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Approximate relativistic corrections to the atomic radial wave functions of the recently reported
Z method are presented based on the approach of Cowan and Griffin. The major relativistic effects
are shown to be incorporated into the wave function while retaining the nonrelativistic format. The
one-electron eigenvalues, total energies, expectation values of " for n=—1, 1, and 2 and spin-orbit
parameter values are reported. The results are comparable with the fully relativistic Dirac-

Hartree-Fock values.

I. INTRODUCTION

Photoelectron spectroscopy! has now developed into a
powerful tool for providing accurate electron binding en-
ergies. The electron binding energies provide a useful
check for the accuracy of the wave functions. The
Hartree-Fock (HF) scheme provides such accurate wave
functions. But computations using the HF method are
fairly complicated due to the presence of a nonlocal ex-
change potential. Slater? introduced the local density ap-
proximation to the HF exchange potential and the method
is commonly known as the Hartree-Fock-Slater (HFS)
method. Gopinathan® proposed an improved local ap-
proximation by evaluating the self-interaction term expli-
citly and treating the remaining exchange as in the HFS
method. This method is now called the = method. The =
method has been further improved by Tseng and White-
head* and more recently by Vaidehi and Gopinathan.’
The Z method® has been shown to give orbital eigenvalues
and total energies of nearly HF accuracy. The purpose of
this paper is to extend the = method to the relativistic
case.

There is abundant evidence® in the literature indicating
the importance of taking into account the relativistic ef-
fects in atomic structure calculations. The most rigorous
way of doing this is the Dirac-Hartree-Fock (DHF)
method which was formulated by Grant.” The DHF com-
puter code and DHF results® for atoms (Z =1—120) are
available. In the many-electron Hamiltonian of this
method, the one-electron operators are the hydrogenic
Dirac Hamiltonians and the two-electron operators are the
same as in the nonrelativistic Hamiltonian. In solving the
DHF problem exactly, one computes two radial wave
functions for each set of central-field quantum numbers #,
1, and j, commonly known as large and small components.
As in the nonrelativistic case, the DHF nonlocal exchange
potential can be approximated by Slater’s exchange poten-
tial. This method, called the Dirac-Hartree-Fock-Slater
(DHFS) method,” is somewhat simpler than the DHF
method. But in both the DHF and DHFS methods, one
has to compute nearly 4 times as many wave functions as
in the nonrelativistic method. So it is desirable to have a
simpler relativistic method, within the format of the non-
relativistic model, but incorporating major relativistic ef-
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fects. Cowan and Griffin’s!® approach provides one such

scheme. Wood and Boring'! have applied this approach
to the DHFS method. In the present work, the approach
of Cowan and Griffin is applied to the = method.

II. THE METHOD

First, we briefly describe the relevant features of the

nonrelativistic £ method.> The total energy of the atom
or ion can be written exactly as

(E)= 3 nuf(r)f u;(r)dr
+= f p(rp(r')g,dr dr'

—1 fpf(r)U?"c(r)dr—% fpl(r)U?‘c(r)dr ,
(1)
where u;’s are the spin orbitals with occupancy n;;
2Z 2
flz—vz—_ y 8= B »
r |r—r']

pr(P)= 3 nuf (Pu(r) , p(r)=pr)+p,(r),
if
p(r) is the total charge density, U$°(r) is the exchange
correlation potential at point » for up-spin electrons, and

—

similarly for U{*(#). In the E method, the exchange
correlation potential is separated into a self-interaction
part® and a pure exchange part as

UT(r)=Ui(r)+UF(r) .

The self-interaction part, which is evaluated exactly, is
given by

Uiin=73, [n;u}"(r)u,-(r) f niul (' u(r')g,dr' ]/p,(r) .
iT
(2)

The exchange potential U$*(#) is given by the weighted
average over all occupied up-spin orbitals:’

U?x(r): 4771/3(21/3_1)(1/nr+%)—2/3

X E‘p‘.,T (M7l (Pu(r) /py(r),  (3)
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where n, equals the total number of up-spin electrons,
p;» (r) is the density of electrons of up spin at point 7, ex-
t

cluding the density of the electron in spin orbital u; (r),
o (r)= S nmuj(rur) .
J (3#0)

Substitution of Egs. (2) and (3) into Eq. (1) and the appli-
cation of the variational principle to (E) leads to the set
of one-electron Schrodinger equations:

L1+ VA +VE )+ VN (N=€; (r) . (@)
J

Vi (r)=—4' P21 A~ 1)(1/n, +4)727

The = wave functions u;’s and the eigenvalues €;’s are ob-
tained as usual by the iterative solution of Eq. (4).

The equations for the Dirac-Hartree-Fock central-field
problem!? written in Rydberg units are

dPy(r) K 2 «
T+—Pnk(r)_ ;‘*‘E‘[V(r)—enk] Qi (r)=
(8a)
dQui(r)
le; —an( r)+ —[V(r)—enk] Py (r)=0, (8b)

where V(r) is the central-field potential, €, is the eigen-
value (less the rest energy of the electron), k is the rela-
tivistic quantum number

k=—(j+3)aandl=j—+a, a==*1

and a, the fine-structure constant, is equal to 1/137.036.
P, (r) is the large component and it approaches the nonre-
lativistic central-field radial wave function P,; for small
atomic numbers. The standard treatment for this coupled
set of equations is to solve the Eq. (8a) for Q and substi-
tute it into Eq. (8b) to get

d?P,(r) (
dr =(g + )Py (r) 9)
with
g=—€m+ ”lr“) +V()

dr? r?

Cowan and Griffin have made use of the appropriate
nonlocal HF potential for the third term in Eq. (11). For
the relativistic terms, they have used the Hartree-exchange
(HX) potential function of the HX method,'? evaluated
from HF radial wave functions. Gopinathan® has pointed
out that the Hartree-exchange potential function of the
HX method is not variationally derived.

2
+Vir) =& — Vi) P—8y0%- b+—k,Vmﬂ —

V. SELVARAJ AND M. S. GOPINATHAN 29

V<r) is the Coulomb potential given by
ver = 2‘, ny [ uf (g, dr (5)

and Vi(r) is the self-interaction potential of the electron in
Ui

V,-’f(r)=—n,- fu}'(r’)u,-(r')g,,'dr'. (6)

Vftx( r) is the variationally determined pure exchange po-
tential of the = method and is given by

2pi,1(r)pT_2/3(r) 20731 3 miu F(Pu(rp,, (r)] (7
iy
|
and
dav(r) 1
=—K[e—V(r]*—KB——~ —
4 [e=Vin] dr dr r ]
_kp|EEL ]dV(r)
r dr

=H, (r)+Hp(r)+H, (r),

where

—1
K=a?/4, B= 1+“—2[e— V(r)]J
- , B= ; )

The operator f is the sum of the mass velocity H,,(r),
Darwin Hp(r), and spin-orbit coupling H,, (r) terms.
The spin-orbit term only depends on the value of the rela-
tivistic quantum number k. For the present we neglect
the spin-orbit term in the potential and choose to evaluate
spin-orbit coupling parameters by perturbative theory.
Thus from Eq. (9) we get the following second-order dif-
ferential equation:

- +I(lr+1)+V(r)+H (r)+ Hp(r) | Py(r)

=e,,1P,,1(r) . (10)

If we approximate V(r)=—2Z/r, then the Darwin
correction is positive for all orbitals with / =0, and it is
zero for all orbitals w1th 150, we get the equation used by
Cowan and Griffin,!°

“Lavir) (dP/dr

P, — |Pi(r)=¢€;Pi(r) . (11)

I
We have used the local density potentials ¥'z(r) of the =

method for the central-field potential and in the relativis-
tic terms in Eq. (11):

Vel)=— 22 V) + VI + VD) (12)



29 RELATIVISTIC £ METHOD FOR ATOMS

472100  Rp (a)

47m00 L
281400

Yo —_

28100.0 G
148%%0 Xe ——

14882.0 |
5578.0 |

5574.0 |
1057.6

1057.0

DHF RE HFR

~-3480.0 (b)

RN —

-33800 |-
13600 T

Yb  —

y)
/
/

-13200 |- S—
$-4300T  xe

-418.0
-7.0

Relativistic corrections (R
/

-70.0
-3.80

TRT

-3.40

ApHF ARy AHFR

FIG. 1. (a) Relativistic total energies of atoms by the DHF,
RZ, and HFR methods. (b) Relativistic corrections to the total
energies by the DHF, RE, and HFR methods. Apyr is given by
(Epur—Eyr); Agrz is given by (Exz —Ez) and Aggg is given by

where V<(r), Vi(r), and V*(r) are given by Egs. (5), (6),
and (7), respectively. It is already pointed out that the po-
tential V=(r) is variationally derived. We shall designate
the present method as the relativistic = method (RZE).

We have solved Eq. (11) numerically by means of stan-
dard self-consistent-field (SCF) procedures. Two initial
values, needed to start the outward integration via the
Numerov method, are obtained by means of a small r
series solution as described in the Appendix of Ref. 10.
The relativistic operators are treated as part of the poten-
tial function. For the first SCF iteration, the relativistic
terms are completely neglected; for the nth iteration, the
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FIG. 2. 1s orbital eigenvalues of various atoms by the HF,
DHF, E, and RE methods.

values of P;(r) and ¢; determined in the (n — 1)th iteration
are used. The radial mesh used is the Herman-Skillman'*
mesh in which the first mesh point r; is given by
r1=¢X0.0025 with ¢ = +(37/4)*3Z 173,

III. RESULTS

Table I gives a comparison of the total energies for vari-
ous atoms as determined by the present R= method with
those found by the DHF method and the Hartree-Fock re-
lativistic (HFR) method. Egz refers to the total energy of
Eq. (1) calculated using RE wave functions and the HF
Hamiltonian. Gopinathan and Rao'’ have pointed out
that it is appropriate only to compare the total energy of
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FIG. 3. 2p orbital eigenvalues of various atoms by the HF,
DHF, E, and RE methods.
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FIG. 4. 4f orbital eigenvalues of various atoms by the HF,
DHF, =, and RE methods.

the system calculated using an approximate wave function
with the exact minimum energy of the same Hamiltonian.
Table I demonstrates that, in the nonrelativistic case, the
Ez values compare well with the HF total energies, and in
.the relativistic case, the Exz values compare well with
DHF total energies. Table I and Fig. (1a) also show that
the Erz values are in better agreement with the DHF
values than the values of the HFR method of Cowan and
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FIG. 5. Radial plot for the 1s orbital of mercury. Solid line
represents the relativistic wave function of the RE method and
the dashed line indicates the nonrelativistic wave function of the

Z method.
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FIG. 6. Radial plot for the 4f orbital of mercury. Solid line
represents the relativistic wave function of the RE method and
the dashed line indicates the nonrelativistic wave function of the

= method.

Griffin. The fact that the nonrelativistic HF and E total
energies are nearly the same whereas the relativistic HFR
total energy is poorer than that of the RE values shows
clearly that the present relativistic treatment is more accu-
rate than that of Ref. 10. This is obvious from Fig. (1b),
where the relativistic corrections by the various methods
are compared.

Table II gives a comparison of the one-electron eigen-
values for the various atoms by the present RE method,
the DHF method, and the nonrelativistic HF and =
methods with experimental binding energies obtained by
electron spectroscopy for chemical analysis (ESCA) mea-
surements.! The one-electron eigenvalues for uranium,
obtained by the HFR method, also appear in Table III. In
Tables II and III the RE eigenvalues refer to the HF one-
electron eigenvalues calculated using RE wave functions.
Tables II and III indicate, generally for all orbitals, that
RE values are in satisfactory agreement with those ob-
tained by the DHF method. The agreement is particularly
satisfactory for the valence orbitals. For instance, our cal-
culated valence orbital energy for the mercury 6s orbital is

—0.645 Ry and the corresponding DHF value is —0.656
Ry. Tables II and III also show small but systematic
discrepancies for the inner-shell energies of heavy atoms.
The calculated RE value for mercury ls orbital energy is

—6164.1 Ry whereas the corresponding DHF value is

—6148.5 Ry. Part of this discrepancy may be due to the

finite size of the nucleus® employed in the DHF method;

we have employed the point-nucleus model in our calcula-
tions. Another discrepancy occurs for the inner shells 1s,
2s, and 2p in uranium (Table III), for which the present

RE values are inferior to the HFR values. The reason for

this is not clear at present.

In Figs. 2, 3, and 4 we show the comparison of the
one-electron eigenvalues by the HF, DHF, =, and RE
methods for various atoms for various orbitals. These fig-
ures clearly show that the relativistic corrections by the
present method and the DHF method are comparable.

Table IV gives the expectation values of 7" (for n = —1,
1, and 2) for xenon, mercury, and uranium by the rela-
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TABLE I. Total energies (in Ry) for various atoms by the relativistic DHF, RE, and HFR methods

and the nonrelativistic HF and = methods.

Relativistic Nonrelativistic
Atom —Eppur* —Egs’ —Egnrr® —Eng! —Ez®
Ne(2p$) 257.3831 257.3504 257.3990 257.0948 257.0660
Ar(3p®) 1057.3669 1057.3046 1057.0660 1053.6370 1053.6198
Zn(3d'°) 3589.2363 3588.9257 3589.8131 3555.6940 3555.5380
Kr(4p®) 5577.7163 5577.2506 5574.7880 5504.1140 5503.9609
Xe(5p®) 14 893.8013 14 890.2080 14 883.5300 14 464.3000 14463.8610
Yb(4f!%) 28315.4392 28120.1210 28 104.8400 26782.8600 26782.2730
Hg(6s2) 39297.7060 39261.8790 39259.0086 36 817.9400 36817.0790
Rn(6p®) 47203.9558 47147.7620 47 115.8300 43733.5800 43732.3900
U(513%6d) 56 105.0414 56019.4180 51328.4354 51327.2360

*DHF values from Ref. 8.

®See the text for the explanation of symbols.
“Hartree-Fock-relativistic (HFR) values of Cowan and Griffin from Ref. 10. For the atoms Zn and Hg

the HFR values are taken from Ref. 16.

9Hartree-Fock average energy values from Ref. 17. Values for U taken from Ref. 18.

TABLE II. Comparison of orbital eigenvalues —¢; (in Ry) for various atoms by HF, =, DHF, and
RZ= methods with experimental binding energies.

Nonrelativistic Relativistic
Atom Orbital HF? =b DHF® RE® Expt.d
Ne 1s 65.5451 65.2391 65.6349 65.3293 63.9618
2s 3.8608 3.7669 3.8617 3.7779 3.5590
2p 1.7008 1.6216 1.6996 1.6207 1.5869
Ar 1s 237.2216 236.6493 238.2352 237.6992 235.6413
2s 24.6443 24.4085 24.8232 24.5893 23.9838
2p 19.1429 18.8998 19.1507 18.9150 18.3134
3s 2.5547 2.5177 2.5732 2.5363 2.1536
3p 1.1820 1.1530 1.1807 1.1519 1.1621
Kr 1s 1040.3320 1039.1797 1059.3710 1058.6990 1053.0687
2s 139.8067 139.1402 144.1596 143.6116 141.4627
2p 126.0194 125.3102 127.0887 126.5055 124.6527
3s 21.6990 21.4613 22.4489 22.2197 21.5215
3p 16.6630 16.4274 16.8303 16.6060 15.9500
3d 7.6504 7.4144 7.4943 7.2684 6.9298
4s 2.3059 2.2680 2.3755 2.3373 2.0140
4p 1.0484 1.0179 1.0468 1.0162 1.0450
Xe 1s 2448.8070 2447.1850 2554.5180 2555.4979 2540.6101
2s 378.6815 377.7408 404.9300 404.6909 400.8232
2p 355.5651 354.5529 363.3923 362.8151 359.7158
3s 80.3517 79.9218 86.0209 85.7181 84.4322
3p 70.4435 69.9993 72.2069 71.8266 70.6431
3d 52.2378 51.7644 51.4632 51.1056 50.0875
4s 15.7127 15.5538 16.8599 16.7179 15.6707
4p 12.0167 11.8613 12.2787 12.1269 10.9764
4d 5.5567 5.4139 5.3296 5.2006 5.0202
Ss 1.8889 1.8502 2.0203 1.9820 1.7126
5p 0.9146 0.8816 09148 0.8810 0.9234
Yb 1s 4209.1960 4207.3076 4535.3120 4542.3610 4508.2690
2s 692.0199 690.8602 777.7854 778.9684 771.0400
2p 660.3944 659.1516 688.6859 687.3961 682.9107
3s 158.3792 157.8126 179.4192 179.3423 176.4792
3p 143.8618 143.2676 151.7399 151.1508 149.2098
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TABLE II. (Continued).

Nonrelativistic Relativistic
Atom Orbital HF* =b DHF® RE=® Expt.?
3d 117.1693 116.5152 116.2222 115.9673 113.9728
4s 32.1902 31.9965 37.3450 37.2363 36.0162
4p 26.1673 25.9730 28.0149 27.7838 26.8778
4d 15.3226 15.1320 15.1289 14.9847 14.2595
4f 1.4647 1.3083 1.0107 0.8620 0.5460
5s 4.1977 4.1284 4.8790 4.8136 4.2631
S5p 2.4117 2.3407 2.5232 2.4364 2.4256
6s 0.3649 0.3497 0.3930 0.3749 0.4593
Hg 1s 5557.3690 5555.3859 6148.4700 6164.0942 6108.6365
2s 941.4719 940.1737 1100.5024 1103.8112 1091.1430
2p 904.3595 902.9795 958.1104 954.8370 950.3859
3s 226.2741 225.6121 266.2262 266.6287 262.1830
3p 208.6814 207.9823 223.8189 222.7984 220.1887
3d 176.2901 175.5155 174.7734 174.7568 171.7016
4s 51.1474 50.8962 61.2967 61.2721 54.2429
4p 43.3981 43.1474 47.0008 46.6248 45.1060
4d 29.2193 28.9685 28.7004 28.5708 27.1060
4f 10.0247 9.7952 8.7615 8.5824 7.6968
Ss 8.3643 8.2997 10.2061 10.1825 9.1878
5p 5.7019 5.6308 6.1479 6.0490 5.4147
5d 1.4284 1.3611 1.2096 1.1601 0.9408
6s 0.5221 0.5029 0.6561 0.6451 0.7644
Rn 1s 6460.6530 6458.3467 7282.3020 7307.2580 7232.9291
2s 1113.8300 1112.4455 1337.6060 1343.1836 1327.0856
2p 1073.3550 1071.8791 1149.6882 1143.8094 1140.8551
3s 276.8453 276.0867 333.6624 334.5580 329.5112
3p 257.3436 256.5552 278.9040 277.3017 271.1258
3d 221.4026 220.5221 219.3645 219.5518 216.2146
4s 67.8421 67.5158 82.6266 82.6865 80.5586
4p 58.9825 58.6568 64.1741 63.5811 62.4035
4d 42.6624 42.3312 41.7652 41.6194 40.3969
4f 20.2148 19.8934 18.6843 17.8531 17.4936
Ss 13.8119 13.6880 16.8180 16.7728 15.5825
Sp 10.4505 10.3288 11.1740 10.9900 10.6579
5d 4.6525 4.5429 4.1718 4.0956 3.8589
6s 1.7480 1.7106 2.1429 2.1144 1.7641
6p 0.8560 0.8231 0.8723 0.8276 0.8673

2Hartree-Fock values from Ref. 17.

bSee the text for the explanation of symbols.
°Dirac-Hartree-Fock values from Ref. 8. Values quoted are for the centers of gravity of j doublets.

dExperimental binding energies by ESCA (electron spectroscopy for chemical analysis) measurements

from Ref. 1.

tivistic DHF and RE methods as well as by the nonrela-
tivistic HF and E methods. From Tables II, III, and IV it
is quite clear that the present approach approximates the
major relativistic effects remarkably well. These tables
also support the following observations made earlier by
Mayers,'” Boyd et al.,?° Desclaux and Kim,?! and Rose
et al.®?

(i) In the inner core of an atom, the motion of an elec-
tron is primarily affected by the nuclear potential and the
direct relativistic effect dominates. This effect causes the
contraction of the orbital. Therefore, the relativistic s and

p electrons are more tightly bound than the nonrelativistic
ones, as is evident from the (r) values. For example, see
Fig. 5 where the relativistic contraction of the 1s orbital of
mercury is shown.

(ii) Because of the increased screening by the contracted
relativistic core, the nonpenetrating valence electrons do
expand. This is an indirect relativistic effect and because
of this the relativistic d and f electrons are more loosely
bound than the nonrelativistic ones. In Fig. 6 the rela-
tivistic expansion of the 4f orbital of mercury is shown.

(iii) However, the valence 6s orbital of mercury and 7s
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TABLE III. Comparison of orbital eigenvalues —¢; (in Ry) for various calculations on U(5f36d '7s?)
with experimental binding energies.

Nonrelativistic Relativistic

Orbital HF* =b DHF® RE=® HFR‘ Expt.°
1s 7433.4780 7431.3617 8558.4660 8598.4962 8591 8497
2s 1301.9399 1300.4437 1612.3184 1621.4147 1619 1599
2p 1258.0847 1256.4983 1365.0096 1354.5310 1357 1374
3s 333.3312 332.5270 413.2196 415.0074 415 407.8
3p 311.8888 311.0510 342.4964 339.9068 340.8 3379
3d 272.3442 271.4213 270.1173 270.5888 271.6 266.3
4s 87.0378 86.6612 108.6484 108.9070 109.0 106.0
4p 77.0320 76.6537 84.8512 83.9495 84.3 824
4d 58.5181 58.1392 57.5436 57.4187 57.8 55.5
4f 32.8164 32.4342 29.9379 29.6932 30.1 28.4
5s 20.1194 19.9604 25.1926 25.1652 25.3 23.8
5p 16.0654 15.9078 17.5423 17.2401 174 15.9
5d 8.8843 8.7360 8.3311 8.2224 8.37 7.3
5f 1.2689 1.1511 0.6627 0.5611 0.663
6s 3.3647 3.2880 4.2759 4.2123 4.28 5.2
6p 2.0715 1.9947 2.2083 2.0940 2.17 2.67
6d 0.5331 0.4707 0.3741 0.3290 0.376
s 0.3334 0.3143 0.4047 0.3830 0.4030

*Hartree-Fock values taken from Ref. 18.

bSee the text for explanation.

‘Dirac-Hartree-Fock values from Ref. 8. Values quoted are for the centers of gravity of j doublets.
9Hartree-Fock-relativistic values of Cowan and Griffin from Ref. 10.

“Experimental values by ESCA measurements from Ref. 1.

TABLE IV. Expectation values of 7" (n =—1,1,2) for Xe, Hg, and U (in atomic units). The num-
bers in parentheses indicate the powers of 10 by which the associated numbers are to be multiplied, e.g.,
0.5811(+2)=0.5811x10%

Atom, orbital,

and (r") DHF? HF® RE® =
Xe 1s (r-1 0.5811(+2) 0.5347(+2) 0.5806( + 2) 0.5345(+ 2)
(r) 0.2665(—1) 0.2814(—1) 0.2666(—1) 0.2814(—1)
(r?) 0.9634(—3) 0.1059(—2) 0.9635(—3) 0.1059(—2)
2s (r=1) 0.1361(+ 2) 0.1231(+2) 0.1333(+2) 0.1232(+ 2)
(r) 0.1140 0.1209 0.1143 0.1207
(r?) 0.1540(—1) 0.1716(—1) 0.1541(—1) 0.1711(—1)
2p (r-1) 0.1283(+2) 0.1229( + 2) 0.1272(+2) 0.1235(+ 2)
(r) 0.1001 0.1031 0.1001 0.1026
(r?) 0.1227(—1) 0.1292(—1) 0.1221(—1) 0.1278(—1)
3s (r=1 0.4884( + 1) 0.4527(+ 1) 0.4798(+ 1) 0.4502( + 1)
(r) 0.3046 0.3187 0.3061 0.3201
(r?) 0.1062 0.1159 0.1070 0.1169
3p (r-h 0.4607( + 1) 0.4445(+ 1) 0.4538(+ 1) 0.4436( + 1)
(r) 0.3030 0.3094 0.3040 0.3101
(r?) 0.1064 0.1108 0.1071 0.1112
3d (r-1 0.4321(+ 1) 0.4304( + 1) 0.4327(+ 1) 0.4316(+ 1)
(r) 0.2897 0.2803 0.2795 0.2798
(r?) 0.9258(—1) 0.9263(—1) 0.9222(—1) 0.9228(—1)
4s (r-1) 0.1950( + 1) 0.1843(+ 1) 0.1959( + 1) 0.1857(+ 1)
(r) 0.7172 0.7453 0.7159 0.7462
(r?) 0.5800 0.6256 0.5790 0.6286
4p (r-1) 0.1787(+ 1) 0.1741(+ 1) 0.1792(+ 1) 0.1759(+ 1)
(r) 0.7645 0.7770 0.7640 0.7770
(r?) 0.6646 0.6855 0.6646 0.6872

3013
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TABLE IV. (Continued).

Atom, orbital,

and (r") DHF? HF® RE® z°
4d (r-1) 0.1504( + 1) 0.1509( + 1) 0.1519(+ 1) 0.1528(+ 1)
(r) 0.8763 0.8705 0.8740 0.8680
(r?) 0.8944 0.8809 0.8908 0.8778
5s (r=% 0.6812 0.6479 0.7069 0.6732
(r) 0.1905( + 1) 0.1981(+ 1) 0.1861(+ 1) 0.1942( + 1)
(r?) 0.4111(+ 1) 0.4440( + 1) 0.3924( + 1) 0.4274(+ 1)
5p (r=% 0.5560 0.5472 0.5671 0.5619
(r) 0.2315(+ 1) 0.2338(+ 1) 0.2296( + 1) 0.2314(+ 1)
(r?) 0.6167(+ 1) 0.6277(+ 1) 0.6068( + 1) 0.6161(+ 1)
Hg 1s (r=1) 0.9750( + 2) 0.7945( + 2) 0.9750( + 2) 0.7943( + 2)
(r) 0.1691(—1) 0.1892(—1) 0.1658(—1) 0.1892(—1)
(r?) 0.3809(—3) 0.4780(—3) 0.3803(—3) 0.4783(—3)
2s (r~ 1) 0.2403( + 2) 0.1873( + 2) 0.2294( + 2) 0.1874( + 2)
(r) 0.6923(—1) 0.7962(—1) 0.6975(—1) 0.7952(—1)
(r?) 0.5735(—2) 0.7429(—2) 0.5766(—2) 0.7408(—2)
2p (r=1 0.2091( + 2) 0.1874( + 2) 0.2016( + 2) 0.1880( + 2)
(r) 0.6276(—1) 0.6734(—1) 0.6335(—1) 0.6710(—1)
(r?) 0.4853(—2) 0.5491(—2) 0.4895(—2) 0.5449(—2)
3s (r=1) 0.8830( + 1) 0.7284( + 1) 0.8500( + 1) 0.7268( + 1)
(r) 0.1798 0.20004 0.1803 0.2006
(r?) 0.3712(—1) 0.4577(—1) 0.3720(—1) 0.4581(—1)
3p (r-1) 0.7943(+ 1) 0.7226( + 1) 0.7640( + 1) 0.7230( + 1)
(r) 0.1809 0.1911 0.1820 0.1909
(r?) 0.3813(—1) 0.4222(—1) 0.3831(—1) 0.4209(—1)
3d (r—1) 0.7269( + 1) 0.7144( + 1) 0.7266( + 1) 0.7170( + 1)
(r) 0.1651 0.1670 0.1646 0.1663
(r?) 0.3195(—1) 0.3256(—1) 0.3168(—1) 0.3225(—1)
4s (r=Y 0.3720( + 1) 0.3193(+ 1) 0.3649( + 1) 0.3182(+ 1)
(r) 0.3990 0.4393 0.3989 0.4414
(r?) 0.1798 0.2172 0.1796 0.2193
4p (r=1) 0.3349(+ 1) 0.3103( 4 1) 0.3261(+ 1) 0.3097(+ 1)
(r) 0.4232 0.4433 0.4249 0.4449
(r?) 0.2039 0.2228 0.2050 0.2245
4d (r=1 0.2958( + 1) 0.2920( + 1) 0.2942(+ 1) 0.2919( + 1)
(r) 0.4481 0.4503 0.4489 0.4512
(r?) 0.2336 0.2336 0.2325 0.2347
af (r—1) 0.2537(+ 1) 0.2584(+ 1) 0.2548( + 1) 0.2595(+ 1)
(r) 0.4804 0.4692 0.4781 0.4672
(r?) 0.2775 0.2634 0.2746 0.2610
5s (r=h 0.1488( + 1) 0.1303(+ 1) 0.1510( + 1) 0.1338(+ 1)
(r) 0.9152 0.1010( + 1) 0.9009 0.1000( + 1)
(r?) 0.9396 0.1143(+ 1) 0.9105(+ 1) 0.1122(+ 1)
5p (r-1) 0.1270(+ 1) 0.1193(+ 1) 0.1279(+ 1) 0.1220(+ 1)
(r) 0.1048(+ 1) 0.1095( + 1) 0.1037(+ 1) 0.1084( + 1)
(r?) 0.1216(+ 1) 0.1355(+ 1) 0.1216( + 1) 0.1329(+ 1)
5d (r=1 0.8943 0.9103 0.8864 0.9079
(r) 0.1472(+ 1) 0.1433(+ 1) 0.1493(+ 1) 0.1454(+ 1)
(r?) 0.2566( + 1) 0.2410( + 1) 0.2646( + 1) 0.2494( + 1)
6s (r=Y 0.4506 0.3761 0.4818 0.4149
(r) 0.2843(+ 1) 0.3328(+ 1) 0.2655(+ 1) 0.3058(+ 1)
(r) 0.9353(+ 1) 0.1280( + 2) 0.8102(+ 1) 0.1078( + 2)
U 1s (r-1) 0.1224(+ 3) 0.9144( + 2) 0.1227( + 3) 0.9142( + 2)
(r) 0.1366(—1) 0.1644(—1) 0.1363(—1) 0.1644(—1)
(r?) 0.2620(—3) 0.3610(—3) 0.2609(—3) 0.3610(—3)
2s (r=1) 0.3096( + 2) 0.2170( + 2) 0.2898( + 2) 0.2172(+2)
(r) 0.5653(—1) 0.6877(—1) 0.5714(—1) 0.6869(—1)
(r?) 0.3858(—2) 0.5539(—2) 0.3887(—2) 0.5525(—2)
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TABLE IV. (Continued).

Atom, orbital,

and (r") DHF* HF® RE® =
2p (r=1 0.2548( + 2) 0.2172( 4+ 2) 0.2395(+ 2) 0.2178(+ 2)
(r) 0.5263(—1) 0.5804(—1) 0.5350(—1) 0.5786(—1)
(r?) 0.3439(—2) 0.4075(—2) 0.3497(—2) 0.4047(—2)
3s (r=1) 0.1128( + 2) 0.8558( + 1) 0.1068( + 2) 0.8546( + 1)
(r) 0.1470 0.1711 0.1475 0.1711
(r?) 0.2491(—1) 0.3333(—1) 0.2492(—1) 0.3332(—1)
3p (r=% 0.9753(+ 1) 0.8509( + 1) 0.9183( + 1) 0.8517(+ 1)
(r) 0.1505 0.1624 0.1519 0.1622
(r?) 0.2648(—1) 0.3048(—1) 0.2670(—1) 0.3037(—1)
3d (r=Y 0.8666( + 1) 0.8444( + 1) 0.8643(+ 1) 0.8473(+ 1)
(r) 0.1385 0.1409 0.1382 0.1403
(r?) 0.2244(—1) 0.2311(—1) 0.2228(—1) 0.2291(—1)
4s (r~1 0.4820( + 1) 0.3884( + 1) 0.4660( + 1) 0.3862(+ 1)
(r) 0.3198 0.3640 0.3198 0.3658
(r?) 0.1156 0.1490 0.1154 0.1504
4p (r1 0.4237(+ 1) 0.3804( + 1) 0.4049( + 1) 0.3788(+ 1)
(r) 0.3418 0.3637 0.3442 0.3652
(r?) 0.1331 0.1498 0.1342 0.1510
4d (r=1) 0.3723(+ 1) 0.3648( + 1) 0.3686( + 1) 0.3640( + 1)
(r) 0.3570 0.3603 0.3581 0.3612
(r?) 0.1467 0.1489 0.1473 0.1498
Af (r=1) 0.3351(+ 1) 0.3397(+ 1) 0.3363(+ 1) 0.3409( + 1)
(r) 0.3544 0.3481 0.3529 0.3470
(r?) 0.1469 0.1412 0.1456 0.1403
5s (r=1 0.2111(+ 1) 0.1776( + 1) 0.2103(+ 1) 0.1793(+ 1)
(r) 0.6720 0.7567 0.6662 0.7563
(r?) 0.5043 0.6377 0.4961 0.6386
5p (r=1) 0.1804( + 1) 0.1686( + 1) 0.1805( + 1) 0.1703(+ 1)
(r) 0.7497 0.7900 0.7487 0.7892
(r?) 0.6317 0.6981 0.6287 0.6981
5d (r=1 0.1488(+ 1) 0.1485(+ 1) 0.1496( + 1) 0.1501( + 1)
(r) 0.8868 0.8813 0.8836 0.8793
(r?) 0.8930 0.8794 0.8861 0.8764
5f (r=1) 0.9224 0.1025(+ 1) 0.9193 0.1022(+ 1)
(r) 0.1445(+ 1) 0.1274( + 1) 0.1456( + 1) 0.1286( + 1)
(r?) 0.2583(+ 1) 0.1944( + 1) 0.2617(+ 1) 0.1983(+ 1)
6s (r=1) 0.8848 0.7469 0.8969 0.7659
(r) 0.1497( + 1) 0.1708( + 1) 0.1472(+ 1) 0.1690( + 1)
(r?) 0.2505( + 1) 0.3248(+ 1) 0.2421(+ 1) 0.3189(+ 1)
6p (r=1 0.7152 0.6636 0.7101 0.6759
(r) 0.1820( + 1) 0.1914(+ 1) 0.1818(+ 1) 0.1904( + 1)
(r?) 0.3746( + 1) 0.4114(+ 1) 0.3724(+ 1) 0.4080( + 1)
6d (r=Y) 0.3986 0.4419 0.3988 0.4371
(r) 0.3236( + 1) 0.2875(+ 1) 0.3254(+ 1) 0.2964( + 1)
(r?) 0.1246( + 2) 0.9629( + 1) 0.1260( + 2) 0.1036( + 2)
s (r=1) 0.2879 0.2418 0.3128 0.2700
(r) 0.4341(+ 1) 0.5050( + 1) 0.4047(+ 1) 0.4659(+ 1)
(r?) 0.2141( + 2) 0.2884( + 2) 0.1861(+2) 0.2467( + 2)

2Weighted average of the Dirac-Hartree-Fock values from Ref. 8.

YHartree-Fock values from Ref. 18.
“Present work.

orbital of uranium contract. This has been attributed to
the expansion of 5d in the case of mercury and 6d in the
case of uranium causing a decrease in the shielding of the
valence s electrons by the d electrons. Hence a contraction
of the valence orbital occurs.

(iv) For the valence orbitals, the relativistic values are

closer to the experimental binding energies than the nonre-
lativistic values.

Experimental and calculated spin-orbit parameter
values for uranium appear in Table V. We have used
first-order perturbation theory to compute the spin-orbit
parameter. The usual Pauli form of the spin-orbit opera-



3016

V. SELVARAJ AND M. S. GOPINATHAN

TABLE V. Spin-orbit parameters (in Ry) for uranium (5/36d '7s2).

Orbital HF* =t DHF® RE¢ HFR® Expt.f
2p 132.8 134.492 187.8 192.670 199.1 185.3
3p 30.1 30.306 43.72 43.989 46.2 43.0
3d 4.93 4.996 5.29 5.364 5.33 5.17
4p 7.80 7.778 11.54 11.355 11.98 11.2
4d 1.166 1.165 1.288 1.253 1.264 1.23
Af 0.231 0.237 0.250 0.227 0.221 0.23
5p 1.761 1.857 2.763 2.687 2.701 3.2
sd 0.216 0.229 0.334 0.239 0.230 0.26
s5f 0.021 0.022 0.017 0.017 0.016
6p 0.267 0.299 0.539 0.431 0.427 0.49
6d 0.021 0.017 0.014 0.014 0.019

*Hartree-Fock values taken from Ref. 10.

®Nonrelativistic Z values calculated using the operator &(r)=2Kr~'dV (r)/dr.
“Dirac-Hartree-Fock values calculated using Eq. (16) in the text.

9Present work.
¢Taken from Ref. 10.
fExperimental values quoted in Ref. 10.

tor'? for a central-field problem is given by

=14y
1+1)7 ar 13
where —1I refers to j =1+~ and (I +1) to j =/ —5. The
more correct form of the spin-orbit operator,'®!! obtained
from Eq. (9), is given by

H,,o (r)=BH{, (r). (14)
We have used the following operator in the perturbation

theory to compute spin-orbit parameter values:
1 dV(r) (15)

§(r)=2KB7—Er—‘ s

H, (r)=—K

where
—1

K=a*/4, B=

’

2
1+%k—wm

and V(r) is the Z potential given by Eq. (12). The spin-
orbit parameter values quoted in Table V for the DHF
method are calculated using the equation

2

gnlzm(enlj+*enlj_) , (16)
where the €’s are the central-field eigenvalues, taken from
Ref. 8. Except for the 2p spin-orbit parameter values, all
the other values by the present method are comparable to
the DHF and experimental values. The higher value for

the 2p orbital may be due to the fact that the expectation
value of » ~'dV (r)/dr is very sensitive to the nature of the
wave function near the nucleus; furthermore, we have not
considered the finite size of the nucleus in the present cal-

culations.
IV. CONCLUSIONS

The results given above show that the RZ method
presented in this paper is able to approximate the major
relativistic effects of contraction and dilation of the orbi-
tals. The present method is somewhat simpler than the
HFR method of Cowan and Griffin in the sense that the
fairly tedious nonlocal exchange computations are absent,
and may save considerable computer time when this po-
tential is used in molecular calculations. Total energies of
atoms calculated by the R= method are closer to the DHF
results than the previously reported HFR results. The re-
lativistic effects on the spin-orbit coupling parameter are
also well described by our formalism as is evident from
the results for U. Note that this method does not distin-
guish between the spin-orbit levels for electrons with /540.
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