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A purely theoretical semiclassical method without any ambiguity is presented. for the calculation
of differential cross sections for atomic collision processes involving both radial and rotational
(Coriolis) nonadiabatic couplings. The method is based on the recently proposed dynamical-state
representation, which enables us to deal with radial and rotational couphngs in a unified way. This
theory is applied to the asymmetric charge transfer and excitation in the Li++Na and I.i+Na+
collisions. The calculated differential cross sections are in good agreement with experimental re-
sults.

I. INTRODUCTION

It is well known that atomic collision processes involv-
ing lower electronically excited states are governed by
nonad18batlc radial and rotat10QRI coupl1ngs. Nonadiabat-
ic radial coupling is the mechanism which causes 8 transi-
tion between adiabatic electronic states of the same sym-
metry, and can be dealt with analytically by the semiclas-
sical theories such as the Landau-Zener-Stueckelberg and
the Rosen-Zener formula. On the other hand, nonadiabat-
ic rotational {or Coriolis) coupling causes a transition be-
tween adiabatic states of different electronic symmetry.
Having properties quite different from those of radial
coupling, rotational coupling can not straightforwardly be
cast into the framework of the conventional semiclassical
theories.

The recently proposed dynamical-state (DS) representa-
tlofl ' IIlakcs 8 uniform trcatIllc11t of 1Rdlal Rlld I'otat1onal
couplings possible. Since the rotational coupling is diago-
nal in this representation, all of the transitions among the
DS's are induced by a Iadial coupling, namely by the
operator c)/M with R being the internuclear distance. In
addition, since the analytical properties of the DS repre-
sentation are the same as those of the radial coupling
problem in the adiabatic-state representation, the conven-
tional semiclassical theories can be utilized only with a re-
placement of the adiabatic-state energies by the DS ener-
gies. The underlying basic philosophy of this representa-
tion is quite general, and is the same as that of the
adiabatic-angular-function representation in electron-
molecule collisions and of the adiabatic-state representa-
tion in the hyperspherical coordinate approach. '

Alkali diatomic molecular ions (for example, Naz+,
LiNa+, LiK+, and NRK+) have been good targets of ex-

perilncntal Rs well as thcorct1cal 1nvcst1gat1ons. S1ncc
these molecules are quasi-one-electron systems, the adia-
batic potential energies can be calculated by the effective
potcIltlR1 method. T11c Iowcs't 11101cclllar stRtcs (1X 81ld
2X) are coupled to each other by radial couphng, and the
second (2X) and the third (1II) states are rotationally cou-
pled (see Fig. 1). In the case of homonuclear ions (i.e.,
Naz+) the lowest two states represent the so-called exact
resonance states which are degenerate at E. = oo, and are
not coupled dynamically to each other. In the case of
heteronuclear ions ' " the distinction between gerade
and ungerade symmetry breaks down and the radial cou-
pling becomes important. This radial coupling is the

(Li —Na)'

)0
R (&.)

FIG. 1. Adiabatic potential energy curves of L1Na
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near-resonant type, or the Rosen-Zener type. The cou-
pling becomes, however, unimportant again in the case of
strong heterogeneity (i.e., LiK+ and NaK+), ' ' because
the energy difference between 1X and 2X becomes too
large for the transition to occur effectively.

The (Li-Na)+ system has been a target of a number of
experimental and theoretical investigations. ' Dif-
ferential cross sections for elastic and inelastic scattering
have been measured at energies of 25—135 eV by von
Busch et al. , of 200—1200 eV by Wijnaendts van
Resandt et al. ,

' and of 750—2000 eV by Okamoto
et al. ' Theoretical calculations of total and differential
cross sections have also been carried out by many authors.
Total inelastic cross sections were calculated by Melius
and Goddard, who solved the time-dependent coupled
equations using the straight-line trajectory approximation.
They showed that it is adequate to consider only the
lowest three (1X, 2X, and 1II) states for the study of the
processes we are interested in [see Eq. (1.1) below]. They
found an undulation of cross sections against collision en-

ergy in the case of the 1X-2X transition. Other authors
employed certain kind of semiclassical theories to calcu-
late differential cross sections. From our viewpoint, how-
ever, none of them can be free from ambiguity, concern-
ing especially the treatment of rotational coupling.
Grosser" neglected the effect of rotational coupling on
the transition between 1X and 2X. Wijnaendts van
Resandt et al. ' assumed a Gaussian function of impact
parameter for the 2X-1II transition probability, neglecting
the phase information completely. Okamoto et al. ' em-
ployed the similar approximation with the phase contribu-
tion included. They assumed, however, a rotationally in-
duced transition to occur exclusively at a turning point.
This is not a good approximation in the adiabatic-state
representation. Furthermore, in the analysis of the X-X
transition Wijnaendts van Resandt et al. employed the
crossing "quasidiabatic" potentials. The physical mean-
ing of these potentials is not clear and their treatment is
not consistent. As is mentioned above, the semiclassical
path-integral formalism based on the DS representation
enables us to deal with unambiguously both radial and ro-
tational couplings with the phase information correctly
taken into account.

In the present paper this formalism is applied to
analyze the processes,

Li(2s ) +Na+ ~Li++ Na(3s), Li(2p )+Na+

and

Li++Na(3s)~Li(2s)+Na+, Li(2p)+Na+ .

The adiabatic potential energy curves we have employed
are the analytical expressions fitted by Wijnaendts van
Resandt et al. ' to the numerical results obtained by Ha-
bitz and Schwarz. At small R [ & (1.6—2.6)a0] we have
smoothly extrapolated their curves by using the functions
C~/R+C2, where C~ and C2 are constants. The plan of
this paper is as follows. In Sec. II the semiclassical theory
in the DS representation is presented. Methods for calcu-
lating differential as well as total cross sections are
described with use of the new representation. The validity
of the semiclassical theory for a rotationally induced tran-

sition is also demonstrated in this section by taking a
two-state (2X and lII) system. The calculated results on
total and differential cross sections for the processes (1.1)
are presented in Secs. III and IV. The rotational coupling
effect is clearly manifested in the differential cross sec-
tions. Agreement of the differential cross sections with
experiments seems satisfactory, indicating the usefulness
of our semiclassical theory based on the DS representa-
tion. The calculated total cross sections for the 1X~2X
(IX~III and 2X—+111) transition are, however, larger
(smaller) than those of Melius and Goddard. This
disagreement is attributed to a slight difference of the po-
tential energy curves of Habitz and Schwarz from those
of Melius and Goddard at large R (&12a0), since the
probability of the Rosen-Zener —type transition is sensitive
to the slight variation of the R dependence of the poten-
tial energies of the 1X and 2X states at large R.

II. SEMICLASSICAL SCATTERING THEORY
IN THE DYNAMICAL-STATE REPRESENTATION

A. Dynamical-state potential energies

The total Hamiltonian of a diatomic system is given by

B, B
+Hr0~+Hci+Hc0r

2pR~ BR M (2.1)

Hc„21. —— 2(I.~—U~+L U ),
2pR 2pR

with

(2.2)

and

L p ——Lg+iL~

B l B
U~ ——+ + . +LgcotO .

sinO By

(2.3)

(2.4)

The angles O and y are the ordinary angle variables to de-
fine the molecular axis orientation, L is the electronic or-
bital angular momentum, and L~, Lz, and L~ are com-
ponents of L in the molecule fixed-coordinate system with
the g axis along the molecular axis.

Let us define the adiabatic electronic eigenfunctions
PJ.(A;r:R) and corresponding eigenvalues ej(A:R) of H, ~

by

H,~QJ (A; r:R ) =ej(A:R )pJ(A; r:R ) .

The dynamical states are defined as the eigenstates of

~dyn =~el +~rot +decor

by

(2.5)

(2.6)

Hd„„+J ( r,R:R ) =EJ (R)pz (r,R:R ), (2.7)

where R =(O,y), and K is the total angular momentum
quantum number. If we introduce the electronic-
rotational basis functions by

where p is the reduced mass of the collision system, H„,
represents the rotation of a diatomic molecule, H, ~

represents electronic Hamiltonian, and Hc„denotes the
Coriolis interaction given by
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@+J(A)= f /~(A+; r:R)Y(KA+;R )
2

+PJ(A; r:R )Y(KA;R ) j for A~O (2.8) e, (r,R:R)= +Dxk(R)ex„(A) .
k

(2.11b)

and

4+J(X)=PJ(X+;r-:R)Y(KO;R) for A=O,

where Y(KA;R ) is an eigenfuntion of H„,„,

(2.9)

The dynamical-state energies EJ {R) can be obtained by
diagonalizing the matrix f(Hd„„);J.j in the eiectronic-
rotational state representation. The jth diagonal clement
of this matrix is given by

H„,Y(KA;R ) =[K(K+1)—2A ]Y(KA;R ), (2.10)

and A-+=+
i
A i, and then the whole set of states

j @+J {A)j can be dlvlded tnto two classes f &+1(A) j
and f@x~(A) j which have no connection to each other.
The DS's are thus expanded in terms of the electronic-
rotational states of either class as

+(R)=&~(A:R)+
2 [K(K+1)—2A2]

2pR

The Coriolis interaction Hc„provides an off-diagonal
clement as

)5(A,+. , A,+. +1)(y;{A;+)
~

I.
~ y (A+. ))j, (2.13)

I

of Habitz and Schwartz, since we need analytical expres-
sions in our theory. Since the fitting parameters for the
1II state given in Ref. 10 seem to be in errors, we
have used the following values: (a,A)=(0.1,0.13127),
(0.4, —10.541), (0.6,46.181), (0.8,—32.327), and
(1.5,87.254), where a (in ao ') and A (in eV) have the
same meaning as those in Ref. 10. The potential curves
are shown in Fig. 1. It has been proven that only the
lowest three states (IX, 2X, and 1II) are sufficient to be
considered in order to investigate the processes (1.1) at
collision energies below several keV. The transition be-
tween 3X and 1H is not required to be taken into account,
because we are interested only in the total production of
Li(2p). The rotational coupling between 3X and 1II states
should, in principle, affect the transition between 1II and
2X states, as was discussed before under the name of ca-
talysis effect. " ' In reality, however, the rotational cou-
pling matrix element between 3X and lII states happens
to be very small in the region of the crossing of 1II and
2X states. Therefore, in the following analysis we consid-
er only the lowest three states. The rotational coupling
element V2x ttt defined by Eq (2.15) i.s taken from the
calculations by Melius and Goddard (Fig. 2). Their re-
sult is analytically fitted by a simple function of R.
Another important coupling in this system i.s the one be-
tween 1X and 2X states at large R. This is a radial cou-
pling of the Rosen-Zener type. The corresponding nona-
diabatic radial coupling matrix element is not necessary in
our procedure since we perform an analytic continuation
of the adiabatic or the dynamical-state potential energies
into the complex R plane. Figure 3 shows an example of
the dynamical-state potential curves for E= I700.

3, (K,A)=[(K+A)(K+A+1)]'~z . (2.14)

Thus basic quantities necessary to determine
dynamical-state energies aI'e the adiabatic potential ener-
gies ej.(A:R ) and the rotational coupling matrix elements

(2.15)

Properties of the dynamical states defined above are
summarized as follows.

(1) The states are the eigenstates of the rotating col-
lision complex at fixed R, and are thus dependent on the
total angular momentum quantum number.

(2) All the coupled states avoid crossing.
(3) All the transitions among them are caused exclusive-

ly by the first term of Eq. (2.1).
(4) Analytical properties of the dynamical-state repre-

sentation are the same as those of the ordinary radial cou-
pling problem in the adiabatic-state representation.

These properties lead us to coQcludc that all thc Qonad1a-
batic transitions occur locally at new avoided crossing
points and can be treated uniformly by the semiclassical
theories such as the Landau-Zener-Stuckelberg and
Rosen-Zener formulas. ' These properties hold true for
any transitions, in principle, in morc complicated systems,
if we employ the hyperspherical coordinate system (the
hyperradlus plays the role of R).

The adiabatic potential energies of the low-lying states
of LiNa+ were calculated by Habitz and Schwarz by us-
ing the effective core-potential method. Analytical func-
tions were fitted to their potential energies. ' Mehus and
Goddard also calculated the potential energies. %'e have
employed in our analysis the analytical fits to the energies

B. Scattering matrix in multistate collision problem

S1ncc 1Q thc DS representation Qonadiabatic tI'ans1t1ons
occur locally at new avoided crossing points, a multistate

(4+, (A;) iHc„ i@+J(AJ))=— fA, (K,A~+)5(Ai+, A~+ 1)(p;—(A,+)
i
I i'(Aj~))

2IJ.E



SEMICLASSICAL SCATTERING THEORORY BASED ON THE. . . 3063

E
1.0-

F
[Pxr]„=5„~exp i f k„(R)dR (X& F 7

X
[Pxrx]nm =5.~exp 2i fT kgb(R)dR+im/2.

(2.18)

(2.19)
CL

0
0.5-

io

0

0.0
0.0 5.0 'l0. 0 15.0

internuclear distance R{ao)

20.0

(1—p )' '
l~ = —{PRz)'"exp{—i~~ )

{PRz)'"exp(i~~) O

0 1

(2.20)

FIG. 2. Ro
10 states.

otat1onal coupling matrix clcmcnt bct 2Xc ween and 0
Ic= 0 1 —piz ' 'exp(i{{s) (PLz)'~'exp(ioc)

0 (
1/2—pLz) exp( —ioc) (1—p )' 'ex ( iP—

scattering problem can be formulated analyti 11 bca y y us-

g c txvo-state scIDiclasslcal thcorics and th h-an e pat-
egra ormalism. In the present three-state problem

Fig. 3), the scattering matrix is expressed as
[ox]. =[Ix] .

{2.21)

(2.22)
S=P+& „0&Pcs OcPcT'cIcPc~ Ia Pz „. (2.16)

gonal and represents a propagationThe rn.atrix P is dia
rom point X to F (X& F) without any transition. Th

~& represents a nonadiabatic transition at the
i ion. c

avoided crossing point X in the incoming ( t
o ra]ectory. Thesematrices are explicitly givenby

~.].~=[P~.].~=5n~exp i f
»

—ik„(oo )A+ K~—
7

(2.17)

2p
I /2

k„(R)= {E—E„(R))

paz =[1+exp(25Rz)] ',
gA

o „+i5Rz f [—k i (R)—k z (R)]dR,
EIc(R A

) EK(R A

pLz =exp( —25Lz)

crc+i5Lz —f [k2 (R)—kg (R)]dR,

E2 (R» )=Ei (R, ),
C

v s ——5Lz/ir)»(5Lz/m. ) —5Lz/m+~/4

—argl (1+i5Lz/n ) .

(2.23)

(2.24)

{2.25)

(2.26)

(2.27)

(2.28)

(2.29)

(2.30)

3-

to 1

C
O

0
L

0-

Li(2 p)+Na+

Li'+ Na(3 s)
Li( 2 s) +Na+

p=(K+ ,' )/k =(K+ ,' )/(—k,kf)'~'— (2.31)

is employed instead of K for simplicity, where k; (kf) is
the asymptotic initial (final) wave number. The total

b
cross section for the transition '~

y

i —+ ~ is ca culated as usual

It should be noted that the transition between the d
cal states E2(R) and E3 (R) is the Landau-Zener (LZ)E

n c ynami-

type, and the one between E, (R) and E2(R) is the
Rosen-Zener (RZ) type.

fined by
In the actual calculations the impact param t d-eer p c-

~f =2~ f dpp I
s.f(p) I'. (2.32)

TiT2T35 C ]0 A 15
intel'nuclear Distance R (a.M. )

FIG. 3. Lowest three d namicynamical-state potential energy curves
or %=1700. Dashed linK= . Cd line is an example of possible paths for

the transition Li(2s) + Na+ —+Li+ + Na(3s).

0

As is seen from Eqs. (2.16)—(2.22), the scattering matrix
element Sf can be generally expressed as

Sf——g [Pf(p)]'~ exp[iPf(p)], (2.33)

wllere tile sllfflx rr distlilguish th blcs e possi e paths which
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enter along the potential E.p ia E; (R) and exit along E (R),

11 ob b'li di i y an the total phase can be 1' '
e exp icit y

given bypter

P &2
——PRz(1 —pRz)(pLz)

and

I

P(2 ——2 f k3(R)dR+2 k (R)dR [k, (R)—k( ( )]dR —k( ( )A+

—k2(~)A —o.„—2(T + E+
oo A+ [k2(R) —k3(co)]dR

29

(2.34a)

(2.34b)

It should be noted that when a turnin
1 h

' '
ni

n avoi e crossin oint agP g P P
s, e p ase integral over that interval bec

n . or instance, when the turnin oints
T2 both are larger than 3 thean, t e exponent 5Rz is given b

gA

5Rz=lm f [k( (R)—k2 (R)]dR

(2.35)
T2

Ik2(R) I
dR —f„Ik((R)

I
dR .

Accurac ofy the Rosen-Zener and L
Stueckelberg (LZS) f

andau-Zener-
ormulas in the form iven h

been well investigated for h
states of the same symmetry. ' e acc

e or t e transitions between two

fo 1 i h DS representation for the X-H tran
' '

will be demonstrated in Sec. II D
transition

where

(p+= P„+(kp8+n/4) . .

The hphase stationary points are the solutions of

e„(p)=+8,
where e is„m is the defiection function defined by

(yg
~Pnm

nm
Bp

(2.39)

(2.40)

(2.41)

where o' ' (8 i& is the classical cross sectio d f''on e ine by

The tntegral involving y in Eq. (2.38) can be e

yielding
y e stationary phase approximation,

( —)—8 [~(3) 8 ( j2 ( —)
a, nm )] exp(iPa „m —im/2)» (2.42)

C. Uniformorm semiclassical theory for differential
cross sections

sin[de„ /d p]p,
(2.43)

Once the DS representation is em lo epo

ferential cross t'
e ca culation of not onl totaly o a, but also dif-

ross sections can be formrmulated without any
'gui y. e rotational cou lin e

porated naturally.
p 'ng effect can be incor-

The scattering amplitude for the transi
'

be generally given by

e ransition n ~m can

(2.44)( —) a
anm 0,nm (p3) kp38»

and p3 is the phase stationary ointand ry pomt corresponding to (p

e eva uated by the uniform
en we have

1
f„m(8)= g (2E+ 1)SnmPx(cos8

n

(2.36)

where Px(X) is the Le enegendre polynomial, and 8 ( 0') '

e scattering angle. By using Eq. (2.31 an"
tional approximation

'ng q. . 1 an~ the conven-

Px(cos8)= cos[(1(.+ —,)8—,' vr], —
2

(2.37)

which is valid when sin8) 1/E anwh
' ' ' /, and the expression (2.33)

C0
0c

C0

I
I0

1/2

f„(8)=

)& [exp(i()o ) —exp(iy+ )],
(2.38)

FIG. 4.. 4. Schematic diagram of deAe
function of '

impact parameter p.
o e ection function 8 as a
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f74m (8)— eXp ipa, wm
('P'+' +i 57r/4)[A„~Ai( —Za

+iB74m Ai'( —za) l ~

(2.45)

i (—Z ) al'e tile Airy flliicllon and itswhere Ai( —Z) and Ai-
derivative,

.-I/4t[~(I) (8)l -[~.,„.( )

)g]I2/3Z =I —,'[g (p2) —P„(pi)+(p2 —pi

(2.46)

(2.47)

(2.48)

)gl .", ' =-'[C (P2)+0: (PI)+(P2+PIa, nm= 2 nm P2 nm

When 8=8, (rainbow angle or )
ly use t e of llowing expressions ins ea
(2.46)—(2.49):

- —1/3' I/2

dP Pq

' I/2 d2ea

dp

/am o

g
12k)'

1
em

( 12k ))/6 Si g
—1/3

d 8„3 k )2/3Z =( —,

dP Pq

(8—8„),

(2.49)

(2.SO)

(2.52)

p(+) ya (g)+ g (2.53)

im act parameter corresp ondin to thewhere p„ is the impac
le. [We have found our qs.

be slightly different from Eq.
Thus, the differential cross sections can

by

0„(8)=
l
f„' '(8)+f,'+ 8 (2.54)

erimentally observed differential crossHowever, the experimenta y o l cross
fien than not t e ow-sections are more o te

sections, which correspond to
LR ( —) g) 2+ lf(+)(g)

l

2o„(8)—
l f„(

ression for a comparison with experi-
s sect1ons calcu ate rIDcnts. The closs t I

p y gth lar e ampl1tu es;
propriate for the pcorn arlson w1

pcr10 o
'

d f this rapid oscillation is given y

(2.S5)

2m

+p
(2.56a)

act pal aIDetcrs corrcsp ondlnwhere p~ and pb are the Impac
t e and —e, respec i y.

the oscillation o o.„On the other han,
aths 1n tlM samence between the pa s

branch (6~0 or 6&0). The perio o
roughly equal to

1 sical theo~ for theD. Verification of the semic as
'

4

transition in the two-state approximation

1II and 2X adiabatic states we de demonstrate

formula in the D p
' t e sre resentation to t e s

effect. The semic assica
uantum-mechanical close-coupling calcu-

lations. T e
given by

PLzs 4pLz(1 pLz)sin PLzs ~ (2.S7)

where

(2.5S)k«2(Z)d~ I, k,—(B)d~ .4Lzs=~c+4s+

5 as a functioni ities are shown 1n ig.Transition probabi iti
ter. Since the step size of the impact pa-of impact parameter.

h the case of 750 eV,taken small enoug inrameter was not ta
of transition pro a i i

not the exact reproduction o t e rea

1.00-

0.90-

0.80-I

0.70-
0

0.60-
Q,

o.5o-
C

0.40-
I-

0.30-l

0.20-

0.10-

0.00 4.00 6.00 6.00 7.001.00 2.00 3.00

Impact parameter (a.u.

1.00-

0.90-

0.80-

0.70-

~ 0.60)
CL

oi 0.50-
C
L. 0.

40I

0.20-

0.10-

0.00
0.00 I.oo

|
6.00 7.00 6.00 9.00 10.02.00 3.00 4.00 5.00 6.00

Impact parameter (a.u. )

abilities ys impact parame er for the
) S 1'd 1'

close-coupling ca cu a '
quantum-mechanica c ose- cu a

b)line: presen ssemiclassical theo~. a
E„(——750 eV.

(2.56b)
ps I

are the impact parameters pcorres ondingwhere p, and pI, are e
'

to the same e.
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15.0

L
4 6 8

»mpact parameter (a,)
10

FIG. 6. Transition probabilities pIz for the one passage of
the avoided crossing point as a function of p in the case of the
2X-1H transition at E„»——400 eV and 2 keV.

ever, as is easily seen from these figures, the present ana-
lytic theory proves to be quite useful over a wide range of
collision energy. Figure 6 shows the variation of the tran-
sition probability for one passage of the avoided crossing
point against thc 10lpact PRI'RnlctcI'. This ls cool pared
with the corresponding one for the 1X-2X transition
shown in Fig. 8.

A. Charge transfer: I,i(2s) + Na+ =- I i+ + Na(3s)

Since our calculations were performed at energies rela-
tively high compared to the asymptotic energy difference
of 1X and 2X, the cross sections for the IX~2X and
22~ 12 trRQSItlons are aln1ost equal to each other.

We have first carried out the two-state calculations.
The results are shown in Figs. 7, 8, and 10 (see Fig. 9
also). The transition probabilities show an irregular oscil-
lation as a function of p at small p This irregular oscilla-
tion causes an undulation of the total cross sections as a
function of colhsion energy, as is seen in Fig. 10. This
phenomenon has been discussed by several authors '

and is due to the slow variation (appearance of optimum)
of the total phase in the small-p region (see Fig. 8).

5 10

impact parameter (a.u.}

FIG. 8. Transition probabilities p~z (solid Hne) for the one
passage of the pseudocrossing point and total phases (dashed
linc) as a function of impact parameter for the 1X—+2X transi-
tion at E„»——500 eV and 2 keV. The shaded regions correspond
to sin'{total phase) )—,

' .

Despite the small energy difference (=0.253 eV) between
1X and 2X at R = oo, the transition is not the exact reso-
nance type even at 2 KeV of collision energy. Figure 8
also shows the transition probability pRz as a function of
impact paI'ameter. The p dependence is weak compared
to that of pLz shown in Fig. 6. An additional calculation
was calricd out by replacing thc adiabatic-state encI'gy
e2z(R) by the dynamical-state energy E2(R) in order to
see the effect of the rotational coupling on the transition
between the two lowest states. Since the pseudocrossing
point between 1X and 2X is located at large 8, the rota-
tional coupling hardly affects the radial coupling.

The results of the three-state calculations are shown in
Figs. 9 and 10. The energy dependence (not the magni-
tude) of the cross sections are in fairly good accordance
with those of Mehus and Goddard. The calculated total
cross sections are larger than those of Melius and God-
dard. This is presumably due to the small discrepancy of
the adiabatic potential energies at large R ( & 12ao), since
Im(R,") (thus pRz) is sensitive to a small variation of the

0.5
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L

1.0
I \

\
I

I
t

V
I 'I

I 1

I s I /
s

I
I i/I

~l

10

Impact parameter (a.u. ) Impact parameter (a,)

20.0

FIG. 7. Transition probabilities vs impact parameter for the
1X—+2K transition (tvro-state approximation). Solid line:
E„»——500 eV, and dashed line: E„»——2 keV.

FIG. 9. Transition probabilities vs impact parameter for the
1X-2X transition (three-state calculation). Solid line: E„»——333
eV. Dashed line: E„»——1 keV. Dotted line: E„»——3.7keV.
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FIG. 10. Total cross sections as a function of inverse relative
velocity. (a) 1X—+2X transition, (b) 2X—+1II transition, and (c)
1X~1II transition. Solid line: three-state (1X,2X, 1II) calcula-
tion. Dashed line: two-state calculation.

As is easily understood by considering the possible paths
for these transitions, the ratio of the transition probability
for 2X~111 to that for 1X~11I is simply equal to
(1—pRz)/pRz. As is seen from Fig. 8, pRz varies slowly
in the region of impact parameter where the rotationally
induced transitions are appreciable. Therefore the transi-
tion probabilities for 2X~111and 1X~lII have general-
ly the same shape as a function of impact parameter.
Since pRz is rather small at energies (1 keV, the proba-
bility for 2X~111 is larger than that for 1X~1II. This
difference becomes, however, smaller with collision ener-

gy, since pRz~0. 5 when E—+ ao. The total cross sections
are shown in Fig. 10. They are smaller than those of
Melius and Goddard. The reason for this is basically the
same as that mentioned above, namely the transition be-
tween 1X and 2X is more favorable than that in the case
of Melius and Goddard.

potentials in this region. Throughout this paper we use
the potential energies given by Wijnaendts van Resandt
et al. , since there are no other analytic expressions avail-
able. Usage of much more accurate adiabatic potential
energies, therefore, would change the magnitudes of the
cross sections, but would not affect largely the qualitative
features of the cross sections.

1.0- (a)

B. Excitation to Li{2p) + Na+

Figure 11 shows the probabilities as a function of im-
pact parameter for the transitions 1X~111and 2X~111.

IV. DIFFERENTIAL CROSS SECTIONS

In this section the calculated results of the low-
resolution differential cross sections defined by Eq. (2.55)
are reported and are compared with experiments. Basic
quantities needed to evaluate the scattering amplitudes
f„'~'(8) and f„'~'(8) given by Eqs. (2.42) and (2.45) are
phases P„,exponent parameters 5Lz and 5Rz, and deflec-
tion functions e„defined by Eqs. (2.33), (2.25), (2.28),
and (2.41), respectively. The deflection functions were
computed by transforming the integral variable R to y by
8 =T cosy, since the integrands diverge as —(R
—T) '/2. 24 It should be noted that phases g~ include
the contributions oq c from the complex integrals (2.25)
and (2.28), and the Stokes phase Ps defined by Eq. (2.30).
In the calculations of f„'~+'(8), expressions (246)—(2.49)
were used at scattering angles smaller than the rainbow
angle (8 & 8„). At scattering angles very close to or larger
than 8„, expressions (2.50)—(2.53) were utilized. A spline
fit was made to the numerical data of deflection func-
tions. Their derivatives were calculated by using these
spline functions. The scattering angle in the laboratory
system (8L ) is related to that in the center-of-mass system
(8) by

5.0 10.0
Impact paramerter (a,)

sin8
tant9g ——

m~lm, +cos8 ' (4 1)

(b)

0.5—

Ll
tg

0
IL

5.0

impact parameter(ao)
10.0

FIG. 11. Transition probabilities vs impact parameter
(three-state calculation). (a) 2X—+1II transition and (b) 1X~1II
transition. Solid line: E„1——333 eV. Dashed line: E„~——1 keV.
Dotted line: E„~——3.7 keV.

where mz (m, ) is the mass of projectile (target) atom.
The differential cross sections presented in this section

are the reduced cross sections defined as

Q(8) =0""(8)8 sin8 . (4.2)

Since the experimental data are relative, they are normal-
ized to the corresponding theoretical results at peak values
except for the 1X~2X transition at 2 keV (Fig. 15). The
differential cross sections reported here are those at
scattering angles less than several rnrad, because the larger
angle scattering is mainly determined by the potentials at
small R which were estimated by the rather arbitrary ex-
trapolation procedure mentioned before and could not be
the real one.
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4.0 tional
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FIG. 14. Same as Fig. 13 at Ei,b ——1 keV.

(b) Et b= 1 Kev

4.0-

3.0-

2.0-
'0
45
L
E

1.0—

—1.0-

FIG. 12. Deflection functions for the 1X~2X transition. 1,
path 1~2—+3~Tq —+3~2 (1X—+2K)
2~3~Tq +3~2 +1 (2X +1X)' 2 a h 1pat ~2~ T2 —+2

); 2', path 2—+ T2~2~1 (2X—1X); 3, path

The number j (=1—3) indicates the jth dynamical state and T~

the turning point. (a) E»b ——500 eV and (b) E] b= 1 keV.

A. Charge transfer from Na++Li(2s) (1X~2X)

Th e deflection functions for this transition are shown in
ig. for 500 eV and 1 keV. They are defined b E .

(2.41) and can be calculated without any ambiguity.
There are three possible paths. The path 1 corresponds to
a trajectory 1~2~3~T&~3—+2 wh r th b
= —

&~indicates the jth dynamical state and Tz the turn-
correspon to

tation
and 1—+T~ ~1—+2, respectively. Th

t'onal couphng effect is clearly manifested in the deflec-
e ro-

tion function for path 2. The slope of the deflection func-
tion in the corresponding region of p becomes smaller as
the collision energy ecreases. This causes a very narnarrow

rp peak in the differential cross section at lower col-
lision energies (see Fig. 13).

The calculated differential cross sections are shown in
igs. — . ey are generally in good agreement with

experiments, including the low-frequency oscillat' 1-a ions, a-
oug the data points of Okamoto et al. are not suffi-

e pea s ue to the ro-cient for a detailed comparison. The k d
tational coupling are more clearly manifested in the

Elab —1.5 keV

10

Elab 500eV

Oi 04

6-
rai nal

effect

NO
tg

10-

Pl
0 1.0 2.0 3.0 4.0 5.0 6.0

HL(mrad)

FIG. 13. Differential cross sections for the 1X—+2K
tion at E =500

e —+ transi-
'

n a &,b
——00 eV. Solid line: present theory. Dashed line:

experiment (Ref. 10).

nal
9 effect

1.0 2.0

8L (mrad)

3.0

lab — eV. Solid line:FIG. 15. Same as Fig. 13 at El ——1.5 k
present theory. Open circle: experiment (Ref. 9).



SEMICLASSICAL SCATTERING THEORY BASED ON THE. . .

E}ab = 't keg

20,-

lanai
inc effect

1.0 2.0

FIG. 16. Same as Fig. 15 at E~,b ——2 keV.

theoretical results than in experiments. The rainbow
peaks are also well reproduced by our semiclassical
theory. The quasidiabatic potentials used by %'ijnaendts
van Resandt et al. are not necessary.

I

5.00 1.0 2.0 3.0 4.0

8&(mrad)

FIG. 18. Differential cross sections for the 2X~lH transi-
tion and for the total charge transfer from I.i++ Na(3s) at
E~,b ——1 keV. 1, present theory (total charge transfer
2X~1X+1H). 2, experiment (total charge transfer) (Ref. 10).
3, present theory (2X—+ 1II contribution).

B. Charge transfer from Li+ + Na(3s} (2X-+1X,1II)

The deflection functions for the transition 2X~111 are
shown in Fig. 17. There are two possible paths. Path 1 is
2~3~T3~3 RQd path 2 1s 2~T2 ~2~3. Flgurcs
18—20 show the differential cross sections for the total
charge transfer (2X~1X+ 1II) and also the contributions
of the transition 2X~ III. The general tendency is well
reproduced by the theory, although the agreement between
theory and experiment is not so good as in the 1X—+2X
case. In the experiments some of the high-frequency os-
cillations are observed, while the theoretical results shown
are those only with low-frequency oscillations. The cross
sections calculated from Eq. (2.54) oscillate rapidly with a
period of -0.5 mrad. This oscillation is qualitatively in
good accordance with experiments. A contribution of the

6.0

2X—+1II transltlon bccomcs doImnant Rt larger RQglcs.
This is due to the fact that the rotationally induced transi-
tion takes place more effectively at smaller impact param-
eters compared to the Rosen-Zcner —type transition be-
tween two X states (see the p dependence of ptz and pRz
in Figs. 6 and 8). This contribution shifts to smaller an-
gles as the collision energy increases.

Peaks in the theoretical results at HL, 2.2 mrad in the
case of 1 keV and at 81 -4.8 mrad in the case of 500 eV
represent the rotational coupling effects in the X-X transi-
tion (cf. Figs. 13 and 14). These peaks are not conspicu-
ous in the experiments.

20-
Ereb =5006&

Thc sclmclassical theory based on thc DS rcprcscntRtlon
presented in this paper was proved to be an effective

4.OI

30

4.0 6.0 8.0 )0.0 )2.0 0 l.0 3.0 4.0 5.0 6.0
8 (mrad)

FIG. 17. DeAection functions for the 2X—+1II transition. 1,
path 2—+3—+T3~3; 2, path 2~T2 —+2—+3. (a) E~,b ——300 eV,
(b) Et~b =500 eV, and (c) E),b ——1 keV.

FIG. 19. Same as Fig. 18 at Ehb ——500 eV. 3, present theory
(rainbow contribution). 4, present theory (2X~1H contribu-
tion).
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E iab=300eV
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8&(mrad)
4.0 5.0

FIG. 20. Same as Fig. 18 at E&,b ——300 eV.

unambiguous method to calculate differential as well as
total cross sections for the collision processes involving
both radial and rotational couplings. Understanding the
mechanism of rotationally induced transitions can be cast
into the same level as that of the ordinary radially induced
transitions once we employ the DS representation. That is
to say, by looking at the potential curves of the dynamI'cal
states we can understand the mechanisms of collision pro-
cesses in terms of the conventional idea of the Landau-
Zener (or the Rosen-Zener) transitions. The DS represen-
tation enables us to incorporate the multitrajectory effect
naturally, and thus to uniquely define the deflection func-
tions for any transitions. This makes an interpretation of
the differential cross sections easier. One difficulty of the
theory is the necessity of analytic continuation of poten-
tial energies into the complex 8 plane. It should be noted,
however, that the full forms of the LZS and RZ formulas
given here are quite accurate and that their simplifications
would occassionally lead to errors. ' '

The calculated results on the (LiNa)+ collisions are in
fairly good agreement with experiments. The absolute
values of the calculated cross sections, however, would not
be very reliable. This is attributed to the accuracy of the
adiabatic potential energy curves, especially to the accura-
cy of the potential energies of the 1X and 2X states at
large R (in the region of pseudocrossing). The transition
probability pRz is directly dependent on the imaginary
part of the complex zero of the energy difference between
1X and 2X; and the position of the zero is very sensitive to
a slight variation of the potential energy curves in that re-

gion of R. Thus the magnitude of the X-X transition is
most sensitive to this variation of the potentials. Other
features reported in this paper would not be largely affect-
ed by this variation.

The other possible factor which would affect the X-X
transition is an effect of the so-called electron translation
factor (ETF). The ETF effect on the RZ-type transition
would not probably be negligible, although this problem
has not yet been fully investigated. The ETF's lead to an
additional coupling term. As in the case of the DS repre-
sentation, we can define new basis states by diagonalizing
the Hamiltonian matrix composed not only of the matrix
of Hd~„, but also of this new coupling matrix (matrix A

of Ref. 26). Then, exactly the same formulation as the
one presented in this paper, but based on this new repre-
sentation, would give a more complete semiclassical
theory with even the ETF effects incorporated
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