changes by about 2 orders of magnitude. The most
dramatic change appears at about 10 ' photons/cm
which corresponds to 3 X 10' W/cm .

%e turn next to Fig. 4 which shows the autoionization
signal around the same resonance 5p6s('P) but with the
ac Stark shift for the nearest 5s5d intermediate state in-
cluded. The magnitude of this shift is about 1 cm ' per
10 photons/cm sec of photon fiux. Again, at low inten-
sity (curve a) we have the bare resonance as in Fig. 3. The
5s5d is outside the width of the resonance. As the intensi-
ty increases, 5s 5d begins to move towards the center even-
tually coming into resonance with the photon frequency
that also corresponds to three-photon resonance with the
autoionizing state. This occurs somewhere around the in-
tensity of curve c. The sharp resonance of curve b corre-
sponds to the two-photon resonance with Ss5d which,
with increasing intensity, shifts to the right of the au-
toionizing resonance as in curves d and f. Superimposed
on this shifting of the intermediate state is the narrowing
of the autoionizing resonance illustrated in Fig. 3. At the

intensity for which the two resonances coincide, the line

shape is the result of both effects which strictly speaking
cannot be separated because they interfere. It is only for
the sake of illustration of their respective magnitudes that
are here calculated and discussed in successive approxima-
tions. For the same reason, we have not included the ac
Stark shift of the autoionizing resonance 5p6s in the pre-
vious two figures. It is found to be approximately equal
to that of the 5snd but of opposite sign and its effect is
shown in Fig. 5 which includes all three intensity effects.
The total effect is quite dramatic, not only because of the
significant distortion of the line shape but more impor-
tantly because of the different range of intensity at which
it occurs when ac Stark shifts combine with the modifica-
tion of V. As we go from Fig. 3 to Fig 5, .wefind the line
distortion occurring at intensities 2 orders of magnitude
lower. Note that according to Fig. 5, the autoionizing res-
onance would begin undergoing severe distortion at inten-
sities about 10' W/cm . It bears repeating that the Stark
shifts do not appear as simple superpositions interfering
with the effect of D,', ' in a linear fashion. They, in fact,
enhance D,', ' by bringing one intermediate state closer to
resonance. Thus in Fig. 5, for example, we not only have
the eventual merging of two resonances but also the sub-
stantial impact of the ac Stark shifts on the two-photon
matrix element D,', '.

The above changes of the resonance behavior with laser
intensity are usually expected to produce corresponding
changes in the angular distribution of the emitted pho-
toelectrons. This would result mainly from the changes in
the relative weight of the participating channels as the
resonances shift with respect to each other. A calculation
illustrating this effect has produced the results shown in
Fig. 6. The angular distributions shown in this figure cor-
respond to a photon frequency such that Eg+3Acu is at
the peak of the 5p6s('P) resonance at low intensity. The
changes of the distribution (from a —f) occur as the pho-
ton flux varies from 1.0—4.35 X 10 photons/cm sec.
The calculation includes the shift of the intermediate state
Ss5d but not the shift of 5p6s. The effect seen in these
changes therefore represents the variation of channel su-
perposition as 5s5d shifts towards the autoionizing reso-
nance. This figure is the counterpart of Fig. 4, in the
sense that each angular distribution corresponds to one
line-shape curve of Fig. 4. The inclusion of the Stark
shift of the autoionizing resonance would lead to a dif-
ferent angular distribution for a particular intensity, but

FIG. 6. Angular distributions of the photoelectrons at the
peak position of 5p6s 'I'. ac Stark shift of (1 cm)/(10 /cm sec)
for Ss 5d state is included. (a) low-intensity limit, (b)
I= 1.0)& 10 photons/crn sec, (c) I= 1.008 & 10, (d)
I=1.016&10, (e) I=1.059&10, (f) I=4.35&&10' .
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FIG. 7. Calculated angular distributions of photoelectrons
from three-photon ionization of Sr with intermediate 5s5d D
resonance. The summation over the first (nonresonant 5snp) in-

termediate states is handled with quantum-defect Green's func-

tion, and the second (resonant) intermediate states are calculated
differently in four cases: (a) Truncated to 1 state —single-

configuration 5s Sd 'D state wave function by MCHF' with

(1s—Ss) electrons frozen in ground configuration of Sr+. (b)

Truncated to 1 state —quantum-defect 5d wave function. (c)

Single-particle Green's function for all three channels

(Ss —+—+ Ssns —+Ss ep, Ss ~~5snd~Ssep, and
Ss2~~5snd~5sef ) (d) Tr.uncated to 1 state —5d wave func-

tion calculated in a modified Hartree-Fock-type potential. The
~ —I 'I

ratios of the transition amplitude (except for i 'e ') S,f/S,~ are
3.5, —0.44, —0.55, and —0.13 for (a), (b), (c), and (d), respec-

tively.

the sequence of changes would be roughly the same. The
phenomenon depicted in this figure is reminiscent of a
similar effect predicted for three-photon ionization (not
autoionization) of Na (Ref. 17) and observed in recent ex-
periments.

The above discussion of the angular distribution
focused upon the laser-intensity effect. We turn now to
an equally important aspect: The dependence of the distri-
bution on the atomic model. In Fig. 7 we show the angu-
lar distribution for three-photon ionization through two-
photon resonance with the 555d intermediate state. The
photon energy is such that 2fm=E5, 5d

—E 2. At weak

intensity, 3%co is far from an autoionizing state. The re-
sulting angular distribution therefore reflects the proper-
ties of 5s5d and the continuum to which it ionizes, name-

ly, 5sep and 5sef The calcul. ated distributions shown in
Fig. 7 test how well the four different schemes employed
in the calculation reproduce the observed data. It is one
of the quantum-defect calculations that gives better agree-
ment, although one might have expected the calculation
of Fig. 7(a) to have been closer to the experiment which

shows distinct lobes in the distribution. The main differ-
ence between Fig. 7(a) and Figs. 7(b)—7(d) can be traced to
the existence of a Cooper minimum (zero of the radial
matrix element) in the 5d~ef channel near the photon
energy of the experiment. The position of the minimum
is sensitive to the atomic wave function. If the minimum
falls at the photon energy in the continuum, the f channel
does not contribute and the distribution from the rernain-
ing p channel exhibits no lobe. A pure f-channel contri-
bution, on the other hand, would give a distribution with
two pronounced lobes resembling that of Fig. 7(a). If the
photon energy falls somewhat away from the minimum,
but the f channel does not dominate, the resulting in-
terference between the p and f channels will tend to make
the lobes less prominent resembling those of the experi-
ment and of Fig. 7(c). Owing to the rather limited avail-
able data, we cannot make more detailed comparisons at
this time. The left-right asymmetry exhibited by the data
cannot be understood in the context of interaction of an
unoriented atom with light of a single polarization and
must be sought in instrumental aspects. We close this dis-
cussion with the observation that the angular distribution
is sensitive to the atomic model and offers interesting pos-
sibilities for meaningful interplay of theory with experi-
ment.

The illustrative calculations summarized in this section
are but a small sample of the types of behavior apt to be
encountered in Inultiphoton autoionization. We have con-
centrated on the intensity effect upon a single autoioniz-
ing resonance and the associated influence of the ac Stark
shifts. As usual, this constitutes one part of a larger pic-
ture which must include interaction between autoionizing
resonances and the modification thereof by the laser in-
tensity, mixing of continua because of the large intensity,
multiconfiguration calculation of autoionizing, as well as
intermediate states and their modification by the laser in-
tensity. These aspects which will be the subject of forth-
coming papers are necessary for the understanding of
transitions between autoionizing states or, more generally,
transitions within the continuum.
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