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Earlier work applying equations of the channel-coupling array theory of many-body scattering to
H,* and H, has been extended. Primary consideration has been given to the use of the Galerkin-
Petrov method, by which the non-Hermitian matrix equations of the theory have been solved ap-
proximately with the use of globally defined bases as expansion sets. For H, ", both hydrogenic and
Hylleraas-Shull-Lowdin functions were used, but neither set led to minima in the ground-state
(gerade) potential-energy curves which lie higher than the exact value nor indicated a convergence
to the correct minimum value. Only hydrogenic functions were used for H; in a two-channel trun-
cation approximation. Slow convergence (from above) to the exact minimum in the singlet ground-
state potential-energy curve was indicated. The inner minimum in the H, E 'S} curve originally
calculated by Davidson was reproduced to within 0.002 a.u. by an extremely simple covalent ap-
proximate calculation; there was no indication of Davidson’s outer, ionic minimum, but this is not
surprising since an ionic component was not built into our approximation. The HeH* ground state
was also determined. The equilibrium separation and energy minimum for the ground state was rel-
atively accurate given the simple (Eckart) wave function used to approximate the He ground state.
In addition to these results, the nonphysical H,* ungerade and H, triplet potential-energy curves
found in the earlier one-state approximate calculations also occurred in the present computations.
The failure to achieve accurate convergence and the persistence of nonphysical potential-energy
curves remain serious problems that require further investigation. A resolution of both these prob-
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lems for H,* has been achieved and is described in the following paper.

I. INTRODUCTION

Collisions involving few-body systems occur in many
branches of physics, well-known examples being low-
energy neutron-deuteron or atom-diatom scattering.
These are among the simplest realistic examples in which
the total number n of interacting constituents is greater
than 2. It is by now well established that in order to
describe n-particle collisions rigorously when n>2 one
must use one or another form of many-body scattering
theory,! and not simply the Schrodinger equation supple-
mented by a single Lippmann-Schwinger equation to ex-
press the boundary conditions, as in the case? n=1 or 2.
Many-body scattering theories have been applied not only
to various nuclear, atomic, and molecular collision prob-
lems, but also to the calculation of bound states. Early
work in this latter direction using one form or another of
Faddeev® or Alt, Grassberger, and Sandhas* (AGS) equa-
tions examined bound states of strongly interacting sys-
tems of bosons or fermions’ and also of systems of three
charged particles.® One of the characteristic results aris-
ing in the latter applications, as studied in great detail by
Chen and collaborators,® is a slow and nonmonotonic con-
vergence toward the exact results. One effect of this has
been an understandable lack of continued interest in
studying bound states of three charged particles via
Faddeev-type equations, particularly because convergence
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can only be achieved if one uses, for example, the entire
(infinite) set of bound and continuum hydrogenic states or
the infinite set of Sturmian functions as separable expan--
sion bases.®

More recently, an alternate set of many-body scattering
equations has been applied to bound-state problems. This
is the set of channel-coupling array (CCA) equations ob-
tained with a channel-permuting array (CPA), which we
shall refer to simply as the CPA equations.” In contrast
to the Faddeev or equivalent AGS three-body equations,
the CPA equations are not limited to the case n=3. As a
result, they have been previously applied not only to
bound states of certain three-charged-particle systems,
viz., the hydrogen molecular ion® (H, ") (hereafter, paper
I) and some two-electron atoms® (H™, He, Li™), but also
to the structure of the hydrogen molecule!® (H,), a four-
particle system. ’

The procedure followed in all these bound-state applica-
tions was to solve the various many-body scattering equa-
tions as an eigenvalue problem. In effect, this has meant
attempting to determine the poles and residues of the
many-body transition operators. This has usually been
done by solving approximately the homogeneous equa-
tions which define the wave-function components ¥; of
the particular theory.!! In the case of the CPA equations
as applied to H,™ and Hj, a pair of coupled equations for
two components v, and ¥, (differing for H,* and H, of
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course® %) was solved approximately by expanding 1, and
¥, each in terms of appropriate hydrogenic functions and
then retaining only the first state (1s). The salient features
of the results are as follows. For H,™, the CPA approxi-
mation to the gerade Schrodinger wave function W8 (given
by ¥,+1,) was the simplest molecular orbital function
WYMO" while the CPA gerade potential-energy curve
E§pa(R) was much more accurate than the perturbatively
determined one using WMO as a trial function.® (Here, R is
the usual internuclear separation.) In particular, the CPA
equilibrium separation R, was 2.07a,, compared to the
perturbation (WM©) result of 2.50a, and the exact result of
2.00a,, while the minimum of the gerade potential curves
were —0.6132, —0.5654, and —0.6026 a.u., respectively.
The CPA result lies lower than the exact one, a point dis-
cussed below. In contrast, the CPA calculation of the
H,* ungerade potential-energy curve E¢pa(R) produced
an unphysical (“spurious”) result since in the limit R —O0,
E¢pa(R)— — . For H,, the CPA approximation to the
singlet Schrodinger wave function W' (again given by
¥,+1,) was equal to the Heitler-London valence-bond
function W'B, while the CPA singlet potential energy
Edpa(R) was again much more accurate than the varia-
tionally determined one using WVB as a trial function.!® In
particular, the CPA value of R, was 1.42a, while the VB
and exact values were 1.65a, and 1.40a, and the corre-
sponding values of the minimum in the singlet potential-
energy curves were —1.163, —1.115, and —1.1744 a.u.,
respectively. The preceding CPA value actually contains
72% of the correlation energy.!® In contrast, the CPA H,
triplet potential-energy curve Ecpa(R) showed the same
unphysical behavior as the H,* ungerade curve E¢pa(R),
viz., in limit R —0, Ecps(R)— — .

These results may be compared with those arising from
standard Schrodinger-equation-based variational calcula-
tions. The occurrence of approximate energies lying lower
than exact ones (see also Ref. 6) and, in the atomic calcu-
lations,’ of a nonmonotonic behavior of the energies with
increase in the basis, can be understood as formalism-
dependent results, as follows. Both the CPA and the Fad-
deev wave-function formalisms can be expressed as a
Schrodinger-type equation in matrix form, but with the
unusual feature that the Hamiltonian-type operator matrix
appearing in the equation is non-Hermitian'?: H'-£H.
An immediate consequence of this is the nonexistence of a
Hylleraas-Undheim theorem!® for the CPA and Faddeev
wave-function formalisms. That is, there is no guarantee
that approximate solutions to these non-Hermitian opera-
tor equations will either yield bounds on the energies or a
monotonic convergence of the computed energies with in-
crease in size of the basis set used in making the approxi-
mations. Lack of a Hylleraas-Undheim theorem suggests
that the behavior which the existence of theorem would
prevent will actually occur; the results noted above verify
this.

The occurrence of the unphysical H,* ungerade and H,
triplet results is consistent with the use of a non-
Hermitian CPA formalism. It is known that the CCA
theory, like many other n-particle scattering theories (but
not the AGS or Faddeev formalisms), can yield spurious
solutions.!* A spuriosity arises when > j¢j =0, where the

j sum is over the partitions or arrangement channels of
the n-particle system. In the present instances, , j ¥;=0
occurs for both the H,* ungerade and the Hj triplet cases,
but only in the limit R —0. Hence the negative infinity in
the approximate ungerade and triplet energy curves at
R=0 is in each case a spuriosity. Nevertheless, for R
small but not equal to zero, 2].1/;]-;&0, while the energy
values are still negative and attractive rather than positive
and thus repulsive, as required on physical grounds. Thus
these unphysical potential-energy curves are not true
spuriosities. Their meaning and a reason for their oc-
currence will be discussed in the following paper.!®

The foregoing results suggest that these first CPA
molecular structure calculations, which involve extremely
simple approximations and have led to some unexpectedly
accurate results, might well be usefully extended. The
non-Hermitian CPA formalism as used for bound-state
computations needs to be understood better; in particular,
questions concerning effects of increasing the expansion
set, elimination of unphysical results, and convergence to
exact results remain to be answered. In this paper and the
following one, we provide answers to the questions just al-
luded to. Our main purpose has been to investigate con-
vergence by means of increasing the size of the expansion
basis. This is done in the present paper by using expan-
sion functions which are defined globally, i.e., over all of
configuration or momentum space. In addition, we inves-
tigate also both a variational method for H,* using the
CPA formalism and the use of approximations to the
basis states in the case of HeH*. Our general conclusion
is that use of a limited basis of globally defined functions
does not lead to convergence. This raises various ques-
tions concerning the formalism that we discuss in the fol-
lowing paper,!> which is concerned with the (successful)
use of locally defined functions as an expansion basis.

The CPA formalism employed for the present set of
calculations is an example of what has been previously
denoted arrangement channel quantum mechanics
(ACQM).!® 1t is the extension to bound states of the CCA
formalism for scattering. The key ingredients in any mul-
tiparticle scattering theory are (a) inclusion of the full set
of asymptotic boundary conditions corresponding to all
arrangement channels or mass partitions of the scattering
system and (b) a well-behaved system of equations from
which the various transition amplitudes can in principle
be obtained. The CCA theory or ACQM is a proper
theory in the foregoing sense. (We shall use the acronyms
CCA and ACQM interchangeably in the following discus-
sions.) Since the formalism has been derived and dis-
cussed in many places, we simply summarize the relevant
equations in the next section, which also deals with nota-
tion and approximation methods. Preliminary, highly ab-
breviated accounts of some of this work have previously
appeared.!’

II. THEORY
A. Notation

We consider a system of n distinguishable particles
governed by a Hamiltonian H=H,+ V, where H|, is the



32 W. K. FORD AND F. S. LEVIN 29

sum of kinetic energies and for simplicity ¥ is a sum of
two-particle interactions only. Identical particle symme-
try will be introduced as needed. The Schrodinger equa-
tion is

(E—H)¥=0, 2.1

plus appropriate boundary conditions (BC). For E suffi-
ciently large (and positive), the system can be observed in
any of its asymptotic arrangement channels or mass parti-
tions, which for the purposes of this paper are denoted by
an index set with members i,j,k,.... These range from
the set S, of N,=2""'—1 two-cluster or two-fragment
channels to the unique n-particle breakup channel. Corre-
sponding to each such arrangement channel j is a parti-
tioning of H into a channel Hamiltonian H; and a channel
interaction V/:

H=H;+V/, 2.2)

where V7 is the sum of all intercluster interactions and
Hj=H,+V;, where V; is the sum of all the binding or in-
tracluster interactions. Once H is specified, then H; and
V7 are determined through the partitioning of the n parti-
cles into the clusters defining the partition j.

The channel Hamiltonian H; can always be separated
into

szKj+hj , (2.3)

where Kj is the kinetic energy operator for relative motion
of the clusters and 4; is the sum of Hamiltonians govern-
ing the internal states of the clusters. (In the Born-
Oppenheimer approximation, the K; are ignored; see
below.) The eigenstates ¢;(y) of h; are of interest as an
expansion basis; they obey

[GJ(Y)—hJ]¢J(7):0 ,

plus BC, where 7y is the set of relevant quantum numbers.
When all the clusters forming channel j are in bound
states, we add the subscript b to v, i.e., we use the symbol
#;(vp) to denote a configuration of bound, noninteracting
fragments. The collection of ¢;(y;) for each j forms the
set of asymptotic states in channel j.

(2.4)

B. Review of ACQM

In ACQM, E and ¥ of Eq. (2.1) are obtained through
solution of a set of coupled equations of wave-function
components ;. The specific equations of ACQM em-
ployed here are those of the channel permuting array form
of the channel-coupling array theory. They may be writ-
ten compactly as’1®

(E—HW;=V*; ., j=1,...,N 2.5
plus BC, where, for the given value of N, Y Nn=1;.
When E> 0, i.e., for scattering, it is sufficient! to obtain
unique solutions if j runs over the members of S,, that is,
if N=N,=2""1-1.

The fact that ¥;  y=1; means that (2.5) can be reex-
pressed in explicit matrix form as

H, V> 00 0

0 H, V*0 0 || ¥

0 0 H; 0 (73 (2}

0 0 0 ||¥; |=E |ty (2.6)
0 0 00 - ¥||yy ”

v 0 0 0 --- Hy

or equivalently
HY=E9y , 2.7)

where the Hamiltonian-type operator H is obviously non-
Hermitian.

The formal connection between these CPA equations
and the Schrodinger equation (2.1) is obtained by sum-
ming both sides of (2.5) on j [or adding the rows of (2.6)].
This yields

J

S(E—Hj)= 3V,
j
which can easily be put in the form

(E—H) 3 ¢;=0. (2.8)
J

From (2.8) it follows that either (a) 3; ¢; =", the solu-
tion to (2.1) corresponding to the Schrodinger eigenvalue
E, or (b) 2,' ¥;=0, which defines a spurious solution.!*
The physical (Schrodinger) eigenvalues are thus embedded
in the spectrum of H which also contains the spurious
eigenvalues. Note that even though H T#F_I, the exact
physical eigenvalues are real. The spurious eigenvalues
are always trivially simple to identify (and thus discard)
because the corresponding wave-function components al-
ways sum identically to zero. This identification holds for
both the exact and any approximate spurious solutions,
indeed it defines them uniquely. As we shall see in both
this and the following paper, spuriosities in both approxi-
mate and exact calculations have been found.

C. Approximation techniques

There are two distinct types of approximation tech-
niques which apply to the CPA equations. The first is
called channel truncation. Solving (2.6) in its exact form
requires the solution of at least N, coupled differential
equations, making a practical calculation difficult for
large values of N,. Often, however, one can specify a set
of channels which, based on physical reasoning and intui-
tion, should not contribute significantly to a physical pro-
cess over a given energy range. In a scattering problem
for example, these might be the channels which are ener-
getically closed. Or, in a bound-state problem those chan-
nels which have relatively little internal binding energy
might be neglected as insignificant. For consistency, if
the components in truncated channels are computed, they
should have a small norm when compared with the previ-
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ously retained components. Hence Eq. (2.6) can be simpli-
fied by excluding the presumed inconsequential channels.
In this channel truncation approximation, the equations
thus couple together only the retained channels. This ap-
proach is analogous to the coupled-channel approximation
used in scattering theory; in practice its success will justify
its application. Levin and Kriiger'® first successfully used
this approximation technique for the H, molecule.

A second useful approximation technique involves the
Galerkin-Petrov method.'®!® Let ¢ be a formal solution
to (2.7). Then for an arbitrary complete orthonormal set
{d,} in the asymptotic space, one may express 1 in terms
of the u,, as follows:

Y= lim 2 a,u, .

M—w,

(2.9)

The coefficients a,, can be found using a slight generali-
zation of the usual definition of inner product:

(ﬁm |ﬁn)52<um,j |un,j>:8mn ’ (2.10)
j

where the |4,) is a column vector of kets with jth ele-
ment |u,;) and (U, | is a row vector of bras with ith
element (u,,, i |
tions included in the calculations.

Equations (2.9) and (2.10) may be used to transform
(2.7) into

(6 |(H—E1) | )= hm 2(¢](H El)|d,)a,=0,

®p=1
(2.11)
which holds for arbitrary q_f in the asymptotic space. The

Galerkin method proceeds in two steps from (2.11). First,
a new equation is defined which will be solved exactly:

M d
2 (¢|(_Ii——E(M)

n=1

1)|,)a™=0. (2.12)

The new quantities, E™ and a\*, which generally de-
pend on the value of M, are obtained when (2.12) is satis-
fied. Equation (2.12) is taken to have meaning for arbi-
trary ¢ In order to specify a,' and transform (2.12) into
an algebraic eigenvalue problem, ¢ is equated in turn to
each.of the M vectors U,, n=1,2,..,M:

M

S (@, |(H—E™M1)|

n=1

i,)aM=0. (2.13)

This result is a rank-M algebraic eigenvalue problem.
In applying the method to ACQM bound-state problems,
we can invoke several important theorems.'® First, the
limit point of each convergent sequence of eigenvalues
ED, E® .. E® . isan eigenvalue of H and all such
sequences converge. Second, the associated vector se-
quence

-]
2 a(M)»
n=1 M=1

converges (strongly in norm) to the corresponding eigen-
vector w Finally, the entire spectrum of H can be deter-

The sum on j in (2.10) is over all parti- .

mined in this manner. At no point does this method re-
quire the constraint that H be Hermitian, thus making the
Galerkin-Petrov method a fairly general approach. Of
course, alternate approaches to discretize partial differen-
tial equations do exist. However, the one most commonly
used, viz., the Rayleigh quotient method,?® cannot be ap-
plied in the present problem due to the non-Hermiticity of
H. On the other hand, the Galerkin method subsumes the
Rayleigh quotient method. Generally the next step in the
Galerkin formulation is to reduce the continuity class re-
quired of the U, arriving at a set of equations involving a
lower order of differentiation.!® This is not necessary for
our purposes here.

In the molecular bound-state calculations presented
below, the Schrédinger Hamiltonian is evaluated in the
Born-Oppenheimer approximation. The justification of
this approximation has been thoroughly studied in quan-
tum mechanics as applied to the Schrédinger equation.
The rationale for its use in ACQM is the relation
,j¥j="Y between the physical solutions of the arrange-
ment channel equations and the solutions of the
Schrodinger equation using the Born-Oppenheimer Ham-
iltonian.

III. CALCULATIONS

A. Ht

The Hamiltonian of the hydrogen molecular ion (H,*)
in the Born-Oppenheimer approximation?! is
H=—ty_ 1L 1 1

|Tal |Ta| R

Here, two stationary protons separated by a distance R in-
teract with an electron positioned at a distance T4 from
proton 4 and Tz from proton B. In this approximation,
the bound-state problem which initially involves three in-
teracting particles has been reduced to a one-electron
problem by freezing out the nuclear motion with the result
that the reduced Schrodinger equation may be solved
analytically.?>?2 We stress here that the reduced ACQM
equation derived below is also a one-electron problem (but
without a known analytic solution) which is derived from
a three-particle Hamiltonian using a many-particle col-
lision formalism.

There are two 2-cluster partitions for this system, and
the Hamiltonian (3.1) can be partitioned in two ways cor-
responding to these channels:

(3.1)

P R N -
| T4 | | Tg |
(3.2)
and
H=H,+V?=|—4ivi——L_ |} 71(;_ 1
| T3 | [Ty |
(3.3)

H, physically corresponds to an isolated hydrogen atom
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formed from A and the electron, while V! represents the
electrostatic field experienced by the second proton. By
the rules of vector addition

2 2 2 -
R =ry4 +rB—2rA‘f'B

- = 2
rArB+A
2 T

=ri |1-2

For the case rj << 7'1%,

N 2

1 1 Y T4

1 - _

I/ —_— = 3 ’ 2 <<1 .
R |75 | rp ’p

Hence V! (and similarly V?) fall off as an electrostatic di-
pole and is therefore short range and integrable (in the an-
alytic sense used in Ref. 2).

The arrangement channel equations for this problem are
(uniquely) given by

(2 (2
() 2}

From the definitions (3.2) and (3.3) it is easy to show that
P,H\P;g=H, and P;V'P,z=V? where P,y is the
proton interchange operator. As discussed in Refs. 8 and
10, one can use this property to reduce (3.4) to decoupled
equations, one for ¥;+ P31, and one for ¥ —P,p1,, but
it is simpler to require (as one may do without loss of gen-
erality) that

YE(Ty, Tp)=Papthi (Ty,Tp)
=21,(Tp,T4) .

The (4 ) sign gives a gerade state while the (—) sign
yields an ungerade one®?! through the relation
Y=1v,+1,. Equivalently, one may solve (3.4), seeking
those solutions which lead to the proper symmetry. We
follow this latter procedure, since it will lead (in the local
basis calculations of the following paper) to simpler equa-
tions to solve. We note that for the gerade case use of
(3.5) in (3.4) yields, as in I, an equation identical in form
to that of Mann and Privman,?® which is derived from a
primitive function formulation. However, this relation-
ship between the ACQM approach and that of the primi-
tive function in the H,"* gerade case is not maintained for
the H,* ungerade case nor for the general, multiparticle
ACQM equations, which do not reduce to a single decou-
pled equation on application of invariance group pro-
cedures.

Equation (3.4) can be formally solved using the Galer-
kin method by expanding ¥; and ¥, in a complete set of
functions. Since the channel partitioning separates the
system into an H atom and a proton, it is reasonable to
employ the hydrogenic states as a basis. There are two
reasons for doing this. First, the numerical calculation is
simplified when each expansion function is an eigenfunc-
tion of the channel Hamiltonians H; or H, even though
for computational reasons, the continuum must be
neglected. Second, ;(R) asymptotically evolves (as
R — «) to a hydrogenic state in channel i (and vanishes in

H, V?

V' H, (3.4)

=F

(3.5)

TABLE 1. Initial results for the H,™ ground state.

R, (ap) E(R,) (a.u.)

Schrodinger equation

Perturbation® 2.50 —0.5654

Scaled variational® 2.02 —0.5871

Exact® 2.000 —0.602 63
Arrangement channel

1s Galerkin? 2.07 —0.6132

1s Galerkin scaled 1.86 —0.6196

*Reference 21.
bReference 24.
“Reference 25.
dReference 8.

channels j+i). Thus this expansion set is the natural one
to choose in the spirit of perturbation theory. However,
just as it is known from calculations based directly on the
Schrodinger equation, one cannot expect a single-cluster
basis to describe the channel components uniformly well
at small values of R, for which the contributions of the
off-diagonal elements of H cannot be neglected. Indeed,
the failure of a single-center basis when computing the
channel components is an indirect measure of the contri-
bution to the total wave function of interchannel mixing.
This will become an important consideration in mul-
tichannel calculations.

In the simplest ACQM calculation® only the 1s state of
hydrogen was retained, yielding the following expression
for the gerade ground state of the molecule:

1
E+R=——‘
(R) 2+

1 2,

—R
x _3RleT-

(3.6)

In Table I this result is contrasted with other calculations.
In particular, by using the ls state as the perturbation
wave function and beginning with the Schrodinger equa-
tion?! the ground-state energy was found to have a
minimum value of —0.565 a.u. and an equilibrium value
R, of R of 2.50a,. This calculation essentially uses the
same wave-function input as the arrangement channel cal-
culation leading to (3.6) yet gives inferior results for R,
and E(R,). Although the accuracy of the computed ener-
gy is not necessarily a sensitive test of the accuracy of the
molecular wave function it is nevertheless one important
measure and the relative accuracy of this arrangement
channel calculation merits a closer examination.

Because the Hamiltonian (3.1) is Hermitian, the
variational-minimum principle may be applied to improve
the Schriodinger equation perturbation calculation above.
By introducing an exponential scale factor into the lIs
wave function, the values of R, and E(R,) can be easily
improved to be 2.02a, and —0.587 a.u., respectively.’*
Since the arrangement channel operator H is not Hermi-
tian, the corresponding variational theorem does not pro-
duce a minimum principle. This explains why, for exam-
ple, the calculated value of E (R,) in Table I [found using
Eq. (3.6)] lies below the exact value computed by Wind.?
Nevertheless in an attempt to mimic the Schrodinger
equation variational calculation an energy has been com-
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TABLE II. Hydrogenic expansion for the H,* ground state.

TABLE III. Hylleraas-Shull-Lowdin expansion for the H,*
ground state.

E(R=1.90a,)
Expansion Rank (a.u.)
1s 1 —0.6107
1s2s 2 —0.6168
152s3s 3 —0.6181
Is...6s 6 —0.6187
1s...2p 7 —0.6251
1s...5p 10 —0.6279
1s...6p ) 11 —0.6286
1s...3d : 12 —0.628 54
1s...6d 15 —0.62853
1s...4f 16 —0.62853
1s...6h 21 —0.62853
Exact? R =2.00a, —0.60264 a.u.

2Reference 25.

puted using Eq. (3.4) and the channel component ansatz

S 172
(&)= % e, (3.7)

with a similar form for channel two. The energy func-
tional computed using (3.7) is stationary at {=1.11 but
the corresponding R, and E(R,) become considerably
worse, as seen in Table 1.

These ACQM results, plus those of Ref. 8 for the
ungerade state, clearly indicate the need for further inves-
tigations. Loss of the variational minimum principle is
discomforting since normally in quantum mechanics a
minimum principle guarantees that the exact energy level
lies below (or is equal to) any approximate one for a given
Hamiltonian. No similar guidelines yet exist for ACQM,
making it a more problematic theory with which to per-
form approximate calculations. In addition, we recall that
ACQM was conceived as a scattering theory, so that cer-
tain results have only been inferred to hold for the bound-
state case. In particular, the point spectrum of H has been
assumed to contain the point spectrum of H based on ana-
lytic continuation from the E >0 case to the E <0 one (see
I). Yet, in the calculations presented above there is as yet
no indication that an H,* ground state calculated using
ACQM will indeed be the physical one. It is clear there-
fore that more extensive calculations of H,* would prove
useful from a formal point of view.

An extended calculation of the H,* ground state was
first performed using additional (bound) hydrogenic
states. The discrete hydrogen states are defined by?¢
1
e LA |2

2 2
n

nnlm(?)anl Ylm(9,¢) ’

(3.8

where N, is a normalization constant, Y}, (0,4) is a
spherical harmonic, and L2 %! | is an associated Laguerre
polynomial.”® Although the set of states (3.8) for n rang-
ing from 0 to «, O<l<n, and |m | </, are well known
not to be complete in the Hilbert space of twice differenti-

E(R=1.92a,)
Expansion Rank (a.u.)
1s 1 —0.6116
1s2s 2 —0.6089
1s253s 3 —0.6114
1s...6s 6 —0.6109
1s...2p 7 —0.6154
1s...5p 10 —0.6111
1s...6p 11 —0.6131
1s...3d 12 —0.6070
1s...6d 15 —0.604 1
1s...4f 16 —0.6053
1s...6f 18 —0.609 70
1s...6g 20 —0.609 66
1s...6h 21 —0.61007
Exact? R =2.00a, —0.60264 a.u.

2Reference 25.

able, square integrable functions,?’” a sequence of calcula-
tions using (3.8) has been carried out, the results of which
are summarized in Table II. In the table emphasis has
been placed upon the value of the energy at R=1.90q,
which corresponds to the point of minimum energy in the
rank twenty-one case. The calculations proceeded by first
expanding in S states over the range 1<n <6, then in P
states, D states, etc., until the calculation contained all al-
lowed angular momentum states in the first six shells, to-
talling twenty-one in number. With the use of this expan-
sion technique the value of the equilibrium energy grows
steadily worse dropping well below the known exact result
until the twelve-term case. Then this trend alters and the
energies very slowly improve. Calculations were not ex-
tended beyond the twenty-one—term case since improve-
ment was so slow. Furthermore, since the effect of
neglecting the continuum states could not be ascertained
independently, a lack of convergence could be due to the
choice of expansion functions.

To investigate the role the continuum might play in the
preceding calculations, a different expansion basis was
used next, one which is complete without continuum con-
tributions. These are the Hylleraas-Shull-Loéwdin func-
tions Ay, defined by?®

Anim (F)=N(2r)e "L2 %Y 1(27)Y},,(64) . (3.9)

In addition to being complete, this discrete set of func-
tions has the advantage that the exponential factor in (3.9)
is independent of the index n, in contrast to the hydrogen-
ic states whose exponent varies as —r/n. Thus the set
(3.9) is expected to converge more rapidly than the set
(3.8). In Table III are listed the results of our calculation
using (3.9) as the expansion basis. The equilibrium
separation of the twenty-one—term expansion is computed
to be 1.92a, and all other energies listed have been quoted
at that value. This equilibrium separation is a small im-
provement over that found using the discrete hydrogen
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states as a basis. Examining Table III one sees that the
energies oscillate as the number of terms included grows
from one (which is the simple hydrogenic 1s calculation),
to twenty-one, which includes all states such that n <6,
0 </ <n. Furthermore, the energy is always below the ex-
act result of Wind.?> Compared to the hydrogenic expan-
sion, however, the improvement is significant. Again cal-
culations were not extended beyond the twenty-one—term
case, since the slow oscillations indicate a not rapid con-
vergence, typical of three-body Faddeev Coulomb calcula-
tions.® Instead of pursuing this slowly converging global-
ly defined basis type of calculation further for H,™, we
use a locally defined basis in the following paper to obtain
truly converged results.

The preceding sets of results and comments refer to the
gerade ground state. The ACQM calculations also yielded
ungerade energy surfaces. All of them were unphysical in
the sense that as R-—0, each ungerade potential-energy
curve approached — «, exactly as in the original Kriiger-
Levin computations.® This is a further impetus for the
more detailed (and converged) study described in the fol-
lowing paper.

B. H,

The hydrogen molecule is a system of two protons and
two electrons. In the Born-Oppenheimer (BO) approxima-
tion the motion of the protons is frozen and their coordi-
nates enter parametrically in the wave function. Ex-
pressed in the center-of-mass frame only the interproton
coordinate R has relevance. The BO Hamiltonian is?!

L1 1

———

1
R’
712 T41 ¥y  T42  7TB1

(3.10)

H=—3Vi—3Vi+

where numerical indices label the electronic coordinates
and the alphabetic ones label the proton coordinates, e.g.,
r4, is the distance between proton A and electron 1. Our
main interest is in computing the low-lying spin-singlet
states within an ACQM formulation beginning with the
Hamiltonian (3.10) and so further probing the applicabili-
ty of ACQM to realistic systems. We also are interested
in the behavior of the spin-triplet states, which are the
analog of the H,* ungerade states. First, however, we re-
call some of the approximate solutions to the Schrédinger
equation corresponding to this Hamiltonian. An exact
analytical solution of the Schrodinger equation is not
available due to the electron-electron repulsion term con-
tained in (3.10) but there do exist many numerically exact
treatments of the problem. For our purposes the results of
Kolos and Roothaan?® are sufficiently accurate; they ob-
tained a ground-state proton equilibrium separation of
R,=1.401a, and an energy minimum of —1.1744 a.u.
These results are obtained via a fifty-term variational cal-
culation. Less complex (and less accurate) calculations for
the H, ground state have been performed beginning with
the valence-bond model of Heitler and London.* In their
approximation, the H, (covalent) bond is due to the shar-
ing of the two electrons between the two hydrogen atoms.
In the ground-state configuration the Heitler-London vari-

TABLE IV. Ground state (singlet) calculations for H,.

R, E(R,)
Schrodinger equation (ao) (a.u.)
Heitler-London? 1.65 —1.115
Scaled variational® 1.44 —1.138
Hartree-Fock® 1.40 —1.134
Exact® 1.401 —1.1744

Arrangement channel
1s Galerkin 1.42

aReference 30.
YReference 31.
°Reference 29.

—1.163

ational wave function assumes a covalent form, i.e.,

VP o 1100( T 1)M100( F52) + 100 Ta2)M100(Tp1) - (3.11)

With this form as the zero-order wave function a pertur-
bation calculation yields R, =1.65a, and an equilibrium
energy of 1.115 a.u. This calculation was subsequently
improved upon by Wang,?! who introduced an exponential
(variational) scale factor into the 1s orbital with which he
minimized the energy functional. One other calculation
of interest is the Hartree-Fock self-consistent-field compu-
tation of Kolos and Roothaan.?® The interproton equili-
brium separation and the equilibrium-point energy for the
H, ground state for each of these calculations are summa-
rized in Table IV.

The ACQM equations for the H, problem are derived
from the Hamiltonian (3.10) for which there are six two-
cluster-channel partitions.!® In physical terms there are
two equivalent H + H channels, two equivalent H* + H™
channels and two equivalent H,* + e channels. Hence the
arrangement channel operator H is a rank-six, operator-
valued matrix. The exact ACQM formulation according-
ly requires the solution of six coupled second-order partial
differential equations. Although the numerical solution of
the full ACQM problem is feasible using modern comput-
ers, it is nevertheless desirable to reduce the complexity of
the problem. Doing so one can hope to expose practical
and interpretation details of the theory. A reduction of
the number of coupled equations via the method of chan-
nel truncation obviously makes the problem more manage-
able. A truncation of the set of channels can be effected
by hypothesizing a physical model in which only certain
two-cluster channels are important. A measure of the
success of the assumed model is the accuracy of at least
some of the resultant solutions of the (truncated) approxi-
mate equations. For the H, calculation we begin with the
Heitler-London model, i.e., two equivalent H + H chan-
nels!®; the other four are discarded. This model of the H,
ground state is both intuitively pleasing and simple and is
also computationally practical, since the 6X6 matrix
operator H is approximated by a 2X2 operator-valued
matrix. In other words, the set of six coupled equations is
reduced to a set of two coupled equations:

H 1+ V3=Ey, ,
Hy+ V' =Ey, ,

(3.12)
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where
1 2 r 1 2 1
=—=Vi——=V;——— 3.13
Hl 2V1 Y41 2V ¥po ’ ( a)
ploL L—L—-l—, (3.13b)
R 712 rB1 T42
and
1 1 1 1
Ho=—gVim g, —a%i 5
B1 A2 (314)
PSR U U B

R " rp rq p2

The eigenvalue E in (3.12) will be an approximation to the
eigenvalue of (3.10) provided that the approximations used
for ¥, and ¥, do not yield ¥, +,=0.

It follows from (3.13) and (3.14) that channel (1) con-
sists of the two (noninteracting) hydrogen atoms (4 1) and
(B2), while in channel (2) we have (42) and (B1). Since
the intercluster interaction V7 falls off as R ~2 for large R
and H; describes two noninteracting hydrogen atoms, then
¥; is most naturally approximated by a finite sum of
products of hydrogenic states, i.e.,

V(T 1) = Y, CopfalTa1)Mp(Th2) (3.15)
a,B
and
U(T1,T2) = 3 Doy Ma(rp)mu(ran) (3.16)

Au

where a, 3, A, and u denote the three hydrogenic quantum
numbers (nlm) and C and D are expansion constants. It is
not hard to show!® that because of the equivalence of the
nuclear centers, which upon interchange transform H,
into H, and V! into ¥, no loss of generality is incurred if
one takes A=a and p=p in (3.15) and (3.16). Further-
more, the approximation to ¥, given by ¥=1,+1,, will
have the spatial symmetry corresponding to spin singlet
(triplet) if in (3.16) we choose D,g=C,p (—C,p). Denot-
ing spin singlet (triplet) by a superscript + (—), we then
have

Y= %Caﬂﬂa(rm)ﬂﬁ(rm) ) (3.17)
1/,;5; Eﬂcaﬁna(rm)n,g(m) , (3.18)
and |
VE=q o) = %Cag(liPAB)na(rAl)nﬁ(rBZ) .
a
(3.19)

All the a and B sums in (3.17)—(3.19) are assumed to run
only over a finite set of bound-state quantum numbers.
Note that if a=8=100 in (3.19), then the resulting ¥* is
precisely WVB of Heitler and London [Eq. (3.11)]. The R,
and E *(R,) values that result from an ACQM calculation
using such an ansatz for ¥, and ¢§ are quite different and
much more accurate than the Heitler-London results, as
indicated by the 1s Galerkin row in Table IV. Even the
calculation of Wang,?! which yields the variationally best

TABLE V. Extended ACQM calculations for the H, ground
state.

Hydrogenic R, E,
states Rank (ap) (a.u.)
(1s)? 1 1.42 —1.1630
1s,1s-2s 2 1.40 —1.1637
(15-25)? 4 1.40 —1.1646
(1s-25-2p)? 7 1.40 —1.1639
(1s-25-35)? 9 1.40 —1.1647
Exact? 1.401 —1.1744

2Reference 29.

wave function having the general Heitler-London product
form, is less accurate than the approximate ls ACQM
solution. The ACQM energy is also superior to the
Hartree-Fock calculation, indicating that the arrangement
channel approach inherently includes a significant amount
of the correlation energy. The success of the Levin-
Kriiger calculation warrants a more detailed calculation in
order to investigate, if nothing else, the limits of the ap-
proximations (3.17)—(3.19).

A straightforward extension of the Levin-Kriiger calcu-
lation has been carried out by allowing the a and 3 sums
in (3.17) and (3.18) to range over various values of n and /.
The magnetic quantum number m was set equal to zero
since our interest was in determining the ground state and
those excited states having zero rotational angular
momentum. Owing to the mapping properties between
channels (1) and (2), Eq. (3.12) can be reexpressed as a sin-
gle equation involving a nonlocal two-center exchange
operator.!® Since integrals involving the functions 7,
and this exchange operator can be easily performed, the
actual problem solved is one involving a single equation
with only local operators thereby reducing the difficulty
of the resultant algebraic eigenvalue problem. The singlet
ground state values of R, and E,=E *(R,) for a variety
of expansions are listed in Table V. Examining the terms
in the energy column it is apparent that the convergence is
oscillatory: e.g., when the 2p states are included in addi-
tion to the 2s states, the energy minimum is elevated.
This behavior is anticipated when dealing with non-
Hermitian equations, as noted above. It is also apparent
from Table V that the exact minimum is being ap-
proached very slowly. [We do not display and compare
with the exact Kolos-Roothaan curve® even the most ac-
curate of our E*(R) potential-energy curves, since it is
not visually different than the 1s,1s CCA curve of Ref.
10.] Although slow convergence properties are familiar to
expansions using hydrogenic states, as already noted, it is
possible that at equilibrium the ionic configurations play a
small but essential role. In that case, even an exact solu-
tion of (3.12) would not provide an adequate description
of the H, ground state. Examination of the difference be-
tween E, for greatest rank ACQM calculation and for the
exact calculation suggests that approximately 1% of the
ground-state energy is ionic in origin. This is consistent
with the conclusion based on a Schrodinger equation ener-
gy computation.?!
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FIG. 1. First excited E '3} potential-energy curves for H,.
Dotted line from Davidson (Ref. 32), solid line is the ACQM re-
sult based on a four-state (1s-2s)* expansion of ¥;.

Since the Galerkin-Petrov procedure is one of matrix
diagonalization, it yields approximations to excited states
having the same wave-function symmetry as the ground
state. Among these is the first excited E 12; state. An
accurate energy curve for this state has been computed by
Davidson®?> who used a variational-method approach to
approximate the solution of the Schrédinger equation for
H,. He found two minima in this curve, the first at
R=19a, and E=—0.7162 au. and the second at
R=42ay and E= —0.7007 a.u. In the variational calcu-
lation a twenty configuration covalent wave function is
necessary to determine the inner minimum accurately
while a twenty configuration ionic wave function is neces-
sary for the outer minimum. The resultant energy curve
is displayed as the dotted curve in Fig. 1. The ACQM en-
ergy curve computed by expanding (3.17) and (3.18) in
only the 1s and 2s hydrogenic orbitals is shown in the fig-
ure as the solid curve. Although the ionic minimum is to-
tally absent in the ACQM calculation, the covalent
minimum is quite accurately represented with only these
four terms. A larger hydrogenic basis diagonalization for
(3.12) has been performed with the results for R, and E,
for the excited state indicated in Table VI. The equilibri-
um separation and energy tend to oscillate and converge
slowly as the number of states is increased as was the case
for the ground state. No attempt to optimize the choice
of expansion states has been made in either case. The fact
that the ionic minimum is totally lost is almost certainly a
consequence of the channel truncation, since the retained
H -+ H channels unlike the nonretained H -+ H™' or
H,* + e channels, have no ionic character. Rather than
regard this as a deficiency, however, the nonappearance of
the ionic minimum exemplifies how ACQM might be use-
ful in analyzing quantum states. The chemical bond can

TABLE VI. First excited H, 12;" state covalant minimum.

Hydrogenic R, E,
states Rank (ag) (a.u.)
1s,1s-2s 2 1.90 —0.6042
(1s-2s)? 4 1.85 —0.7142
(15-25-2p)? 7 1.90 —0.7135
(1s-25-35)? 9 1.85 —0.7144
Exact? 1.9 —0.7162

2Reference 32.

be computationally probed via ACQM to ascertain the
significance of the constituent wave-function components
simply by solving relevant truncated sets of arrangement
channel equations. - Furthermore, this technique of
analysis relies solely upon the choice of Hamiltonian par-
titioning and is independent of the choice of wave-
functional form. Such analyses are currently in progress
and will be reported on in a subsequent communication.*
As is evident from Fig. 1, the E 12; energy curve has
the proper physical behavior. It is identified in the calcu-
lation as the first excited state because in the separated
atom limit, the (asymptotic) energy is 1.25 a.u. - The
higher-energy excited states produced by the Galerkin-
Petrov diagonalization procedure can be similarly identi-
fied by asymptotic energies. We display in Fig. 2, over the
range 0 <R < 10a,, the general form of the single energy
curves arising from the (1s2s)? calculation that produced
the previous E 12;’ state. Three of these curves corre-
spond to an approximate ¥ (=1;+1,) having gerade
symmetry, while the fourth has ungerade symmetry. All
are seen to behave correctly at R=0 and to go asymptoti-
cally to values corresponding to the energies of those hy-
drogenic states which, via the approximation, represent
the separated atom (noninteracting) system. This feature,
in which the ; yield the proper dissociation limit, is one
of the advantages of working with the ACQM formalism.
Another is the relative ease of calculation which allows
one to generate relatively accurate approximations to
many states. Of course, one must also satisfy the condi-

00 20 20 60 8.0 10.0
R(ag)

FIG. 2. Comparison of the first four '3} H, potential-energy
curves calculated from ACQM using the four-state expansion of
Fig. 1.
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FIG. 3. Behavior of the four nonphysical and the one physi-
cal H, triplet potential-energy curves arising from a five-state,
(15-25)*2po > ACQM calculation.

tion that the E (R) be physically well behaved, as is true in
the present instance of H, singlet states or the previous
determined H,* gerade states. This condition is not al-
ways satisfied in the case of the H, triplet states, which we
examine next.

The triplet states are obtained by using expansion (3.18)
with the negative sign. We have carried out a series of
calculations corresponding to the ranks 4 and 7 ones of
Table VI. Triplet potential energy curves E " (R) are
shown in Figs. 3 and 4. The five curves of Fig. 3 were
calculated using a five-state basis (1s25)%[(2p)?], and it
is obvious that only one of the five has the correct R —0
and R-—>o physical behavior. This curve is one
whose approximate ¥ (=v;+,) is of the form
CrasM1s(Pa1)M2s(rp2) +M15(rp )25 (r42)] plus a [(2p)]
term. As such, this approximate wave function does not
vanish at R=0, and thus gives no hint of being a spurious
solution [i.e., limit R—0 (3;+1,)5£0]. On the other
hand, each of the ¥, +1, for the four physically incorrect
E~(R) are such that limit R —0 (y;+,)=0, and this
behavior is a clear indication that the corresponding
E~(R) will manifest unphysical behavior at R=0, as

o

o
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FIG. 4. Behavior of the one physical H; triplet potential-ener-
gy curve arising from a four-state, (1s2s)> ACQM calculation.
This is essentially indistinguishable from the analogous result
shown in Fig. 3.

TABLE VII. Helium-hydride calculations.

R, E(R,)
(ap) (a.u.)

Schrodinger equation

Exact? 1.46 —2.9787
Arrangement channel

Two channel . —2.7973

Three channel 1.49 —2.9242

2Reference 34.

indeed they do. We shall examine the problem of these
physically incorrect energy curves in more detail in the
following paper,'® where we also provide a solution to the
problem.

As a final point, we note that Fig. 4 shows for a four-
state calculation essentially the same physically correct
E~(R) as in the results of the five-state computation
displayed in Fig. 3. The large range of R indicates the
basic lack of structure in this computed E ~(R) beyond
the single broad minimum around 1.9a,.

C. HeH™*

The helium hydride ion, HeH*, can be considered as a
prototype nonhomopolar diatomic molecule. As a two-
center, two-electron problem it is not dissimilar to the hy-

drogen molecule. Its Hamiltonian in the Born-
Oppenheimer approximation is
2 1
H=—3V—3Vi+ 54+ —
2Vl 2 2+ R + "2
2121 (320

Y41 1 Y42 ¥p2

using the notation established in the H, calculation. The
doubly charged helium nucleus is taken as center 4. Ko-
los and Peek* computed the ground-state solution to the
Schrodinger equation corresponding to the Hamiltonian
(3.20) using the variational method. With an eighty-
three—term variational wave function they found a total
energy of —2.97869 a.u. at an equilibrium internuclear
separation of 1.4632a,. This result is considered exact for
our purposes and will be used for comparisons.

As in the hydrogen molecular case the Hamiltonian
(3.20) supports six two-channel partitions: He?t + H™,
He + H*, HeH?>* + ¢, and He* + H, with the last two
groupings each representing two equivalent channels due
to the identity of the electrons. Since the nuclear centers
are dissimilar this molecule affords us an opportunity to
further test the concept of channel truncation. This is
also the first molecule encountered which will require at
least a three-channel calculation to obtain accurate results.

The three channels with the greatest internal binding
energies are the He + H™ and the two He™ + H ones. As
a first attempt we shall omit from Eq. (2.6) all but the
latter two channels. Then the calculation can be carried
out in analogy to the H,* and H, cases. The channel
operators are
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1e2?2 12 1 2
BT (3.21)
pio2, 1 2 1

R ro ran re
and
1 2
Hy=—3Vi—3Vi—T =7,
V2=l —1___1_’_}__ (3.22)

R rip re1 rq2

The truncated arrangement channel equations are, in ma-
trix form,

H, V?
v! H,

21 (2
(23 {23

As in Secs. IIT A and IIIB, it is simplest to represent
the channel components in terms of their asymptotic
(large-R) forms. Because the ground state of HeH™ is
sought, the lowest-energy asymptotic states are used. Ac-
cordingly, our Ansatz for 1, is

172
e—’m] ,

. (3.23)

o

172
—2r
e 42

8

SN 1
(T, 1) = —_
T

(3.24)

with a similar form for ,. Applying these Ansdtze to
(3.23) gives for the ground state an equilibrium internu-
clear separation of 1.lay with corresponding energy
minimum of —2.7973 a.u. This result compares extreme-
ly unfavorably to the numerically exact ones (see Table
VII). In retrospect, this partial failure is not too surpris-
ing since that channel with the largest internal binding en-
ergy and the associated configuration likely to contribute
most to the ground state, viz., He + H¥, has been neglect-
ed in (3.24). In order to include this third channel in the
calculation, a third partitioning of the Hamiltonian (3.20)
is required:

1

2 2
Hy=—1vi_1lvi_ = _ = ,
; R T41 rA2+"12
V3=_7L___1_.___1_

R #:3 ¥B2

The approximate ACQM equations, enlarged to include
this new channel, are now

H; V? 0 ||y ¥
0 H, V3||v,|=E|t (3.25)
|41 H; [ |¥s | )

As with the hydrogen molecule, each channel com-
ponent in (3.25) could be expanded in a complete set of
functions to transform these into a linear algebraic eigen-
value problem. However, it is desirable instead to ascer-
tain the relative accuracy that can be obtained by using
only the most intuitive Ansdtze as input to the solution of
(3.25). A partial set of intuitively motivated approximate
channel components is already provided by (3.24). To

complete this set, a form for i, is required. Asymptoti-
cally, channel (3) represents a single proton infinitely re-
moved from a helium atom. Thus is it reasonable in this
Born-Oppenheimer model to choose ¥; as the He ground-
state wave function. Pekeris (cf. Ref. 9) has made an
essentially exact variational calculation of the helium
ground state using a 1075-term expansion of the wave
function. Use of such an extremely complex wave func-
tion in conjunction with the simple form of (3.24) and our
already truncated equations is clearly inconsistent. We
choose instead the two-parameter Eckart wave function?!:

¢3oce—(51’,41+§2’A2)+e—‘§1'A2+§2’A2) ) (3.26)
Considered as a variational trial function for the nonrela-
tivistic He Hamiltonian, (3.26) yields 99% of the He
ground-state energy for §;=1.19 and {,=2.18. Because
of this, (3.26) should be a reasonable first approximation.

Using these approximations for ¥y, ¥,, and 15, (3.25)
can be solved for the energy E as a function of R. The re-
sults of this three-channel calculation for R, and E (R,)
are given in Table VII, where they are compared to those
of the previous two-channel calculation and to the exact
solution.** The importance of including this third channel
is obvious. Indeed, since 13 as chosen means that the ap-
proximate solution cannot be exact even in the limit of
finite internuclear separation, this calculation is a striking
example of how relatively crude but intuitive approxima-
tions can yield relatively accurate results in the ACQM
formalism. It has not been necessary to use either an
ACQM-derived wave function, an extremely accurate ap-
proximation, or the exact He wave function for 15 to ob-
tain good results. This example suggests that ACQM can
be used in a similar manner when applied to more com-
plex problems, i.e., this suggests that ACQM could justify
an atoms-in-molecules or even a molecules-in-molecules
approach.?

IV. DISCUSSION

At the end of the preceding section, it was suggested
that ACQM might justify the atoms-in-molecules and/or
molecules-in-molecules approach to molecular structure.
Insofar as ground states are concerned, the H,*, H,, and
HeH* calculations of this present paper and the earlier
ones support this suggestion. Use of exact or approximate
ground states of the separated atoms, i.e., H for H,¥,
H+H for Hy), and He+ H* for HeH*, has led to
ground-state equilibrium separations R, and energy mini-
ma E,=E(R,) for H,*, H,, and He that are remarkably
accurate given the simplicity of the approximations. In
particular, if we denote the separated atom energy by
E(x), then the spectroscopic dissociation energy
D,=E(w)—E, for each of these molecules displays an
accuracy which seems also disproportionate when com-
pared to the ease with which one obtains these numbers
using the ACQM formalism.

That one could obtain a relatively high degree of accu-
racy for the ground-state values of R, and D, using the
CPA equations in the H,* and H, case was of course
known prior to the present calculations. It was, however,
somewhat difficult to accept the original H,* and H, re-
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sults unequivocally, since first, there were only two of
them, and second, the associated ungerade H,* and triplet
H, energy curves were unphysical for R —0. In addition,
the ACQM formalism represented a relatively unknown
and not well-tested methodology. The possibility that the
H,* and H, ground-state results were fortuitous was thus
obvious and immediate.

There were two procedures by which one could have in-
vestigated this possibility (and presumably showed it to be
unfounded). These were to apply the CPA formalism to
the calculation of the ground states of more complex mol-
ecules or else to concentrate on the simpler ones and deter-
mine how convergence is achieved for them in the ACQM
formalism. The study we undertook combined these, in
that our main effect was concentrated on convergence
questions, which we believe is the more important feature,
while a minor effect went into demonstrating that the
ground state of HeH™' is quite well represented in the
ACQM formalism as a linear combination of the
He + H* and He* + H ground states.

The first conclusion we wish to draw from the results
reported herein is that the achievement of relatively high
accuracy—much greater accuracy, for example, obtained
via the corresponding Schrodinger-equation—based varia-
tional calculations—is not fortuitous: Enough calcula-
tions on molecular (and atomic®) ground and certain low-
lying states now seem to have been carried out to establish
this. Furthermore, the formalism itself has provided a
relatively simple criterion—viz., the energy of the asymp-
totic states—for determining which channels and which
bound states in them should play the most important role
in initial attempts to determine an accurate approximate
calculation of ground states. Most of the energy E (R) ob-
viously comes from the H; portions of H; the remainder
effectively arises from the (attractive) matrix elements of
V%, the intercluster interaction. For the three cases exam-
ined here, these latter matrix elements yield between
—0.06 and —0.16 a.u. additional binding energy: In
ACQM this is the glue that holds the asymptotic frag-
ments together.

That the additional energy is attractive is not altogether
unexpected. Solving (3.4), e.g., for ¥, yields

EY,=H\{,+VIE —H,)"'V'y, . (4.1)
The second term in (4.1) is in a form that could be
described as a second-order rearrangement perturbation
theory term. Now in Rayleigh-Schrddinger perturbation
theory, we know that the effect of the second-order term
is to lower the energy. The similarity in structure between
this latter term and the second term in (4.1) is at least sug-
gestive that in ACQM, one will also get a lowering of the
energy, now due to the channel coupling. While this is
only an analogistic plausibility argument, the simplest
ACQM ground-state calculations are consistent with it,
and thus lend a degree of credence to our expectation that

ACQM can yield, via simple computations, a physical
model of chemical bonding.°

Even though the preceding remarks, strictly speaking,
are valid only for a few two-electron molecules, we find
the results encouraging. Nevertheless, we are still forced
to draw a second, much less encouraging conclusion: The
basis set expansions studied in the present paper do not
even hint that the extended ACQM calculations converge
to the correct answers. This is, of course, a very nontrivi-
al problem. Even though the simple ACQM calculations
yield sufficiently accurate numbers to provide a physical
picture of the chemical bond for H,*, H,, and HeHt,
these calculations can be accepted as reliable only if the
method converges.

Since the Galerkin-Petrov method does converge if a
complete set of expansion states are employed,'® there are
only two reasons for the extended calculations of this pa-
per to give no indication of convergence: either an insuffi-
cient basis has been used and/or the CPA formalism,
which is based on scattering theory, cannot be used to cal-
culate bound states.

In the first instance, the problem could be due either to
properties associated with H "2£H or to the long-range na-
ture of the Coulomb interaction, as in the case of the Fad-
deev equation approach®3¢ (or both). In the second in-
stance, we would be facing an unexpected situation, viz.,
one in which a supposedly correct scattering theory in-
volved equations for transition operators which could not
be analytically continued to negative energies. This situa-
tion might arise because theorems concerning uniqueness
which are valid for scattering and are believed to hold for
bound states are in fact invalid in this latter case,>’ or
perhaps because the spurious solution spectrum could in-
terfere with that of the physical solutions.’® If either of
these latter alternatives are true, then all the ACQM struc-
ture calculations are fortuitous, despite the above com-
ments to the contrary, and the CPA equations can only be
used for scattering. In light of this possibility, it seemed
necessary to continue our attempts to obtain a converged
result. As noted in previous sections, our attempts using a
locally defined basis set were successful. The method, re-
sults and implications are described in the next paper.
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