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It is proved that N„ the number of negative particles that can be bound to an atom of nuclear

charge z, satisfies N, & 2z+ 1. For a molecule of K atoms, N, & 2Z+E where Z is the total nuclear
charge. As an example, for hydrogen N, =2, and thus H is not stable, which is a result not
proved before. The bound particles can be a mixture of different species, e.g., electrons and m

mesons; statistics plays no role. The theorem is proved in the static-nucleus approximation, but if
the nuclei are dynamical, a related, weaker result is obtained. The kinetic energy operator for the
particles can be either [p —eA (x)/cj /2m (nonrelativistic with magnetic field) or

[[pc —eA(x)] +m c I'i —mc (relativistic with magnetic field). This result is not only stronger
than that obtained before, but the proof (at least in the atomic case) is simple enough to be given in

an elementary quantum-mechanics course.

I. INTRODUCTION

One of the nonperiodic facts about the Periodic Table is
that the number of electrons that can be bound to an
atomic nucleus of charge ze is at most z+ 1, at least as far
as present confirmed experimental data go. The theoreti-
cal proof of this fact, starting with the Schrodinger equa-
tion, is a challenge that has drawn the attention of several
authors in recent years. '

The problem can obviously be extended in two ways: (i)
The electrons, which are fermions, can be replaced by bo-
sons or, more generally, by a mixture of particles of dif-
ferent species. (Because of spin, the two-electron problem
is well known to be the same as the two-boson problem. )

(ii) Instead of a single atom, a molecule can be considered.
That these problems are difficult is shown by the fact that
it was only recently proved by Ruskai' (for bosons) and
later Sigal and Ruskai (for fermions) that the number of
bound particles is not infinite.

The following is a summary of rigorous results to date.
Our notation for the maximum particle number is N, .

(1) Ruskai' proved that N, & (const)z for bosons. Re-
cently, Sigal proved for bosons that for every e&0 there
is a constant C, such that X, & C,z'+'.

(2) For fermions, Sigal proved that N, & cz with c being
some constant. Ruskai proved that N, & (const)z . Si-
gal improved his result to N, &a(z)z with a(z) & 12 and
a(z)~2 as z~ Do.

(3) For bosons, Benguria and Lich proved that
N, ,&P(z)z with P(z)~1+ y as z~ao. Here, y is some
number satisfying 0&y & 1 and is obtained by solving a
Hartree equation. This equation was subsequently solved
numerically by Baumgartner '" with the result y=0.21.
Thus, bosons strongly violate the z+ 1 rule; the Pauli ex-
clusion principle plays a key role in the electron problem.

(4) In a related development, Benguria and Lich
studied the Thomas —Fermi —von Weizsacker (TFW)
equation —a well-known density-functional equation
which is supposed to imitate the Schrodinger equation for
fermions. They proved that N, &z+ 0.73 in the TFW
model of an atom. (In TFW theory, the electronic charge

is not quantized. ) Thus, on the one hand, TFW theory
really imitates the Schrodinger equation and, on the other
hand, the TFW result supports the conjecture that
N, &z+ const for the Schrodinger equation for arbitrarily
large z. Earlier, ' it had been shown that Z &N, & 2Z in
TFW theory, even for a molecule. Here Ze is the total nu-
clear charge,

Z= ZJ

Nc &2z+1 (1.2)

for a fixed-nucleus atom and with any mixture of bound
particles (with possibly different masses and statistics).
Equation (1.2) holds if all the charges are —e, but a simi-
lar result holds with nonconstant but negative charges [see
Eq. (2.11)]. If z is an integer, as in the physical case, (1.2)
implies

N, &2z . (1.3)

j=1
for a molecule of It. atoms with nuclear charges ezJ. Note
that in Thomas —Fermi (TF) theory one always has N, =Z
for any molecule. '

(S) Lieb, Sigal, Simon, and Thirring, using Sigal s
method, have proved that N, /z —&1 as z~no in the fer-
rnion case.

(6) For z=1 (hydrogen), Hill proved that three elec-
trons cannot be bound in a quartet (S = —, ) state. There
does not seem to be any proof of nonbinding for the doub-
let (S = —, ) state with N=3.

All of the above results are for a single atom. The
Ruskai and Sigal methods can be extended to the molecu-
lar case; this was explicitly done for bosons. ' The
Benguria-Lieb result in (4) extends to a molecule:
X, &Z+0.73 K. Furthermore, all the results apply to
the fixed-nucleus (sometimes called Born-Oppenheimer)
approximation.

(7) Zhislin'o proved that N, & z for an arbitrary mixture
of particles (with any statistics) and including nuclear
motion. This result extends to a molecule, X, )Z.

In this paper it will be proved (Theorem 1) that
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This completes the story for hydrogen, i.e., N, =2, since it
is well known that two electrons can indeed be bound [see
(6) above]. H is not stable. (Incidentally, I am not
aware of any proof of the obvious assertion that if N elec-
trons mnnot be bound then I&X electrons cannot be
bound. Thus, even if the S = —, case in (6) above were set-

tled, it would not immediately follow from this that
N, =2.) Equation (1.3) also states that two m mesons
and a muon cannot be bound with z= l. Equation (1.2)
implies that the critical z to bind two particles is at least
0.5. The exact value' is 0.9112.

For large z, Eq. (1.3) is hardly optimal in view of the
conjecture that N, —z is of order unity. For bosons, how-
ever, Eq. (1.3) gives the right order of magnitude since
N, ) 1.2z for large z [see (3) above].

In the case of a molecule of K atoms it will be proved
that

X, (2Z+K (1.4)

for fixed nuclei. Thus, for example, the hydrogen mole-
cule cannot bind more than five particles. Again, this
holds for arbitrary negative particles with common charge
—e. For nonconstant charges see Eq. (2.10). A summary
of the results of this paper is in Ref. 13.

As stated above, Theorem 1 does not require that the
nuclear or the negative particle charges be integral. This
generality may be relevant physically because, as pointed
out to me by W. Thirring (private communication), parti-
cles in solids such as semiconductors may have nonin-

tegral effective charges because of dielectric effects.
A remark should be made about the meaning of "fixed

nuclei" in the molecular case. There are two possible in-
terpretations.

Case 3: The nuclei, of charges z1, . . . , ZK&0, have
coordinates R1, . . . , RK which are arbitrary but which
are fixed once and for all, independent of the particle
number N.

Case 8: For each particle number, the nuclear coordi-
nates Rj are adjusted to minimize the total energy, name-

ly,

VI. Section VI also contains the extension of the previ-
ously cited results to the case of smeared, but spherical,
nuclear charge densities. These results are also shown to
hold in the Hartree-Fock theory.

Finally, it will also be proved that Eqs. (1.2) and (1.4)
hold if the particle kinetic energy operator, which is

p /2m = —(A' /2m)b (1.6)

p ~[p —eA(x)/c]

where A is a bounded vector potential. One can even have
different A's for different particles. Other generalizations
of the kinetic energy are also possible, as well as generali-
zations to potentials other than the Coulomb potential (see
the remark in Appendix A).

Not only are the results proved here stronger than that
obtained previously [except for (5) above], but the proof it-
self is much simpler. For the atomic case with one species
of fermions or bosons the proof is so short that it can be
given in an elementary quantum-mechanics course. In or-
der to display the basic idea as clearly as possible, this
atomic case will be treated first in Sec. IV. The method of
proof borrows heavily from the proof in Ref. 14, Theorem
7.23 of N, &2Z for the TFW theory. (In Ref. 14, N, was
called A, ) As mentioned there, the basic idea for the
TFW proof in the atomic case is due to Benguria.

II. PRELIMINARIES AND NOTATION

The Hamiltonian for N particles is

Hg $[T,—q; V——(x;)]p qq, [x;—x, [

—1

in the usual Schrodinger equation, is replaced by the rela-
tivistic expression

(p c +m c ) mc2=—( —c2$2++mzc4)1/2 mc2

(1.7)

Another variation for which (1.2) and (1.4) hold is the in-
clusion of a magnetic field in either Eq. (1.6) or (1.7):

E~ = inf E~(R ) + U(R ),
R

(1.5)
1&i &j&X

(2.1)

where R denotes (R~, . . . , Rx] and Ez(R) is the elec-
tronic ground-state energy depending on R, and U(R ) is
the internuclear interaction. Usually U (R ) is the
Coulomb energy

where

V(x)= $ zJ f

x —RJ /
(2.2)

e'
1&i &j&K

zz iR; —Ri i

is the electric potential produced by E fixed nuclei of
charges

but for our purposes U(R ) can be anything.
The result in Eq. (1.4), and more generally in Theorem

1, holds for both Case A and Case 8. Case 8 is, of course,
more physical. However, Theorem I in Case A implies
Theorem 1 in Case 8; this is obvious since if binding does
not occur for every choice of R it certainly does not occur
for the minimizing R. It is Case A (fixed nuclei) that we
shall actually consider henceforth.

The case of truly dynamiml nuclei mnnot be treated as
definitively by the method presented here. Nevertheless,
some information about this system is contained in Sec.

Z Z1 p ~ ~ ~ p ZK

located at R=IR&, . . . , Rx-I with R;GR . Units are
used in which the electron charge e is unity, and A'=1.
We assume z;&0, all i=1, . . . , K. The number —q; is
the charge of the ith particle, and we assume q; &0 for
i=1, . . . , X.

The operator T; is the kinetic energy operator for the
ith particle and it is assumed to have one of the following
three forms:

(2.3)
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Ti' ' ——[i V;+At(x)] /2m',

T '=cI [i V;+A;(x)] +m; c I'~ —m;c (2.5) Q &2Z+qK .

(2.4) occurs, the following must be satisfied:

(2.10)

EN ——inf Spec(HN )

(Q I
HN

I p)

the latter being the variational principle. The admissible

g in Eq. (2.7) must, of course, satisfy the required statis-
tics for the various groups of particles. EN need not be an
eigenvalue, and it will not be if the system is not bound.
When a particle is added to the system it can always be
placed at infinity (i.e., arbitrarily far away and with arbi-
trarily small kinetic and potential energy), and we thus
have the relation

(2.7)

E~, & E„, j= I, . . . , X, (2.8)

where Nj denotes the (N —1)-particle system with the jth
particle removed.

Definition: The N-particle system is said to be bound if
and only if EN is an eigenvalue, i.e.,

HN4 EN 4 (2.9)

for some /EL (R ).
In this definition it is not required that E~j be an

eigenvalue for any j or that EN &ENJ for any j. If
E~ &E~j for some j then Ez is automatically an eigen-
value. The word "bound" is not app/icable to a system
that merely has an eigenvalue in the continuum (i.e., EN is
not an eigenvalue but H~ has an eigenvalue greater than
EN J for some j); such a system would only be metastable.
Our main result is the following.

Theorem I: Let Z = g. , zj as before. Let
1V

j=l J
Q = g, , q; be the negative of the total particle charge
and let q be the maximum of the q;. Then, if binding

Here, m; &0 is the mass of the ith particle, cA;(x)/q; is
the vector potential applied to the ith particle, and c is the

speed of light. A;(x) is assumed to be bounded and to go
to zero as

I
x

I

—+ oo. Equation (2.3) is obviously a special
case of (2.4) but, for simplicity, it is treated separately. It
must be noted, however, that if the form Ti' ' is used even
for just one particle (for example, i), then every nuclear
charge zj must satisfy aq;zi & 2/m, where a=e /Pic is the
fine-structure constant. The reason is that the single-
particle operator T' ' eqV—(x) is bounded below (as a
quadratic form) if and only if e qzj &2/m for every j. The
situation is not changed by the addition of the third term
in Eq (2.1).. (See Ref. 15.)

The ith particle can have any one of the three forms of
T;, independently. The m;, q;, and A; need not be related
for different i Ther.e is one proviso, however. If several
particles are of the same type (bosons or fermions) then
that group must, of course, have the same m;, q;, and T;.
Spin can be included in the usual way. H& is spin in-
dependent. The easiest way to treat spin is to think of the
spin coordinate as merely labeling a particle type. Thus,
for spin- —,

' electrons, there are two kinds of fermions:
those with spin up and those with spin down.

The ground-state energy, is defined by

In the atomic case (%=1), Eq. (2.10) can be replaced by
the slightly stronger requirement

N

Q & 2Z+ g q; /Q . (2.11)

III. STRATEGY OF THE PROOF

Given Eq. (2.9} select one variable, for example, j, and a
positive function of one variable, denoted by 1/P(x), to be
determined appropriately M.ultiply Eq. (2.9) by

f'(x i, . . . , xN ) /P(xj )

and integrate over all the variables, and then take the real
part. On the left-hand side there will be four terms:

hJ = ([4/4'(xj )1 I HN, J I 4)
tj =Re([p/p(xj )] I TJ I p),
—ai= —qj([p/p(xj)] I

V(xj)
I 1(),

r = [@/P(x )] gq;q Ix;—

(3.1)

(3.2)

(3.3)

(3.4)

E~E) (hj . (3.6)

To see this, let XJ denote the variables x ~, . . . , x~ with xj
excluded. Consider

Pq(Xq, XJ' ) = f i'(xJ,XJ )[f'(xi,Xi )/P(xi )]d3xi,

so that

(3.7)

I J(XJ,XJ' }=PJ(XJ,XJ )/IJ

is a properly normalized density matrix. (The positivity
of P is crucial here. ) Moreover, I i satisfies the correct
statistics in the XJ variables (since P does) and thus, by the
variational principle,

hN J /IJ Tr(HN JIJ ) & EN——
1 . (3.8)

This, together with Eq. (2.8), proves (3.6). Thus, binding
cannot occur if

tj —aj+Ij &0 .
Let P(x) be any function of the form

P(x)= f Ix —y I
'dp(y)+C,

(3.9)

(3.10)

where dp is a (positive) measure with 0 & J dp & ao and
C&0 is a constant. In our application we shall choose P

[The right-hand sides of Eqs. (3.1), (3.3), and (3.4) are au-
tomatically real. ] On the right-hand side there will be
E~I& with

(3.5)

Let us assume, provisionally, that all these terms are fin-
ite.

Because of Eq. (2.8)
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to be of the same form as V but with different coefficients

PJ )0:
t:—Re x T x x x &0. (3.15)

k

P(x) = g p~ I
x R—

~ I
(3.11)

[ln fact, we shall actually prove that R & A and, therefore,
that strict inequality is not really needed in Eq. (3.12).
The reason that R )A is given in the second part of Ap-
pendix A.] Clearly, Eq. (3.14) implies that Eq. (3.13)
holds for some j, and thus Theorem 1 will be proved.

To prove (3.12) we note that the XJ integration in (3.2)
can be done after the xJ integration. Therefore, (3.12) will

be true if it holds for each XJ, i.e., if it holds for any func-
tion of the one variable xJ. Thus, if f(x)EL (R ) we
want to prove that

(3.12)

for any g and P and choice of TJ [see Eqs. (2.3)—(2.5)].
Consequently, binding cannot occur if, for any

j 1 p f ~ 4 p gp

(3.13)

Actually, we shall not prove Eq. (3.13) for any particular

j, but shall prove instead that when Eq. (2.10) or (2.11) is
violated then

N
R= g rJ. )A—= g a,

2mt = —Re f g*(x)A[g(x)P(x)]d x )0 .

By partial Integration,

(3.16)

When T =p /2m, (3.15) was first proved for f spheri-
cally symmetric and real by Benguria, and then for f real
by Lich. This was given in Ref. 14, Lemma 7.21.
Baumgartner" found a more direct proof and also extend-
ed (3.15) to complex f. Baumgartner*s proof easily ex-
tends to T' ', but the proof for T' ' is very different and is
given in Appendix A.

In Appendix A a proof of (3.15) under carefully stated
conditions on f is given. The following technical point,
which is also discussed in Appendix A, has to be con-
sidered: We assumed that all the quantities in Eqs.
(3.1)—(3.5) are finite. By the condition stated after Eq.
(3.10), rj and aj are automatically finite. Conceivably, hj,
tJ, and IJ could be infinite. If so, this can be remedied by
replacing P(x) by P(x)+C and then letting C~O at the
cnd. This proccdurc 18 also discussed in Appendix A.

Since one of our stated goals is to present a proof of
Theorem 1 in the atomic case that is simple enough to be
given in an elementary quantum-mechanics course, let us
temporarily suspend any reservations about technicalities
and give the following proof of (3.15), following
Baumgartner's method, "when T =p /2m.

The key fact is that kg&0. Given f and P, define

g (x)=f(x)/P(x). We then require that

2@it RC 7g X Xg X X

=Re Vg'x x Vg x+g x 7' x x

= f P(x) I
Vg(x)

I

1d'x+ —,
' f VP(x) [g(x)Vg*(x)+g*(x)V'g(x)]de

= f P(x)
I
Vg(x)

I
d x+ —,

' f VP(x) V[ Ig(x) I1]d1x

x Vg x x ——, gx xdxg0. (3.17)

[Note that we have greater than 0 instead of greater than
or equal to 0 because f P I

V'g
I

& 0 since P(x) & 0 for all

x; if Vg(x) =0 then f=(const)$, but /EL and fEL .]
In the rest of this paper (except Appendix A) we shall

assume that (3.15) holds and shall concentrate on proving
that Eq. (3.14) holds. As mentioned before, all rJ and aj
are necessarily real and finite.

a =zq X ' x, x, '~X=zq,

r=e'X f II(»I'Ix1I lx1 —xj I

(4.1)

(4.2)

(4.3)

IV. ATOMS WITH IDENTICAL PARTICLES

Take the nuclear coordinate R
&
——0, zi —=z and let

P(x)=1/Ix I. Assume that the particles are identical
(boso118 ol' ferm1ons) so tllat gj =g, rj =7; and aj =a are 111-

dependent of j. (Note: If the particles are fermions they
are allowed to have spin, in which case f dx in the fol-
lowing should be understood as g f dx, where cr is the
sp111 variable. )

We denote Ix1, . . . , x~I by X and assum«hat g 1s

normabzcd. Taking J= I wc have

r=1e'(& —1) f I
f(X) I'[ I» I

+ lxz I ]

x Ix1 —x1
I

'd x& 2q (N —1) (4.4)

I
x1 I +

I xz I
&

I
x1 —xz I

In going from Eq. (4.2) to (4.3) the fact that
I P I

is sym-
rnetric was used. This symmetry also implies that the in-
tegral in Eq. (4.3) is not changed if

I x1
I

is replaced by
Ix1 I. Thus,
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by the triangle inequality.
Therefore,

pj(x)= f I g(x,X~) I
d d "XJ (5.5)

r —a) —,q (Ã —1)—zq
1 (4.5)

V. GENERAL CASE

and, by Eq. (3.13), binding will not occur if Q) 2z+q
with Q =Nq. This proves Theorem 1 in this special case.

be the one-particle density for particle j. Let
g&(x), . . . , g&(x) be any given functions of one variable
such that gj(xj)g(X) is in L (R ") and define

(g~) = f pj(x)gj(x)d"x

x 'gJ xj Ndx. (5.6)

Our goal here is to prove (3.14) if (2.11) (atomic case) or
(2.10) (molecular case) is violated. In the atomic case
without particle symmetry, we cannot use symmetry to go
from Eq. (4.2) to (4.3). In the molecular case, even if par-
ticle symmetry exists, the obvious choice P(x) = V(x) will
not work and we shall have to use P as given in Eq. (3.11).

In the atomic case

Then

Re f fg(X) I

1&i &j &N
g;*(x;)gj(xj)d X

g(g, ) ——,
' g(fg, I'). (5.7)

P(x) = 1/
I
x

I

= V(x)/z

does work. Assume g to be normalized. For each j, Eqs.
(4.1) and (4.2) become

This is proved simply by noting that

«g g*g;= 2 gg ' —
2 g Ig I'

Qj =zgj

r, = g qq) f If(»l'Ix, I lx —xjl 'd' X ~

Now sum these over j to obtain [recalling Eq. (3.14)]

R —2= —,
' g q;qj f fg(X) I ( fx; I+ fxj f )

E,J
i+J

xlx; —x, l

'd'X —Qz

(5.1)

(5.3)

and then using the Schwarz inequality on the first term.
To apply I.emma 1 to the general case, let

N

p(x) —= g qjpJ(x) (S.g)

K
A= ga, = hazy, ,

s=1
(5.9)

be the negative of the single particle charge density for P
[see Eq. (5.5)]. Let P(x) be the potential in Eq. (3.11). We
then have

g q;qj —Qz = —,
'

Q ——,
' g q; —Qz . (5.4)

Again, the triangle inequality
I
x

I
+ ly I

)
I
x —y I

has
been used. Clearly, if Eq. (2.11) is violated then R &A and
this proves Theorem 1 in the atomic case.

In the molecular case the following is needed. It does
not depend on the dimension d being 3.

Lemma 1: Let f(X) be any normalized function in
L (R ") (without any particular symmetry). For
j=1, . . . , N let

with

y, = f p(x) lx —R, I
'P(x) 'd x .

N
R= gr, = q;q, f I

P(X)
I

'
I x; —x, I

1&i &j&N

(5.10)

X[/(;) '+P(, ) ']d' X.

(5.11)

Let us write [following an idea in Ref. 11)]

0(» '+4(y) '=[4(»4(y)] '[4(»+4(y)]= g vj[4(» Ix —R~ I] '[4(» fy —RJ I] '( Ix —Rg I+ ly —RJ I
) .

(5.12)

K
R& gP, f I1t(X)f g (xI)gj'(x))d +X,

Again, noting that

lx —R;I+ ly —R, I
& lx —y I

we have, upon inserting Eq. (5.12) in (5.11),

g'(x)=q [P(x) fx —R
I ]

Using Lemma 1 for each s we have

K N
R & ~ g C ~ )'—g a' f p~(x)4(x) '

s=l

(5.14)

with

s=l 1&i &j&N

(5.13)

However,

X lx —R, I
d'x . (5.15)
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p, /[ i
x —R,

i
P(x)] &1,

and q; & q (by definition). Hence,

N
1 2

s=l
(5.16)

where HN is given by Eq. (2.1) and each T; is one of the
operators given in Eqs. (2.3)—(2.5). U(R) is a potential
that depends on the nuclear coordinates, as explained after
Eq. (1.5). If U(R ) is translation invariant, the eigenvalue
equation

We shall have R & A if HN4 EN% i (6.5)

g y, Ip, y, —q —2z, j &0,
s=l

(5.17)

and our aim is to choose the Ip, j so that Eq. (5.17) is sa-
tisfied when condition (2.10) is violated. (Note that y, de-

pends on Ip, j.) To this end, let

5.—=V,y, /Q,

P, =—(2z, +q)/(2Z+qE) .

Note that [see Eqs. (5.8) and (5.10)]

+5,= QP, =l.

(5.18)

(5.19)
s=l s=l

Suppose we can choose Ip, j such that

5s —Psi s =1, . . . , K .

Then the left-hand side of Eq. (5.17) becomes

g y, 5, [Q —(2Z+qE)],
s=l

(5.20)

V (x)= f ~

x —y R;
~

'dp, (y)—, (6.1)

where dpj. is a spherically symmetric (positive) measure
with f dpJ(y)=zz. Then Theorem 1 continues to hold

without modification. The proof is as before —with the
same P(x). One merely has to note that

Vi(x) (zi i
x —RJ.

i
(6.2)

for all x and, hence, aj, defined by Eq. (3.3), is not greater
than it would be for the point nucleus.

B. Dynamical nuclei

Suppose that the E nuclear coordinates R 1, . . . , RK are
dynamical variables and the Hamiltonian is

and this is non-negative if condition (2.10) is violated.
Thus, showing that the E equations (5.20) in E un-

knowns have a solution proves Theorem 1. This is done
in Appendix B.

VI. THREE GENERALIZATIONS OF THEOREM 1

A. Smeared nuclei

Suppose that the nuclear charge densities, instead of be-

ing points, are smeared into spherically symmetric distri-
butions about RJ, namely, zJ ~

x —RJ
~

' in Eq. (2.2) is re-

placed by

with Ez ——inf Spec (Hz) and g=P(X,R ), would not gen-
erally be expected to have a solution in L (R + ); if
there are no magnetic fields present then it certainly
would not. With magnetic fields present one cannot sim-

ply remove the center of mass motion, and the situation is
complicated. To avoid technical complications it will be
assumed that U(R) also contains one-body terms which
serve to contain the nuclei, and therefore that Eq. (6.5)
indeed has an I. solution. Physically, this is no real re-
striction because the confining potential could, for exam-

ple, be an infinitely high walled box of arbitrarily large
size. Because the negatiue particles are not confined it is
still true that EN & EN j.

In this case a weakened form of Theorem 1 holds. Let
us define Eg J to be the inf Spec (H~J ), with negative par-
ticle j removed as before, but with all the nuclear masses
set equal to infinity. Alternatively,

Eg J ——inf E~J(R ) + U(R ), (6.6)

where Ezi(R) is the ground-state energy of Hiv J as de-
fined in Eq. (2.7). Clearly,

Eg, &Eiv, =inf Spec(Hii) i. (6.7)

Theorem 2: Suppose that the system is bound [i.e., Eq.
(6.5) holds] and the binding energy satisfies

EN —ENj &EN —EN (6.8)

H~ H~J+T„„,+T/ ——qJV(x/, R)+ g —~x; —xJ ~

i (&j)

for all j=1, . . . , N Then Eq..(2.10) holds in the molecu-
lar case X& 1 and Eq. (2.11) holds in the atomic case
K= 1.

In the physical situation, the right-hand side of Eq.
(6.9) is numerically small, but it is a challenge to eliminate
this condition.

To prove Theorem 2 we multiply Eq. (6.5) by

f'(X,R )/p(xJ, R )

and integrate over all the variables. Here iI)(x,R ) is as in
the proof of Theorem 1, namely, Eq. (3.11) with fixed con
stants pj. [It is important that the pj do not depend on R,
otherwise the dependence of iI) on each RJ would not have
the form of Eq. (3.10), and thus the positivity of the in-
tegrated T„„,term might be lost. ]

Let us write (for any fixed j, 1 &j& N)

and

HN HN + Tiiiic + U(R )

K

Tnuc = g Ti

(6.3)

(6.4)

(6.9)

The first term, H~J. H~J. (XJ.,R), satisfi—e—s (as an opera-
tor) Hzi)E@ J. Therefore, moving this term to the
right-hand side of Eq. (6.5) we obtain less than or equal to
0 as before [using Eq. (6.8)].
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The term involving Tz is positive as before. The T„„,
term is positive since P(xJ,R ), with all variables except R;
fixed, has the correct form [as given by Eq. (3.10)] as a
function of R;. The third term is (after summing on j) the
same as in Eq. (5.9) but with

N

y, = XR qj xj —R, ' xjR

)(d 3NX d 3ER (6.10)

In the atomic case, P(x,R) =
f
x —R

f

' and the proof
proceeds exactly as before. In the molecular. case, Eq.
(5.16) holds with y, given by Eq. (6.10). [An obvious
modification of Lemma 1 and Eqs. (5.11)—(5.15) is needed
to include the R dependence; the basic observation is that
the Schwarz inequality used in Lemma 1 is still applic-
able. ]

To complete the proof in the molecular case, we require
that Eq. (5.20) have a solution with the new definition of
y„Eq (6. 1.0). The proof in Appendix 8 is easily modi-
fied in terms of the appropriate matrix M [which has
strictly positive elements and satisfies Eq. (88)]:

M„=g-' f f fit(X,R) f'
N

x g qk f
xk —R,

f

'
f xi, —RJ f

k=1

change part.
Since P minimizes the energy, each e; &0 in Eq. (6.13).

The reason is that the dependence of the numerator in Eq.
(2.7) on any one u; is constant plus quadratic, and the
latter term is just e;. If ei & 0, for example, then it is easy
to see that the (N —1)-particle 1( composed of u2, . . . , uz
would have an energy strictly below Ez, and this contra-
dicts E~1)Ez.

Let P(x) be as in Eq. (3.11), multiply Eq. (6.13) by
u (x)/P(x), integrate over x, and sum over spins. Then
sum over i. The right-hand side is nonpositive. On the
left-hand side, the terms involving T are positive, as be-
fore. The V(x} term is

A =N f f
1!(X)

f
'V(x, )/y(x, )d3"X .

The repulsion term, U —E, is

R =-'N(N —» f I
0(» I'I xi —x21

X [y(x, )-'+y(x, }-']d'"X .

(A summation on spins is understood in these two in-

tegrals. ) The rest of the analysis proceeds as before.
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&&/( „,R) d Xd R . (6.11)
APPENDIX A: KINETIC-ENERGY INEQUALITY

1. Proof of Eq. (3.15)

C. Hartree and Hartree-Fock theories

Theorem 1 applies to the Schrodinger equation, but the
conclusion remains true in both the Hartree and Hartree-
Fock (HF) (either restricted or unrestricted) approxima-
tions. Here, the proof for unrestricted HF theory will be
given; the proof for the Hartree theory is very similar. It
will also be assumed that all the N charges, masses, and
kinetic energy operators are identical. We take q; = 1.

In the HF theory, the ground-state energy is defined as
in Eq. (2.7}, but with g restricted to the class of deter-
minantal functions:

1!=(N!) '~ detu;(xj, crj) (6.12)

AQg El Ql

where h is the single-particle operator

h =T —V(x)+U E. —

(6.13)

(6.14)

Here, T is one of the operators in Eqs. (2.3)—(2.5), U is the
direct part of the Coulomb repulsion, and E is the ex-

and the u; are orthonormal. As in the earlier definition,
the N-particle system is said to be bound if and only if
there is a g that actually minimizes the energy expression
(2.7). As before, E~ &E~J. The reader is referred to Ref.
16 for details; in particular, for the proof that binding
occurs if N &Z+ 1 (when T =T'").

If there is a minimum, the u; (after possibly an NXN
unitary transformation) satisfy the N coupled HF equa-
tions:

P(x) = f f
x —y f

'dp(y)+C,

with dp a positive measure, 0& f dp& co, and C&0.
The function f satisfies

(Al)

f and Tf&L (R ). (A2)

Note that if C&0 then I/P(x) is a bounded function and

f (x)/P(x) is automatically in L .
The following Lemma 2 validates the assertions used in

Sec. III provided

P(X)/P(x )E'L (R ) .

Subsection II below shows how to deal with the case
g/PKL by taking C&0 and then letting C~O. [Techni-
cal remark: In the nonrelativistic case a solution to Eq.
(2.9) automatically satisfies TJP EL (R ) and hence
Tf HL (R ). The analogous statement is known to hold
in the relativistic case if e qjz; & —, (for all i), which is less

than the critical value 2/m. . Thus, there is possibly a
minor technical gap in the relativistic case.] Lemma 2 in
the relativistic case was originally proved only for
A(x):—0. The extension to A(x)&0 follows from Lemma
3, which is a joint work with Michael Loss. Lemma 3
shows that Lemma 2 (relativistic) follows automatically
from Lemma 2 (nonrelativistic). Nevertheless, the origi-

nal proof of Lemma 2 for T' ' with A(x)=0 is not

Our first goal is to prove Eq. (3.15) when T is one of the
three forms in Eqs. (2.3)—(2.5). The potential P is defined

by
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without interest and is therefore given below.
Lemma 2: Assume Eqs. (Al), (A2), and

f(x)/P(x) &L'(R')

Let T be any one of the operators in Eqs. (2.3)—(2.5), with

A(x) bounded in Eqs. (2.4) and (2.5). Then

m (k) in Eq. (A6) is replaced by k . However,

k+q =~k —q~ +2kq
and thus

K(k,q)=1+2k.q ~

k —q

(A7)

(AS)

h (x)—=f*(x)(Tf)(x)/P(x)

is in L ' and

t =Re f h(x)d x &0. (A4)

The kernel 1 in Eq. (AS) is clearly positive semidefinite.
For the second term, note that

~

k —q ~

is positive de-
finite and k q is a product function; thus, K is positive de-
finite and we have a second proof for the T'" case.

Returning to T' ', let us write

with

f(k) = f exp(ik x)f (x)d x .

Again, let g =f/P. Since (ab) =aeb, and since
( ~x

~

') =4m/k, wehave

2+t =Re f dp(y) f g*(k)
~

k —q ~

'e'~'"

&&m(q)g(q)d kd q

+(C/4') f ~g(k) ~'m(k)d'k,

with m(q)=(q + 1)' —1. Clearly, the second term on
the right-hand side of Eq. (A5) is positive. As for the first
term, it is sufficient to prove strict positivity for each y
but, since

exp[iy (k —q)]

is a product function, it suffices to prove that the kernel

K(k,q)=
~

k —q ~
[m(k)+m(q)] (A6)

is positive definite.
Let us temporarily return to T'"=—h. In this case

Proof: At first assume C&0 so that I/P is bounded.
By a simple density argument, we can suppose fECO" (in-
finitely differentiable functions of compact support). We
can also assume [by replacing dp by exp( —ex ) edp, for
example, and then using dominated convergence] that P
and 1/PEC" AL". Unfortunately, the limiting argu-
ment just cited will only allow us to conclude that t &0.
The proof that t & 0 is given at the very end.

T'"= —b, : The proof given in Eqs. (3.16) and (3.17) is
completely rigorous for such functions. Another proof is

given below in connection with T' '[A(x)—:0].
T' '=[i V+A(x)]: We set g(x)=f(x)/P(x) as before

and follow the same manipulation as in Eq. (3.17), but re-

placing V by V iA(x—) The o. nly essential difference is
that we get an extra term

i f VP(x) A(x) ~g(x)
~

d x,
but this vanishes when the real part is taken. Strict posi-
tivity follows from the fact that (i V —A)g cannot vanish
identically.

T' '=( —6+1)'~ —1: Here we have to work in
momentum space. T' 'f is defined to be the function
whose Fourier transform (T' 'f) is

K(k,q)=[n(k)+n(q)] '
~

k —q ~
[n(k)+n(q)]

)& [m (k)+ m (q)], (A9)

with n(k)=(k + I)'~. The last two factors in Eq. (A9)
are

B(k,q)=k +q +2[n(k) —1][n(q)—1] . (A10)

Now the first factor can be written as an integral over
product functions, namely,

f ds expI —s [n (k)+n (q)] I,
and this does not affect the positive definiteness. As for
the rest we have two terms, namely,

~k —q~ (k +q ),
which is positive definite as we just proved for T'", and

~

k —q ~
[n (k) —l][n (q) —1] .

in L2. Then

t = lim t"= lim Q(g",g") &Q(g,g) &0 .
n~oo n~oo

Finally, we want to let C~O (if that is the case at
hand). With f and P fixed, let Pc P+C, gc f/—(—P+C). ——
With Yc ——P/(P+C), we have that 0~ Yc(1, and Yo~l
pointwise almost everywhere. Then tc~t by dominated
convergence. Also, gc~g =f/P and gc~g in L .
Again,

t = lim tc lim Q (gc,gc) & Q
——(g,g) & 0 .

C~O C~0

This completes the proof for T'", T' ', and T' '

[A(x) —= 0]. The general case T' ' [A(x) &0] follows
from the T' ' case and Lemma 3, in which C is the multi-
plication operator I/P(x) and B is the operator T' ', and
the integral representation

But this last term is a positive definite kernel times a
product function, so it too is positive definite. This con-

cludes the proof that t & 0 if C & 0 and A(x) =0 for T' '.
Thus far we have proved that t&0 when (i) f~Co",

and (ii) C & 0. In all cases we found that
t =Q (g,g) with Q being a positive definite quadratic form
and g =f/P. Let us first remove condition (i). There ex-
ist sequences f" and dp" such that P"~P pointwise al-
most everywhere and f"~f, Tf"~Tf, and
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(8+1)'~ —1=m. '8 f (x —1)'~ x '(x+8) 'dx,

(Al 1)

Q.E.D.
Lemma 3 (in collaboration with M Loss): Let H be a

Hilbert space with an inner product (,.) and let 8 and C
be non-negative, self-adjoint linear operators with domain
D(B)Q(C). Suppose that

(i) (8+x) ': D(C)~D(C), all x )0
(ii) Re(8$, CQ) &0 (respectively, )0),

Fubini's Theorem cannot be used since v is not positive.
However, by the polarization identity,

dv(P, CP;A, ) = —,
' dv(a, a;A, )——,

'
dv(b, b;A, )

+ ,' id—v(c,c;A, ) —,' id—v(d,d;I,),
where a =/~CD, b =P CP—, c =P iC—P, and
d =P+iCP Ea. ch of these four measures is non-negative
and, since g (8) is bounded, each integral is finite. Thus,
we can exchange the order of integration and

I,= f dp'(x)M (x)

all O~QED(8) flD(C) with

(iii) g(A, )= f dp(y)(sk~t)(k+y) (A12) M(x)=(G„P,C$)

with s, t &(), s+t&0, and p+0 a non-negative Borel mea-
sure on R with p I ( —ca, 0] I =0 and

py I+y -'(~ .

Then

Re(g (8)P, CP) & 0 (respectively, & 0),
all /ED(g(B)) flD(C) . (A13)

Proof: First, consider the special case

g (A ) =g„(A ) =(sA, +t)(A+x)

for some fixed x & 0. Then G„=g„(8)is bounded and we
want to prove that I=(G P, CP) satisfies ReI& 0 (respec-
tively, &0) for all 0&/ED(C). Let P=(8+x)
whence

0~$C D (8) flD (C) .

Since (8+x)/CD(C) then lf and BQED(C). Thus,

I=((sB+t)g, C(8+x)P) =s(BQ, CBP)+sx(BQ, CP)

+t(P, CBQ)+tx(P, CP) .

Since (g, CBQ) =(CP, Bg)=(Bg, CP)', we have

ReI)(sx+t)Re(8$, Cll)&0 (respectively, )0) .

Now let I = (g (8)P, CP ) with

Q ED(g (8)) flD (C)

ReM (x) & 0 (respectively, & 0). Therefore,
lim, OReI, & 0 (respectively, & 0). On the other hand,

I —I,=([g(8)—g'(8)]P, CP) .

Since P C D(g (8)), it is easy to see that [g (8)
g, (8)]P—+0. Thu—s,

Q.E.D.
Remark: Suppose that g(A, ) is another function with

the same kind of representation as in Eq. (A12). Then,
starting with Eq. (A13) and with the pair g(B),C instead
of B,C, one can apply Lemma 3 to g(C) and deduce that

Re(g(8)t)f, g(C)P) &0 (respectively, )0),

all /ED(g(8)) flD(g(C)) . (A14)

It is merely necessary to verify that for all x & 0,

(C+x ) '. D(g (8))~D(g (8) ) .

This implies the following generalization of the results of
this paper:

(i) The relativistic kinetic energy (with magnetic field)
can be generalized to any function g of [p —A(x)] that
has the form of Eq. (A12).

(ii) The Coulomb potential 1/Ix
I

can be replaced
(everywhere) in Eq. (2.1) by v(x)=1/w( Ix I

) for any
function w with the representation

and, for 0&e&1,

I,=(g'(8)P, CP)
w(

I

x
I

) = f ds (y) (s
I

x
I

)(
I
x I +y) '. (A15)

with

g'(A, )= f dp'(y)(sA, +t)/(A, +y)

and where p' is p restricted to the interval (e, 1/e). Clear-
ly, g'(8) is bounded and

I,= f dv(Q, CQ;A, ) f dp'(y)(sl, +t)/(A, +y),

where v(P, P'; ) is the spectral measure of 8 associated
with P,P'. We want to show that

I,= f dp'(y) f dv(Q, CQ;A, )(sA. +t)/(iL+y) .

With s&0 and p&0. For example, 1/Ix
I
~ Ix I

0&p&1 is allowed. It is easy to check that C=w( Ix I
)

satisfies

(C+A, ) '. D(T") D(T"), i =1,2, 3

for A, )0. It is also necessary to check that the "triangle
inequality"

w(lx I)+w(lz l))w(lx —z I)

holds, and this is easily seen to be the case from Eq.
(A15). [It is the requirement of the triangle inequality
that dictates s Ix I, instead of s Ix I

+t, in Eq. (A15).]
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2. Eliminating infinity

After Eq. (3.5) we made the assumption that all quanti-
tites in Eqs. (3.1)—(3.5) were finite. Conceivably, this need
not be true with P given by Eq. (3.11). To remedy this de-
fect replace P in Eq. (3.11) by

Pc(x) =P(x)+C,

Then all quantities are finite. Denote R (respectively, A)
with Pc by Rc (respectively, Ac). Binding cannot occur if
Rc &Ac for any C (here, the fact that t & 0 is ignored).

As C~O, Rc and Ac have finite limits R and A which,

by dominated convergence, are the R and 3 given in Eq.
(3.14). Thus, it suffices to show that R &3 when condi-
tion (2.10) or (2.11) is violated. In the earlier proof in

Secs. IV and V it was shown that R &3 by using the tri-
angle inequality

0= =2 g jJ,,M,j(5j pj——5, +p, )
cl s=1

for 1 &j& r, where M is the t-square matrix

Mj= I p(x) Ix —R,
I

'Ix —Rj I

'P(x) d x .

(83)

Clearly, M is symmetric and positive semidefinite and,
most importantly, M has positive matrix elements.

Eq. (83) can be rewritten in the following way (recalling
that p, &0 for 1 & s & t):

pose (without loss of generality) that p&, . . . , p, & 0,
du, +~, . . . , px ——0. (Not all the p, can vanish since 0 is
not in D. ) For 1 & s & t, 5,(p) is differentiable in

p&, . . . , p, and for t+ 1 &s &E, 5,(p):—0 in a (r
dimensional) neighborhood of this point. Therefore, at
the minimum,

I

x —xj I
&

I
x

I
+

I xj I

.

This inequality will now be investigated more closely to
show that, in fact, R & A.

If we look at Eq. (5.11), for example, we have, after in-

tegrating over the variables other than x;=x and xj ——y,
an expression of the form

I = Jf(x»(lx I+ Iy I
) lx —y I

and we wish to show that

NU =U,
where N is a matrix and U is a vector given by

v, =(5, —p, )5,'

Xj=Mqp, pj(5, 5j )

The fact that

jLcgpjMgj =5j

has been used which, in terms of X, reads

(85)

(86)

(88)

L &M—: xy x y&0. (A17)

Note that f (x,y) is a non-negative function in I. ', and not
a distribution. The function

with
1/2

ws =5s (810)

APPENDIX 8: SOLUTION OF EQ. (5.20)

Let p denote (p~, . . . , px ) and consider the function

K
+(p) = g [5,(p) —p, ]' (81)

s=1

g«»=( lx I+ ly I
) lx —y I

satisfies g & 0 and g=O if and only if y = bx with b &—0.
The set on which this occurs has six-dimensional Lebes-

gue measure zero. Thus, g&0 almost everywhere. Since

f& 0 on a set of positive measure, f fg & 0 and hence Eq.
(A17) holds.

Now X is symmetric and has strictly positive matrix
elements. By the Perron-Frobenius theorem, X has a
unique eigenvalue of largest modulus A, . Moreover, this
eigenvalue is positive and has only one eigenvector u,
which (up to a phase) has strictly positive components.
Equation (89) implies that A, = 1 and u =w for, otherwise,
taking the inner product of Eq. (89) with u we would ob-
tain (A, —l)(u, w)=0, which is impossible since (u, w) &0.
Thus, the solution to Eq. (85) is

(811)

where c is a constant. This means that

5, —p, =c
defined on the positive orthant D: p; &0, but excluding
the origin p=O. The p, are fixed, strictly positive con-
stants satisfying g, p, = 1. 5, is of the form

5, = f p(x)[p, I
x —R,

I
-'/y(x)]d'x, (82)

with p= 1, and

for

1&s&t .

Summing this on s we obtain (since 5, =0 for s & t)

1 —g P, =ct .
s=1

(812)

(813)

P(x)= gp, lx —R,
I

Equation (82) implies g 5, = 1.
Now 5, (p) is continuous on D (in particular, 5,(p) =0 if

p, =0) and homogeneous of degree zero, i.e.,
5,(Ap)=5, (p). Therefore, F(jJ, ) has a minimum on D.
We want to show that this minimum is zero, whence
5,(p)=P, for all s. Let p be a minimum point and sup-

If t =K, the left-hand side of Eq. (813) is zero and we
are finished. If t &K, then c&0. In the latter case, re-
place p, =0 by p, =e for t &s &E and with e&0. It is
easy to see that 6, decreases for 1 & s & t and 5, becomes
strictly positive for t & s & K. If t is small enough,
(5, —P, ) will decrease for all 1&s &K. Thus, F(p) will

decrease; as this is a contradiction, t =K and the proof is
complete.
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