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A purely theoretical semiclassical method without any ambiguity is presented for the calculation
of differential cross sections for atomic collision processes involving both radial and rotational
(Coriolis) nonadiabatic couplings. The method is based on the recently proposed dynamical-state
representation, which enables us to deal with radial and rotational couplings in a unified way. This
theory is applied to the asymmetric charge transfer and excitation in the Li* +Na and Li+Na*
collisions. The calculated differential cross sections are in good agreement with experimental re-

sults.

I. INTRODUCTION

It is well known that atomic collision processes involv-
ing lower electronically excited states are governed by
nonadiabatic radial and rotational couplings. Nonadiabat-
ic radial coupling is the mechanism which causes a transi-
tion between adiabatic electronic states of the same sym-
metry, and can be dealt with analytically by the semiclas-
sical theories such as the Landau-Zener-Stueckelberg and
the Rosen-Zener formula. On the other hand, nonadiabat-
ic rotational (or Coriolis) coupling causes a transition be-
tween adiabatic states of different electronic symmetry.
Having properties quite different from those of radial
coupling, rotational coupling can not straightforwardly be
cast into the framework of the conventional semiclassical
theories.

The recently proposed dynamical-state (DS) representa-
tion"? makes a uniform treatment of radial and rotational
couplings possible. Since the rotational coupling is diago-
nal in this representation, all of the transitions among the
DS’s are induced by a radial coupling, namely by the
operator 3/0R with R being the internuclear distance. In
addition, since the analytical properties of the DS repre-
sentation are the same as those of the radial coupling
problem in the adiabatic-state representation, the conven-
tional semiclassical theories can be utilized only with a re-
placement of the adiabatic-state energies by the DS ener-
gies. The underlying basic philosophy of this representa-
tion is quite general, and is the same as that of the
adiabatic-angular-function representation in electron-
molecule collisions® and of the adiabatic-state representa-
tion in the hyperspherical coordinate approach.*>

Alkali diatomic molecular ions (for example, Na,*,
LiNa*, LiK*, and NaK*) have been good targets of ex-
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perimental as well as theoretical investigations.®~!¢ Since
these molecules are quasi-one-electron systems, the adia-
batic potential energies can be calculated by the effective
potential method. The lowest molecular states (1Z and
23) are coupled to each other by radial coupling, and the
second (22) and the third (1II) states are rotationally cou-
pled (see Fig. 1). In the case of homonuclear ions (i.e.,
Na,*) the lowest two states represent the so-called exact
resonance states which are degenerate at R = «, and are
not coupled dynamically to each other. In the case of
heteronuclear ions®®>!% the distinction between gerade
and ungerade symmetry breaks down and the radial cou-
pling becomes important. This radial coupling is the
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FIG. 1. Adiabatic potential energy curves of LiNa*.
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near-resonant type, or the Rosen-Zener type. The cou-
pling becomes, however, unimportant again in the case of
strong heterogeneity (i.e., LiK* and NaK*),%® because
the energy difference between 13 and 23 becomes too
large for the transition to occur effectively.

The (Li-Na)™ system has been a target of a number of
experimental and theoretical investigations.®—%10—16 Dijf-
ferential cross sections for elastic and inelastic scattering
have been measured at energies of 25—135 eV by von
Busch et al.,” of 200—1200 eV by Wijnaendts van
Resandt et al.,'® and of 750—2000 eV by Okamoto
et al.'* Theoretical calculations of total and differential
cross sections have also been carried out by many authors.
Total inelastic cross sections were calculated by Melius
and Goddard,® who solved the time-dependent coupled
equations using the straight-line trajectory approximation.
They showed that it is adequate to consider only the
lowest three (12, 2=, and 1II) states for the study of the
processes we are interested in [see Eq. (1.1) below]. They
found an undulation of cross sections against collision en-
ergy in the case of the 13-23 transition. Other authors
employed certain kind of semiclassical theories to calcu-
late differential cross sections. From our viewpoint, how-
ever, none of them can be free from ambiguity, concern-
ing especially the treatment of rotational coupling.
Grosser'! neglected the effect of rotational coupling on
the transition between 12 and 232. Wijnaendts van
Resandt et al.'® assumed a Gaussian function of impact
parameter for the 23-11I1 transition probability, neglecting
the phase information completely. Okamoto et al.!? em-
ployed the similar approximation with the phase contribu-
tion included. They assumed, however, a rotationally in-
duced transition to occur exclusively at a turning point.
This is not a good approximation in the adiabatic-state
representation. Furthermore, in the analysis of the 2-3
transition Wijnaendts van Resandt ef al. employed the
crossing “quasidiabatic” potentials. The physical mean-
ing of these potentials is not clear and their treatment is
not consistent. As is mentioned above, the semiclassical
path-integral formalism based on the DS representation
enables us to deal with unambiguously both radial and ro-
tational couplings with the phase information correctly
taken into account.

In the present paper this formalism is applied to
analyze the processes,

Li(2s)+Nat—Lit +Na(3s), Li(2p)+Nat
and (1.1)
Li*t 4+Na(3s)—Li(2s)+Na*, Li(2p)+Na*t .

The adiabatic potential energy curves we have employed
are the analytical expressions fitted by Wijnaendts van
Resandt et al.!® to the numerical results obtained by Ha-
bitz and Schwarz.® At small R [ <(1.6—2.6)a] we have
smoothly extrapolated their curves by using the functions
C,/R+C,, where C; and C, are constants. The plan of
this paper is as follows. In Sec. II the semiclassical theory
in the DS representation is presented. Methods for calcu-
lating differential as well as total cross sections are
described with use of the new representation. The validity
of the semiclassical theory for a rotationally induced tran-

sition is also demonstrated in this section by taking a
two-state (22 and 1II) system. The calculated results on
total and differential cross sections for the processes (1.1)
are presented in Secs. III and IV. The rotational coupling
effect is clearly manifested in the differential cross sec-
tions. Agreement of the differential cross sections with
experiments seems satisfactory, indicating the usefulness
of our semiclassical theory based on the DS representa-
tion. The calculated total cross sections for the 13—23
(1IZ—1II and 22— 1II) transition are, however, larger
(smaller) than those of Melius and Goddard.® This
disagreement is attributed to a slight difference of the po-
tential energy curves of Habitz and Schwarz from those
of Melius and Goddard at large R (>12a), since the
probability of the Rosen-Zener—type transition is sensitive
to the slight variation of the R dependence of the poten-
tial energies of the 1= and 23 states at large R.

II. SEMICLASSICAL SCATTERING THEORY
IN THE DYNAMICAL-STATE REPRESENTATION

A. Dynamical-state potential energies

The total Hamiltonian of a diatomic system is given by?

# d ., 9
H=_W§R §+Hrot+Hel+HCor s (2.1
where p is the reduced mass of the collision system, H
represents the rotation of a diatomic molecule, H
represents electronic Hamiltonian, and Hc, denotes the
Coriolis interaction given by

7, 7
Heo = 2,uR2L ~2#R2(L+U+—+—L_U_), 2.2)
with
Li=Lg*iL, 2.3
and
Us=%F %4— Silile %-’;—L;cote . (2.4)

The angles 6 and @ are the ordinary angle variables to de-
fine the molecular axis orientation, L is the electronic or-
bital angular momentum, and Lg L,, and L, are com-
ponents of L in the molecule fixed-coordinate system with
the ¢ axis along the molecular axis.

Let us define the adiabatic electronic eigenfunctions
¢;(A;T:R) and corresponding eigenvalues €;(A:R) of H
by

H,¢;(A;T:R)=¢€;(A:R)$;(A;TR) . (2.5)
The dynamical states are defined as the eigenstates of

Hgyn=He+H ot +Hcor (2.6)
by

H 4 WN(T,R:R)=EF RWKT,RR) .7

where R =(6,p), and K is the total angular momentum
quantum number. If we introduce the electronic-
rotational basis functions by
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(M) =—= [4(A*;FR)V(KAT:R)
+¢;(A7;T:R)Y(KA™;R)} for A0 (2.8)
and
% (3)=¢;(ZHTR)Y(KOR) for A=0, 2.9)
where Y(KA;R) is an eigenfuntion of H,,
H, Y(KA;R)=[K(K+1)—2A*]Y(KA;R), (2.10)

and A*=+|A|, and then the whole set of states
{®%;(A)} can be divided into two classes {®%;(A)}
and {<I)K (A)} which have no connection to each other.
The DS’s are thus expanded in terms of the electronic-
rotational states of either class as

YNT,R:R)= 2 K (R)DK L (A) (2.11a)

|

K K
<(I)ii(Ai) lIfc(,r I (I)ij(Aj)>=_ Z,U,Rz

+ A4 (K, ANBAT A+ D (AT | Ly | $;(Af )],

where
A+(K,A)=[(KFANK+A+1)]"2. (2.14)
Thus basic quantities necessary to determine

dynamical-state energies are the adiabatic potential ener-
gies €;(A:R) and the rotational coupling matrix elements

Vii={$:(AF) [ L_ | $;(A])) . (2.15)

Properties of the dynamical states defined above are
summarized as follows.’

(1) The states are the eigenstates of the rotating col-
lision complex at fixed R, and are thus dependent on the
total angular momentum quantum number.

(2) All the coupled states avoid crossing.

(3) All the transitions among them are caused exclusive-
ly by the first term of Eq. (2.1).

(4) Analytical properties of the dynamical-state repre-
sentation are the same as those of the ordinary radial cou-
pling problem in the adiabatic-state representation.

These properties lead us to conclude that all the nonadia-
batic transitions occur locally at new avoided crossing
points and can be treated uniformly by the semiclassical
theories such as the Landau-Zener-Stuckelberg and
Rosen-Zener formulas.!” These properties hold true for
any transitions, in principle, in more complicated systems,
if we employ the hyperspherical coordinate system (the
hyperradius plays the role of R).

The adiabatic potential energies of the low-lying states
of LiNa*t were calculated by Habitz and Schwarz® by us-
ing the effective core-potential method. Analytical func-
tions were fitted to their potential energies.!° Melius and
Goddard also calculated the potential energies.® We have
employed in our analysis the analytical fits to the energies

2
ALK, APISAF AF — D{i(AF) | L

or

vK(T,R:R 21) KRIOEL(A) . (2.11b)
The dynamical-state energies EJK(R) can be obtained by
diagonalizing the matrix {(Hgy,);;} in the electronic-
rotational state representation. The jth diagonal element
of this matrix is given by

2A%)

(L?),. (2.12)

* 2;1,R2

The Coriolis interaction Hg, provides an off-diagonal
element as

16,(AF))

(2.13)

I
of Habitz and Schwartz, since we need analytical expres-

sions in our theory. Since the fitting parameters for the
1IT state given in Ref. 10 seem to be in errors, we
have used the following values: (a,4)=(0.1,0.13127),
(0.4,—10.541), (0.6,46.181), (0.8,—32.327), and
(1.5,87.254), where a (in agy ) and 4 (in eV) have the
same meaning as those in Ref. 10. The potential curves
are shown in Fig. 1. It has been proven® that only the
lowest three states (1=, 23, and 1II) are sufficient to be
considered in order to investigate the processes (1.1) at
collision energies below several keV. The transition be-
tween 32 and 111 is not required to be taken into account,
because we are interested only in the total production of
Li(2p). The rotational coupling between 32 and 11II states
should, in principle, affect the transition between 1II and
23 states, as was discussed before under the name of ca-
talysis effect.® In reality, however, the rotational cou-
pling matrix element between 33 and 1II states happens
to be very small in the region of the crossing of 1II and
23 states.’ Therefore, in the following analysis we consid-
er only the lowest three states. The rotational coupling
element Vs ;i defined by Eq. (2.15) is taken from the
calculations by Melius and Goddard® (Fig. 2). Their re-
sult is analytically fitted by a simple function of R.
Another important coupling in this system is the one be-
tween 1= and 23 states at large R. This is a radial cou-
pling of the Rosen-Zener type. The corresponding nona-
diabatic radial coupling matrix element is not necessary in
our procedure since we perform an analytic continuation
of the adiabatic or the dynamical-state potential energies
into the complex R plane. Figure 3 shows an example of
the dynamical-state potential curves for K=1700.

B. Scattering matrix in multistate collision problem

Since in the DS representation nonadiabatic transitions
occur locally at new avoided crossing points, a multistate
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FIG. 2. Rotational coupling matrix element between 22 and
T states.

scattering problem can be formulated analytically by us-
ing the two-state semiclassical theories and the path-
integral formalism. In the present three-state problem
(Fig. 3), the scattering matrix is expressed as

S=Pf,04Pc,OcPcrclcPcal Py, - (2.16)

The matrix Pyy is diagonal and represents a propagation
from point X to Y (X <Y) without any transition. The
matrix Iy (Oy) represents a nonadiabatic transition at the
avoided crossing point X in the incoming (outgoing) seg-
ment of trajectory. These matrices are explicitly given by

[P Yum =[P T =Bumenp [i [ 7 ENR) k(o0 )TaR

— ikX(0)4 +%K7r ,

(2.17)
4,
3,
S
L2t
- Li(2p)+Na*
o
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W
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t
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o
Li*+Na(3s)
(o]3 ‘_*L|(25)+Na*
— 1t

TT.T:5 C 10 A5
Internuclear Distance R (a.u.)

FIG. 3. Lowest three dynamical-state potential energy curves
for K=1700. Dashed line is an example of possible paths for
the transition Li(2s) + Nat—Li* 4+ Na(3s).
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Y k
[ Pxylnm =8umexp [i l, k,,(R)dR] X<y, (2.18)
X ok
[PXTX]nm':Snmexp 2i fT kn (R)dR-i-HT/Z] , (2.19)
(1'_pRZ)I/2 (PRz)l/ZCXp(i(TA) 0
I,= '—(PRz)l/ZCXp(——iUA) (l—pRZ)1/2 ol,
0 0 1
(2.20)
1 0 0
Ic= |0 (1—pyrz)"exp(ig§) (prz)%explioc) ,
0 —(prz)"%exp( —ioc) (1—pyz)%exp(—ig$)

2.21)
and
[OX]nm = [IX]mn ’ (2.22)
where
2 172
kXR)= —ﬁ"zi(E—Ef(R)) , (2.23)
prz=[1+exp(287)]", (2.24)
R
04 +idpz= fA [kX(R)—KkX(R)]4R , (2.25)
EXRH=EXRY), (2.26)
Prz=exp(—28.7) , (2.27)
RS
oc+idiz= [, [kK§(R)—Kk§(R)IdR , (2.28)
EXRE)=EXR?), (2.29)
¢g=(SLz/ﬁ)ln(SLz/W)-—5Lz/7T+7T/4
—argl(14-i8y 7z /) . (2.30)

It should be noted that the transition between the dynami-
cal states EX(R) and EX(R) is the Landau-Zener (LZ)
type, and the one between EX(R) and EX(R) is the
Rosen-Zener (RZ) type.

In the actual calculations the impact parameter p de-
fined by

p=(K+3)/k=(K+3)/(kiks)'/? 2.31)

is employed instead of K for simplicity, where k; (k) is
the asymptotic initial (final) wave number. The total
cross section for the transition i — f is calculated as usual
by

oy =2m fo dPPlsif(p)lz-

As is seen from Egs. (2.16)—(2.22), the scattering matrix
element Sjs can be generally expressed as

Sy = 3 [P(p)]expligfs(p)] ,

(2.32)

(2.33)

where the suffix a distinguishes the possible paths which
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enter along the potential EX(R) and exit along E}((R),
and P and ¢ represent the overall transition probability
and the total phase along the path «, respectively. In the
case of the path a shown in Fig. 3, for instance, the
overall probability and the total phase can be explicitly

]
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C A o ©
6%=2 fT3k§(R)dR+2 fc kX(R)AR + fA [AX(R)—k¥(0)1dR —kK(w0)d + f,, [kX(R)—kX()]dR

—kX(0)Ad—04—20c+(K+3)m.

It should be noted that when a turning point becomes
larger than an avoided crossing point at large impact pa-
rameters, the phase integral over that interval becomes
pure imaginary and is added to the corresponding ex-
ponent 6. For instance, when the turning points 7'; and
T, both are larger than A, the exponent 6y is given by

LE P
Srz=Im [ “[kf(R)—k5(R)JdR

|k¥(R)|dR . (2.35)

T2 Tl
+[, KSR [dR— [

Accuracy of the Rosen-Zener and Landau-Zener-

Stueckelberg (LZS) formulas in the form given here has

been well investigated for the transitions between two

states of the same symmetry.!® The accuracy of the LZS

formula in the DS representation for the =-II transition
will be demonstrated in Sec. II D.

C. Uniform semiclassical theory for differential
cross sections

Once the DS representation is employed, a semiclassical
theory for the calculation of not only total, but also dif-
ferential, cross sections can be formulated without any
ambiguity. The rotational coupling effect can be incor-
porated naturally.

The scattering amplitude for the transition n—m can
be generally given by

(2.36)

Sum(6) =% k Pk (cosf) ,

where Pg(X) is the Legendre polynomial, and 6 (>0°) is

the scattering angle. By using Eq. (2.31) and the conven-

tional approximation

2 172
cos[(K+3)0—+7],

Pg(cos)~ | ———
m(K + +)sind

(2.37)

whlch is valid when sinf > 1/K, and the expression (2.33)
for SX,, we obtain

2

1/2
ky
. ] S [dplpPe(p)]'?

Som ()= l 27k sinf

X [explip_)—explip )],

(2.38)

given by
PH=prz(1—prz)(p12 )? (2.34a)
and
(2.34b)
T
where
@1+ =0um T(kpb+m/4) . (2.39)
The phase stationary points are the solutions of
O (p)=7F0 (2.40)
where O3, is the deflection function defined by
a a
oz, = 2m . (2.41)
op

The integral involving ¢_ in Eq. (2.38) can be evaluated,
to good accuracy, by the stationary phase approximation,
yielding

()0~ 2[ o (0)12expli B —im/2),  (2.42)

where oa 3) .(8) is the classical cross section defined by

Ps (2.43)

Oonm(0)=——""———,
sin[d O, /dp],,

Beonm =bm (p3)—kp36
and p; is the phase stationary point corresponding to ¢ _
(see Fig. 4). Since there exist two phase stationary points
p1 and p, in the integral involving ¢ in Eq. (2.38), this
integral should be evaluated by the uniform semiclassical
approximation.!~2! Then we have

(2.44)

Deflection function 6

FIG. 4. Schematic diagram of deflection function © as a
function of impact parameter p.
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o (0)~ S expliBSho, +i5m/4) A% Ai(—Z,)
a
+iBym AT'(—~Z,)] ,

(2.45)

where Ai(—Z) and Ai'(—Z) are the Airy function and its
derivative,

A% =VTZ/ (0D m (@124 [0 (012, (2.46)
B, =VTZ I {[o8 (0] 2 [0 (0]},  (2.47)
Zg={5[$%m(p2)— om0 +(p1—p1)01}>"* (2.48)
and

otom =1 [$m () + B () +(p2+p1)0] . (2.49)

When 6~6, (rainbow angle) or 6 >6,, we can convenient-
ly use the following expressions instead of Egs.
(2.46)—(2.49):

p 172 d2e“ —1/3
a 1/6 r nm
AL, ~(12k) v R (2.50)
—-2/3
By, 1 |2 (2.51)
"™ (12k)16 | p,sind ap® o :
dzea —1/3
Zo(5k)¥? [—dz—’" ] (6—6,), (2.52)
Pr
and
Bitum =b3m(0)+p,6 , 2.53)

where p, is the impact parameter corresponding to the
rainbow angle. [We have found our Egs. (2.50)—(2.53) to
be slightly different from Eq. (11’) of Ref. 21.]

Thus, the differential cross sections can be calculated
by

O (0)=| £ 0V +£550) | 2.

However, the experimentally observed differential cross
sections are more often than not the low-resolution cross
sections, which correspond to

ofR(0)=| £ 0|2+ | fithey 2.

We use this expression for a comparison with experi-
ments. The cross sections calculated from Egs. (2.54) os-
cillate rapidly with large amplitudes; thus are not very ap-
propriate for the comparison with experiments. The
period of this rapid oscillation is given by

(2.54)

(2.55)

27

Ag~—
"k |pa+tpe |

(2.56a)

where p, and p, are the impact parameters corresponding
to © and — O, respectively.

On the other hand, the oscillation of oLX(6) comes
from the interference between the paths in the same
branch (© >0 or © <0). The period of this oscillation is
roughly equal to

2
klpa—ps| ’

where p, and p; are the impact parameters corresponding
to the same O.

Ab~ (2.56b)

D. Verification of the semiclassical theory for the =-I1
transition in the two-state approximation

By taking 1II and 23 adiabatic states we demonstrate
here the applicability of the Landau-Zener-Stueckelberg
formula in the DS representation to the study of the rota-
tional coupling effect. The semiclassical results are com-
pared with the quantum-mechanical close-coupling calcu-
lations. The LZS formula for transition probability is
given by

Przs=4p1z(1—py1z)sin’y zs , (2.57)

where
C C
puzs=oc+o§+ [ KE(RER— [ k¥(R)AR . (2.58)

Transition probabilities are shown in Fig. 5 as a function
of impact parameter. Since the step size of the impact pa-
rameter was not taken small enough in the case of 750 eV,
the oscillations of transition probabilities at small p are
not the exact reproduction of the real oscillations. How-

1.00 (a)
0.90-
0.80- i\
0.70-
0.60-
0.50]
0.401
0.301
0.20]
0.10]

Trans. prob.

0.00 1.00 2.00

3.00 4.00 5.00 6.00 7.00
Impact parameter (a.u.)
1.001

0.90
0.80

(b)

_dO.70j
£ 060
@ 0.50-
c ]
© 0.409
0.30-
0.20-
0.10
oo0+—v—m£ >t v S
0.00 1.00 2.00 3.00 4.00 500 6.00 7.00 8.00 9.00 10.0
Impact parameter (a.u.)

FIG. 5. Transition probabilities vs impact parameter for the
transition 23— 1I1 (two-state approximation). Solid line:
quantum-mechanical close-coupling calculation, and dashed
line: present semiclassical theory. (a) E,q=30 eV and (b)
E,q=750¢eV.
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0.2

o 2 4 6 8 10
Impact parameter (a,)
FIG. 6. Transition probabilities pyz for the one passage of
the avoided crossing point as a function of p in the case of the
23-11I1 transition at E.; =400 eV and 2 keV.

ever, as is easily seen from these figures, the present ana-
lytic theory proves to be quite useful over a wide range of
collision energy. Figure 6 shows the variation of the tran-
sition probability for one passage of the avoided crossing
point against the impact parameter. This is compared
with the corresponding one for the 1X2-23 transition
shown in Fig. 8.

III. TOTAL CROSS SECTIONS

A. Charge transfer: Li(2s)+ Na* < Li* 4 Na(3s)

Since our calculations were performed at energies rela-
tively high compared to the asymptotic energy difference
of 12 and 23, the cross sections for the 12—23 and
22— 12 transitions are almost equal to each other.

We have first carried out the two-state calculations.
The results are shown in Figs. 7, 8, and 10 (see Fig. 9
also). The transition probabilities show an irregular oscil-
lation as a function of p at small p This irregular oscilla-
tion causes an undulation of the total cross sections as a
function of collision energy, as is seen in Fig. 10. This
phenomenon has been discussed by several authors®?%23
and is due to the slow variation (appearance of optimum)
of the total phase in the small-p region (see Fig. 8).

o
3]

Probability

t
1
Ll VA

5 BT 15 20
Impact parameter (a.u.)

FIG. 7. Transition probabilities vs impact parameter for the

12 —23 transition (two-state approximation). Solid line:
E. =500 eV, and dashed line: E. ;=2 keV.
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o
=l

)

prz(=) o

10.0

[=]

Total Phase (rad ) (-----

0.1

[
[=}

Impact parameter (a.u.)

FIG. 8. Transition probabilities prz (solid line) for the one
passage of the pseudocrossing point and total phases (dashed
line) as a function of impact parameter for the 12—23 transi-
tion at E =500 eV and 2 keV. The shaded regions correspond

to sin’(total phase) > +-.

Despite the small energy difference (~0.253 eV) between
12 and 23 at R = w0, the transition is not the exact reso-
nance type even at 2 KeV of collision energy. Figure 8
also shows the transition probability prz as a function of
impact parameter. The p dependence is weak compared
to that of p;; shown in Fig. 6. An additional calculation
was carried out by replacing the adiabatic-state energy
€,5(R) by the dynamical-state energy E,(R) in order to
see the effect of the rotational coupling on the transition
between the two lowest states. Since the pseudocrossing
point between 1= and 22 is located at large R, the rota-
tional coupling hardly affects the radial coupling.

The results of the three-state calculations are shown in
Figs. 9 and 10. The energy dependence (not the magni-
tude) of the cross sections are in fairly good accordance
with those of Melius and Goddard. The calculated total
cross sections are larger than those of Melius and God-
dard. This is presumably due to the small discrepancy of
the adiabatic potential energies at large R (> 12a,), since
Im(R{) (thus pgy) is sensitive to a small variation of the

0.5r

Probability

50 100 5.0 200
Impact parameter (a,)
FIG. 9. Transition probabilities vs impact parameter for the

12-23 transition (three-state calculation). Solid line: E, ;=333
eV. Dashed line: E =1 keV. Dotted line: E,;=3.7 keV.
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FIG. 10. Total cross sections as a function of inverse relative
velocity. (a) 12—23 transition, (b) 22— 1II transition, and (c)
12— 111 transition. Solid line: three-state (12,23, 1II) calcula-
tion. Dashed line: two-state calculation.

potentials in this region. Throughout this paper we use
the potential energies given by Wijnaendts van Resandt
et al., since there are no other analytic expressions avail-
able. Usage of much more accurate adiabatic potential
energies, therefore, would change the magnitudes of the
cross sections, but would not affect largely the qualitative
features of the cross sections.

B. Excitation to Li(2p) + Na™*

Figure 11 shows the probabilities as a function of im-
pact parameter for the transitions 12— 1II and 22— 11I.

1.0 (a)
2
E
[
S
& 0.5[
5.0 “10.0
Impact paramerter (2,)
(b)
> 0.5F
h
5
[
Q2 .
° s
o TN
5.0 T
Impact parameter(a,)
FIG. 11. Transition probabilities vs impact parameter

(three-state calculation). (a) 22— 111 transition and (b) 1= — 111
transition. Solid line: E. =333 eV. Dashed line: E, ;=1 keV.
Dotted line: E.;=3.7 keV.

As is easily understood by considering the possible paths
for these transitions, the ratio of the transition probability
for 22— 1II to that for 12—1II is simply equal to
(1—prz)/prz. As is seen from Fig. 8, pry varies slowly
in the region of impact parameter where the rotationally
induced transitions are appreciable. Therefore the transi-
tion probabilities for 22— 1II and 12— 111 have general-
ly the same shape as a function of impact parameter.
Since pgz is rather small at energies <1 keV, the proba-
bility for 23— 111 is larger than that For 15— 1I1. This
difference becomes, however, smaller with collision ener-
gy, since prz—0.5 when E— . The total cross sections
are shown in Fig. 10. They are smaller than those of
Melius and Goddard. The reason for this is basically the
same as that mentioned above, namely the transition be-
tween 1= and 23 is more favorable than that in the case
of Melius and Goddard.

IV. DIFFERENTIAL CROSS SECTIONS

In this section the calculated results of the low-
resolution differential cross sections defined by Eq. (2.55)
are reported and are compared with experiments. Basic
quantltles needed to evaluate the scattering amplitudes

—%0) and f}'(0) given by Egs. (2.42) and (2.45) are
phases d5m, €xponent parameters 8;; and 8gz, and deflec-
tion functions ©§,, defined by Egs. (2.33), (2.25), (2.28),
and (2.41), respectively. The deflection functions were
computed by transforming the integral variable R to ¥ by
R=Tcosy, since the integrands diverge as ~(R
—T)~12, 2* It should be noted that phases ¢3, include
the contributions o 4 ¢ from the complex integrals (2.25)
and (2.28), and the Stokes phase ¢S defined by Eq. (2.30).
In the calculations of fi'(6), expressions (2.46)—(2.49)
were used at scattering angles smaller than the rainbow
angle (0 <6,). At scattering angles very close to or larger
than 6,, expressions (2.50)—(2.53) were utilized. A spline
fit was made to the numerical data of deflection func-
tions. Their derivatives were calculated by using these
spline functions. The scattering angle in the laboratory
system (6. ) is related to that in the center-of-mass system
(6) by

sin@

tany = ———— .
0L my /my+cos6 ’ “.D

where m, (m,) is the mass of projectile (target) atom.
The differential cross sections presented in this section
are the reduced cross sections defined as

Q(0)=0"R(6) Osind . 4.2)

Since the experimental data are relative, they are normal-
ized to the corresponding theoretical results at peak values
except for the 13— 2% transition at 2 keV (Fig. 15). The
differential cross sections reported here are those at
scattering angles less than several mrad, because the larger
angle scattering is mainly determined by the potentials at
small R which were estimated by the rather arbitrary ex-
trapolation procedure mentioned before and could not be
the real one.



3068 SUZUKI, NAKAMURA, AND ISHIGURO 29

(a) Ewp=500eV

6.0 -
rotational
}<:coup|ing effect
4.0
2.0
)
8
E
£
0.0
—=2.0f
<= rainbow
5.0

rotational
coupling effect

<=rainbow

FIG. 12. Deflection functions for the 12 —23 transition. 1,
path 15253573532 (12-23) and path
2—-53->T;-3-2—>1 (22—13); 2, path 1-52->T,—-2
(12—>23%); 2, path 2—-T,—2—>1 (2X—13); 3, path
1-Ty—1-2 (12—-2Z2) and path 2—1-T;—1 22X—-13).
The number j (=1-3) indicates the jth dynamical state and T
the turning point. (a) Ej,;, =500 eV and (b) Ep,, =1 keV.
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FIG. 13. Differential cross sections for the 12—23X transi-
tion at Ej,, =500 eV. Solid line: present theory. Dashed line:
experiment (Ref. 10).
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FIG. 14. Same as Fig. 13 at E;;, =1 keV.

A. Charge transfer from Na* +Li(2s) (12—2X)

The deflection functions for this transition are shown in
Fig. 12 for 500 eV and 1 keV. They are defined by Eq.
(2.41) and can be calculated without any ambiguity.
There are three possible paths. The path 1 corresponds to
a trajectory 1—-2-—3—T3—3—2, where the number j
(=1-3) indicates the jth dynamical state and T the turn-
ing point. The paths 2 and 3 correspond to
1—-2—T,—2 and 1—-T;—1—2, respectively. The ro-
tational coupling effect is clearly manifested in the deflec-
tion function for path 2. The slope of the deflection func-
tion in the corresponding region of p becomes smaller as
the collision energy decreases. This causes a very narrow
sharp peak in the differential cross section at lower col-
lision energies (see Fig. 13).

The calculated differential cross sections are shown in
Figs. 13—16. They are generally in good agreement with
experiments, including the low-frequency oscillations, al-
though the data points of Okamoto et al. are not suffi-
cient for a detailed comparison. The peaks due to the ro-
tational coupling are more clearly manifested in the

Eiab=1.5 kev
20F
:'i <= rainbow
[<}
101

rotational
coupling effect

1.0 2.0 3.0
6.(mrad)

FIG. 15. Same as Fig. 13 at E;,,=1.5 keV. Solid line:

present theory. Open circle: experiment (Ref. 9).



29 SEMICLASSICAL SCATTERING THEORY BASED ON THE . .. 3069

Eiap= 2 keV
20+ <= rainbow
@
g 10f
< rotational
coupling effect
o
o] . P "
0 1.0 2.0

6.(mrad)

FIG. 16. Same as Fig. 15 at E),,=2 keV.

theoretical results than in experiments. The rainbow
peaks are also well reproduced by our semiclassical
theory. The quasidiabatic potentials used by Wijnaendts
van Resandt et al. are not necessary.

B. Charge transfer from Li* + Na(3s) 22— 13,111)

The deflection functions for the transition 23— 111 are
shown in Fig. 17. There are two possible paths. Path 1 is
2—3—T3—3 and path 2 is 2—T,—2—3. Figures
18—20 show the differential cross sections for the total
charge transfer (22— 12 + 1II) and also the contributions
of the transition 23— 1I1. The general tendency is well
reproduced by the theory, although the agreement between
theory and experiment is not so good as in the 13—23
case. In the experiments some of the high-frequency os-
cillations are observed, while the theoretical results shown
are those only with low-frequency oscillations. The cross
sections calculated from Eq. (2.54) oscillate rapidly with a
period of ~0.5 mrad. This oscillation is qualitatively in
good accordance with experiments. A contribution of the

6.0

4.0

6 (mrad)

2.0

A

P ==
4.0 6.0 8.0 10.0 12,0

FIG. 17. Deflection functions for the 23— 111 transition. 1,
path 2—3—T3;—3; 2, path 2—»T,—2—3. (a) Ej,=300 eV,
(b) Ep,p,=500 eV, and (c) Ej,=1 keV.

Eisb = 1 keV

|
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FIG. 18. Differential cross sections for the 25— 111 transi-
tion and for the total charge transfer from Li* + Na(3s) at
Eu=1 keV. 1, present theory (total charge transfer
2313 +11ID). 2, experiment (total charge transfer) (Ref. 10).
3, present theory (23— 111 contribution).

23— 111 transition becomes dominant at larger angles.
This is due to the fact that the rotationally induced transi-
tion takes place more effectively at smaller impact param-
eters compared to the Rosen-Zener—type transition be-
tween two = states (see the p dependence of py7 and prz
in Figs. 6 and 8). This contribution shifts to smaller an-
gles as the collision energy increases.

Peaks in the theoretical results at ; ~2.2 mrad in the
case of 1 keV and at 6; ~4.8 mrad in the case of 500 eV
represent the rotational coupling effects in the =-X transi-
tion (cf. Figs. 13 and 14). These peaks are not conspicu-
ous in the experiments.

V. CONCLUDING REMARKS

The semiclassical theory based on the DS representation
presented in this paper was proved to be an effective

Eies =500eV

20+

0 10 20 30 40 50 60
6.(mrad)
FIG. 19. Same as Fig. 18 at Ej,, =500 eV. 3, present theory
(rainbow contribution). 4, present theory (22— 1II contribu-
tion).
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FIG. 20. Same as Fig. 18 at Ej,, =300 eV.

unambiguous method to calculate differential as well as
total cross sections for the collision processes involving
both radial and rotational couplings. Understanding the
mechanism of rotationally induced transitions can be cast
into the same level as that of the ordinary radially induced
transitions once we employ the DS representation. That is
to say, by looking at the potential curves of the dynamical
states we can understand the mechanisms of collision pro-
cesses in terms of the conventional idea of the Landau-
Zener (or the Rosen-Zener) transitions. The DS represen-
tation enables us to incorporate the multitrajectory effect
naturally, and thus to uniquely define the deflection func-
tions for any transitions. This makes an interpretation of
the differential cross sections easier. One difficulty of the
theory is the necessity of analytic continuation of poten-
tial energies into the complex R plane. It should be noted,
however, that the full forms of the LZS and RZ formulas
given here are quite accurate and that their simplifications
would occassionally lead to errors.!®?
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The calculated results on the (LiNa)* collisions are in
fairly good agreement with experiments. The absolute
values of the calculated cross sections, however, would not
be very reliable. This is attributed to the accuracy of the
adiabatic potential energy curves, especially to the accura-
cy of the potential energies of the 13 and 23 states at
large R (in the region of pseudocrossing). The transition
probability pgrz is directly dependent on the imaginary
part of the complex zero of the energy difference between
13X and 23; and the position of the zero is very sensitive to
a slight variation of the potential energy curves in that re-
gion of R. Thus the magnitude of the 2-X transition is
most sensitive to this variation of the potentials. Other
features reported in this paper would not be largely affect-
ed by this variation.

The other possible factor which would affect the =-3
transition is an effect of the so-called electron translation
factor (ETF). The ETF effect on the RZ-type transition
would not probably be negligible, although this problem
has not yet been fully investigated. The ETF’s lead to an
additional coupling term.?® As in the case of the DS repre-
sentation, we can define new basis states by diagonalizing
the Hamiltonian matrix composed not only of the matrix
of Hgy,, but also of this new coupling matrix (matrix 4
of Ref. 26). Then, exactly the same formulation as the
one presented in this paper, but based on this new repre-
sentation, would give a more complete semiclassical
theory with even the ETF effects incorporated.
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