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Relativistic self-consistent-field calculations with the squared Dirac operator
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A four-component relativistic self-consistent-field scheme based on the squared Dirac operator is
presented. Just as in the one-electron case, discussed previously [Chem. Phys. Lett. 78, 341 (1981)],
the variation principle holds and no variational collapse appears if the expansion method is applied.
Numerical results with scalar Gaussian-lobe basis sets are given for He, Li, Be, H2, and LiH.

I. INTRODUCTION

Interest in relativistic corrections to quantum-chemical
descriptions of atoms and molecules during recent
years' has stimulated the search for an appropriate rela-
tivistic many-electron Hamiltonian. The guideline has
been to use as much as possible schemes and algorithms
that are well established in nonrelativistic quantum chem-
istry.

Relativistic calculations based on the Hamiltonian

N

H(1, . . . , X)= g D(i)+ 1
+Bij

PIJ

H, tran;=e;P;, i =1,2, . . . , X .

The Pt obtained in the DHF scheme are four-component
spinors.

Some confusion had been caused by the so-called
"Brown-Ravenhall disease. " Brown and Ravenhall have
shown' that the Hamiltonian (1) does not have discrete,
bound eigenstates owing to the presence of continuum
states with negative energies in the spectrum of the Dirac
operator. However, various authors' ' have shown that
this problem actually does not concern SCF calculations.

Unfortunately, a generalization of finite-difference
methods for molecules is hardly possible. The only alter-
native, at present, seems to be the Roothaan expansion
method, which has been applied to atoms as well as
molecules. ' ' Most of these calculations have been
done with so-called "scalar" basis sets, i.e., the same basis
set was taken for all four components of the wave func-
tion, thus simplifying the integral evaluation for the ma-
trix representation of the Hamiltonian.

However, in such calculations with the expansion
method applied to the Dirac operator, a very unpleasant
basis dependence called "variational collapse" or "finite
basis-set disease" is observed, especially for molecules
(see Appendix B). Given the Dirac operator

D =pmc +ca'p+ VjL4y4,

with the Dirac operator D and Breit-type corrections 8 are
now standard for atoms, at least in the self-consistent-field
(SCF) approximation. Finite-difference methods have
been used to solve the Dirac-Hartree-Fock (DHF) equa-
tions ' (see Sec. II 8)

with
r

I2x2 O2x2P=, a=
02X2 I2X2

O2X2

O2X2
(3)

tT being the vector of Pauli spin matrices oi, cr2, os and

I„„„the n-dimensional unit matrix, one finds that the
operator of kinetic energy ca p cannot be represented
properly with a finite and hence incomplete basis set.
Therefore, any finite matrix representation of the Dirac
operator has states with wrong kinetic energy in its spec-
trum. Moreover ca p, in contrast to its nonrelativistic
counterpart p /2m, is not bounded from below. Thus
those unphysical states can contaminate the whole spec-
trum.

Recently Kutzelnigg has explained the relation be-
tween the variational collapse and the wrong nonrelativis-
tic limit of the Dirac operator's matrix representation. As
a possible way to avoid the difficulties that arise from us-

ing the original Dirac operator, the many-electron (SCF)
version of the squared Dirac operator is presented in Sec.
II. Examples of numerical results for atoms and mole-
cules are given in Sec. III. The quality of the wave func-
tions calculated with the matrix representation of the
squared Dirac operator is considered in Sec. IV. In Ap-
pendix A a special feature of the squared Dirac operator
in connection with negative ions is discussed and in Ap-
pendix B an example for the variational collapse in mole-
cules is given.

II. OUTLINE OF THE METHOD

&4=8%,
D2% =DR% =8"% . (4)

To get rid of the constant rest-mass contribution, one de-

fines

D mc p V
[a'P—~ 6+ V+ + +2mc2 2m 2mc 2mc2

A. The squared Dirac operator

An operator, whose matrix representation has the
correct nonrelativistic limit, is obtained by squaring the
original Dirac operator (2,3)
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and, with O'=E+mc,
~2 2 4 E2Q%=, 0= E+

2mc 2mc

The nonrelativistic limit (c~ oo) is given by the first two
terms on the right-hand side of (5). It is exactly the non-
relativistic Hamiltonian for the upper components of %'

and a "positron Hamiltonian" (p /2m —V) for the lower
components, reflecting the identity of positron and hole
states in the nonrelativistic limit.

0 is, like D, bounded from below (see Fig. 1). The
variation principle can hence be applied without taking
any special precautions. This has been done successfully
for one-electron systems by means of the matrix represen-
tation in scalar basis sets of Gaussian-lobe functions.

B. A relativistic SCF scheme based on 0
In the DHF scheme the wave function usually is taken

as an antisymmetrized product of four-component one-
electron spinors

(V+G)'
2mc

It should be noted that P and E do not commute in the re-
lativistic case. Actually they anticommute since E cou-
ples upper and lower components of the P;.

In contrast to the original DHF equations, the set of
equations

Q,rg;=co;P;, i =1,2, . . . , X (12)

J and E being the relativistic analogs of Coulomb and ex-
change operators in nonrelativistic SCF theory. Relativis-
tic corrections to the electron interaction, e.g., the Breit
interaction, can be included, too.

To solve the DHF equations (8) one can apply the con-
cept of 0, defining

jeff m c2 4

Q,ff=-
2mc

[P,(V+6)]+ [a p, (V+G)]+
+ +

2m 2 2mc

Kramer's restriction could be imposed, in principle, but
will not be regarded in the following for simplicity.

The P; together with the corresponding spinor energies
e; can be obtained from (see Introduction)

does not show the variational collapse on expansion in a
finite basis set. The spinor energies e; can be calculated
from the co; by

E = —mc ++m c +2mc co&
2-i 242

D,ffp;=E;p;, i =1,2, . . . , X,
with

D,rf=Pmc +ca p+ V+G

and the total SCF energy is given as

&RscF = g (~;——,
'

&0 I
6

l 0 &) (14)

N

6 = g(JJ E)), — (10)

There is no other simple relation for the SCF energy be-
cause, in general,

The nonrelativistic limit of Q,ff is

2

Q,"fr= +p(V+6) .
2m

(15)

Again, for the upper components this is exactly the nonre-
lativistic Fock operator, whereas for the lower com-
ponents the sign of the potential is changed. Since 6 no
longer couples upper and lower components, it commutes
with P.

The last term in Eq. (11) contains the square of the elec-
tron interaction operator. From (10) one has

FIG. 1. Schematic representation of the spectra of Dirac
operator and squared Dirac operator. The eigen values of
D/mc and D /m c are given in units of mc .

G = g(Jk Ek)(J( —K)) . — (16)
k, ]

The evaluation of matrix elements of G would involve
the calculation of three-electron integrals (the four-
electron integrals factorize into two-electron integrals).
This can be circumvented if one forms G from the ma-
trix representation of 6, assuming that a completeness re-
lation holds. The error thus introduced affects the energy
only in O(c ). It has been shown already for the one-
electron case that the results do not change significantly
if the products of V are formed with the respective matrix
representations and not on the operator level. For small
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TABLE I. He atom, ground-state energies and expectation values. All values given in Hartree units.

Basis
This work (0)

4s/4p' 11s/11p' DHFb
Other authors (original D)

RSCF/Slater' RSCF/Gauss"

EscF
AE scF
pr

1/2
ae', ,'

(J—E)"'
a(z —z &™

—2.846 75
—0.00007
—0.907 030
—0.000014

1.032 69
0.00004

—2.861 64
—0.000 13
—0.917942
—0.000034

1.025 76
0.00006

—2.861 68
—0.000 13
—0.917954
—0.000037

1.025 77
0.00006

—2.861 68
—0.000 16
—0.91796

+ 0.00007

—2.861 66
—0.000 15
—0.917949
—0.000042

1.025 76
0.00007

'Basis sets are given in Table VIII.
From Ref. 11, finite difference integration of the Dirac-Hartree-Fock equations.

'From Ref. 20, relativistic SCF calculation with the Roothaan expansion method. Slater-type functions
with noninteger main quantum number were used to expand the radial parts of the spinors.
From Ref. 29, relativistic SCF calculation with the Roothaan expansion method in a basis of

Gaussian-lobe functions (11s/1 1p).

nuclear charges Z the expectation value ( V) is of O(Z ),
whereas (G) only of O(Z). The situation should thus
even be better for G than for V.

The same argument holds, of course, for
[a p, (V+G)]+. The matrix representation of [a p, G]+
can be obtained from the matrix representations of a p
and G. Just like a p itself, the anticommutator couples
upper and lower components of the P;, the latter being of
O(c '). Together with the coefficient 1/(2mc) a contri-
bution to the energy of O(c ) is found, too. Computa-
tional details are given in Sec. III.

III. NUMERICAL CALCULATIONS

Relativistic SCF calculations of some small atoms and
molecules have been performed by means of Eqs.
(11)—(14) with scalar basis sets of Gaussian-lobe func-
tions. In particular, the matrix representations of
[a p, V]+ and V have been calculated exactly, whereas
those of [a p, G]+, [VG]+, and G have been formed as

matrix products. The results are given in Tables I—VII.
In Tables VIII and IX the basis sets are listed.

A. Results for atoms

For He (Table I) and Be (Table II) the results are very
close to the DHF values of Desclaux, " calculated with a
finite-difference method. In contrast to calculations with
the matrix representation of the original Dirac operator,
the results obtained with 0 have a systematic basis depen-
dence, i.e., extension of the basis set always gives a lower
energy. This is certainly due to the fact that 0 is bounded
from below.

The results for the ground state of the Li atom (Table
III) show a splitting of the Is»2 level into the mj =+—,

'

and mz ————,
' sublevels. This is a consequence of the

unrestricted ansatz for the wave function. If one chooses

the one-electron spinors as eigenfunctions of j =1+ s
the interaction between electrons is found to depend on

TABLE II. Be atom, ground-state energies and expectation values. All values in Hartree units.

Basis
This work (Q)

8s/8p' 14s /14p
Other authors (original D)

DHF' RSCF/Slater

—14.5607
—0.0025
—4.75047
—0.00067
—0.312223
—0.000048

4.435 30
0.001 03

EscF
~EscF
pr

1$ ~/2

«i",„,
pr

1/2

«2",
,

(J E)—
b, (J—K)"'

—14.5728
—0.0028
—4.732 59
—0.000 81

—0.309 260
—0.000052

4.489 10
0.001 10

—14.5730
—0.0029
—4.73269
—0.000 81

—0.309 270
—0.000053

—14.5730
—0.0029
—4.732 67
—0.000 82

—0.309 27
—0.00005

'Basis sets are given in Tables VIII and IX.
'See Table IX, contraction: [4,10+ 1/4, 10+ 1j. The first four s and p functions had fixed coefficients,

the remaining ten s and p functions were uncontracted.
'See Table I, footnote b.
See Table I, footnote c.
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TABLE III. Li atom„ground-state energies and expectation values. All values in Hartree units.

EscF
~Escp

(z —z')
a(z —x)"'

9s/9p'

—7.429 58
—0.000 78
—2.485 52

—2.468 35
—0.000 25

—0.00025
—0.195057
—0.000013

2.28092
0.00027

This work (0)

—7.432 65
—0.000 79
—2.486 65

—2.468 67
—0.00024
—0.00023
—0.196363
—0.000016

2.28096
0.000 31

Original B
DHF' (restricted)

—7.432 73
—0.000 80

—0.196323
—0.000016

'Basis sets are given in Tables VIII and IX.
See Tab1e IX, contraction: [4, 104 1/4, 10+1].

'See Table I, footnote b.

values (projection of j onto the axis of quantiza-
tion) of the respective spinors, according « their symme-
try. For example, there is no exchange interaction be-
tween st&2(mj =+ —,

'
) and s ~&2(mJ. = ——,

'
) spinors. There-

by, the two Is electrons of Li are no longer equivalent,
since only one of the Is~~2 spinors can have the same mj
value as the 2s&&z spinor. This situation can be regarded
as an example of spin polarization. The calculated SCF
wave function turns out to be a linear combination of a S

and a 5 state. Nevertheless, the feIativistic contribUtion
to the total energy of the Li atom is not affected signifi-
cantly by spin polarization, as can be seen by comparison
with the (restricted) DHF result.

Numerical calculations of molecules based on the origi-
nal Dirac operator may suffer very seriously from the

TABLE IV. H2 molecule, ground-state energies and expectation values. Energies in Hartree units,
bond lengths in Bohr units.

This work (Q)
7s/7p'

Orig. O' B'/c~ 00"

5s/5p/1d
Pert. theory

R{H-H)

~EscF
is% 1/2

gaelisa 1/2

a(J —sc)"'
D Itr

gg) rel

ga rel(

1.3959
—1.130485 3
—0.000 012 2
—0.594 889 2

0.657 071 2
0.000 006 0
0.133 1049
0.000 000 4
0.132 8114
0.000 000 4

—1.132221
—0.000 898
—0.594004 9

0.657 913 1

0.000 273 3

—1.133 106
—0.000 014
—0.594 3136

0.658 1797
0.000006 6

1.403
—1.117690
—0.000014
—0.58995

1.4011g
—1.174474 6
—0.0000109

'FroIn Ref. 29, see footnote d, Table I.
Nonrelativistic reference calculated by substituting for the loweI' components and setting e~ 00.
From Ref. 27, relativistic SCF calculation with the original Dirac operator. Different basis sets of

spherical Gaussian-type functions have been used for uppcI and lowcI' coGlponcnts of thc molecular spl-
noI's.

From Rcf. 39, first-order perturbation theory (Pauli approx. ) with an explicitly correlated wave func-
tion. The nonrelativistic reference is not an SCF energy.
'Basis set given in Table VIII, contraction: [2,5+ I j2,541].
Nonrelativistic equilibrium bond length for the basis given.

gExperimental bond length.
"Counterpoise-corrected values (see Scc. III8).
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Basis
Li

(a)
This work (Q)

9$ /9p

D/c~ oo'

12$ /8p

H
R "'{Li-H)

AEscF
+lo
ae',"
gr

1/2
ae',"
(J—K)
a(J —K )-'
AR "'(Li-H) f

Dnr
e

gD rel

hD,"'(cp)g

Dnr
e

gD rel

7$ /7p'
3 0403

—7.981 463
—0.000 797
—2.452 811
—0.000 249
—0.299 869 1

—0.000 0117

3.463 110
0.000275

—0.0003

(b)
Covalent (LiH~Li+ H)

Ionic (LiH~Li++ H )

4$ /2p
3.0140'

—8.059 21
—0.000 83
—2.575 61

—0.31272

0.00000

0.053 192
0.000014
0.052 741
0.000012

0.260220
0.000029

'From Ref. 28, see footnotes b and c, Table IV.
bBasis set given in Table VIII, contraction: [2,5 1/2, 5 a 1].
'Basis set given in Table VIII, contraction: [3,4 I/3, 4+1].
"Nonrelativistic bond length for the basis given.
'Experimental bond length.
Relativistic bond contraction, see explanations in the text.

gCounterpoise corrected (see Sec. III B).

TABLE V. LiH molecule, (a) ground-state energies and ex-
pectation values. Energies in Hartree units, bond lengths in
Bohr units. (b) Dissociation energies. All values in Hartree
units.

TABLE VI. Li+ and H atom, ground-state energies and ex-
pectation values. All values in Hartree units.

Atom
Basis

ESCF
~ESCF
pr

1$1/2
gael

1/2

(J K)"—'
b, (J—K)"'

Li+
9$/9p'

—7.234 552
—0.000 763
—2.790 983
—0.000 259

1.652 587
0.000245

H
7$ /7p'

—0.486 691 1

—0.000 004 6
—0.043 847 6
—0.000000 4

0.398 9960
0.000 004 0

'Basis sets given in Table VIII.

variational collapse. The mixing of physical and unphysi-
cal solutions can produce very poor results in calculations
with small basis sets. Even for linear molecules d-type
basis functions are needed to describe 0-type spinors and
f-type basis functions for m-type spinors if one wants to
have the correct order of magnitude in the relativistic con-
tributions to the energy ' (see Appendix B).

In contrast, the matrix representation of 0 needs no ex-
tra basis functions of higher angular momentum. The cal-
culations of molecules reported in this paper have all been
done with basis sets composed of purely atomic basis sets.
Since scalar basis sets offer the same functions for all
components of the wave function, those functions which
are needed to describe the lower components of the atomic
spinors serve to polarize the upper components of molecu-
lar spinors, and vice versa.

Owing to limitations in core-memory size of the com-
puters used, the basis sets for the molecules (as well as the
large ones for the atoms) had to be contracted, i.e., the
coefficients of the basis functions with the highest ex-
ponents were kept fixed during the calculations. The con-
traction coefficients (see Table VIII) have been taken from
calculations of the separate atoms.

TABLE VII. Relativistic SCF energies, expectation values of the DHF operator and virial quotients
for He, Li, Be, H2, and LiH. All energies in Hartree units.

System

He

ERSCF

—2.84682
—2.861 77

(D.ff )'
—2.858 27
—2.861 79

q 1'

0.998 967
1.000016

qp

0.993 934
1.000023

Basis'

4$ /4p
11$/11p

Li
—7.430 36
—7.433 44

—7.486 31
—7.433 49

1.013487
1.000019

1.019468
1.000 031

9$/9p
14$/14p

Be
—14.5632
—14.5756

—14.5921
—14.5758

1.000 793
1.000015

0.999 599
1.000021

8$ /8p
14$/14p

H2

LiH

—1.130498

—7.982 260

—1.134408

—8.025 694

1.003 497

1.007 512

1.003 495

1.009 564

7$ /7p

'Relativistic SCF energy calculated with Q,ff, see Eqs. (11)-(14).
"Expectation value of D,rr=P'mc +ca p+ V+ g (J~ —KJ) with the wave function obtained from

&.rr', p'= p 1—
'q~= —( V+ g (JJ—KJ)) /(ca p ), Vcontains the nuclear repulsion; see Sec. IV.
q2 ERscF /(P'mc );——see Sec. IV.

'See Tables VIII and IX.
Li:9$/9p, 0:7$/7p.
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TABLE VIII. Exponents and contraction coefficients of Gaussian-lobe basis sets for H, He, Li, and
Be.

Atom
designation Exponents

s-type functions
Contraction
coefficients Exponents

p-type functions
Contraction
coefficients

H
7s/7p

He

0.005 S17
0.061 569
0.S54 750

1293.70
196.000
29.7000
4.500 38
0.681 277
0.151 374
0.034000

0.0677
0.2348
0.9678

1681.81
254.800

38.6100
5.850 49
0.885 660
0.196786
0.044000

He
4s /4p

117.000
13.6232
1.998 94
0.382 938

181.765
17.7102
2.598 63
0.497 819

Be
8s /8p

4360.00
438.000

74.2075
16.8753
4.64675
1.406 95
0.281 390
0.056 277 9

6233.43
779.178
111.311
25.3129
6.970 12
2.11042
0.422 096
0.084 416 9

Li
(9s /9p)

0.0734
0.9637

86 979.3
968S.89
1294.90
207.850
40.0481
9.028 71
2.433 00
0.710627
0.047 789 3

0.0318
0.1417

173 959.0
19 371.8

2589.81
415.700

80.0963
18.0574
4.866 00
1.421 26
0.095 578 6

He
(11s/1 1p)

279 951.0'
35 891 ~ 1

4984.88

755.285
124.505
28.0994
7.921 66
2.580 74
0.918 171
0.347 207
0.137777

'The same exponents have been taken for s- and p-functions.

For H2 as well as for jLiH, a nonrelativistic potential
curve was calculated to find the nonrelativistic equilibri-
um bond lengths for the respective basis set. In addition,
for I.iH a symmetric pattern of five different internuclear
distances, including the nonrelativistic equilibrium value,
was examined to obtain an estimate of the relativistic
correction to the bond length.

The results for H2 are given in Table IV. For compar-

ison, results of other authors are included. There is an ex-
cellent agreement in the relativistic correction to the total
energy between the 0 result and the perturbational result
of Kolos and %'olniewicz, taking into account that the
latter was obtained with an explicitly correlated wave
function. The results of Mark and Rosicky have been
obtained with the original Dirac operator and a scalar
basis set comparable to those used in this paper. A
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TABLE IX. 14s/14@ Gaussian-lobe basis sets for Li and Be.

Contraction
coefficients

Li

Exponents

Contraction
coefficients

Be

Exponents

0.0003
0.0046
0.0499
0.5534

0.0106
0.0452
0.1982
0.8034

737 726.0
87 824.5
11 555.9

1699.39
280.136
63.2235
17.8237
5.80666
2.065 89
0.781216
0.309998
0.123 999
0.049 599 7
0.019839 9

0.0005
0.0047
0.0511
0.5744

0.0017
0.0060
0.0267
0.1112

1 035 170.0
147 882.0
21 126.0

3018.00
498.020
112.397
31.6866
10.3230
3.672 68
1.388 83
0.551 108
0.211965
0.078 505 4
0.028 037 7

reasonable relativistic correction was found only by means
of the so-called "high c" approximation, i.e., by defining
the correction in relation to the actual nonrelativistic limit
of the matrix representation of the Dirac operator. In a
similar way the results of Matsuoka et al. have been ob-
tained.

The lower bound of Q allows to look at quantities other
than the total energy. For example, one finds that the re-
lativistic correction to the dissociation energy is even an
order of magnitude smaller than the correction to the total
energy of a single hydrogen atom. To exclude artifacts of
the basis set, the dissociation energy has also been deter-
mined with respect to H atoms calculated with the basis
set of the whole molecule (counterpoise correction). Obvi-
ously the relativistic correction to the dissociation energy
is not changed and can thus be regarded as being»g»fl-
cant. The invariance against the counterpoise correction
ls 110't sllrp11slllg slllcc thc 1'clatlvlstlc dctalls of all aton11c
wave function cannot be improved very much by basis
functions located "outside" the atom, i.e., far away from
the nucleus.

Clearly, for LiH relativistic corrections are much more
pronounced [Table V(a)]. The results roughly agree with
those of Aoyama et al. , which have been obtained at the
experimental bond length. This bond length differs con-
siderably from the equilibrium value obtained in this
work. Therefore, a large influence of electron correlation
is to be expected. As electron correlation tends to reduce
the ionic character of the Li-H bond, a reduction of
charge density at the hydrogen nucleus, together with a
shortening of the bond length, is very likely to enlarge the
relativistic corrections.

By the procedure described above, a relativistic bond
contraction of 0.010% was found, which fits very wdl
into the rule of thumb of Pyykko and Desclaux predict-
ing 0.008%. There are also certain parallels to H2. For
example, although the relativistic correction to the co-

valent dissociation energy [Table V(b)] is much larger
than for HI, it is, just as for Hz, 3 orders of magnitude
smaller than the correction to the total energy. Also for
LiH the correction to the dissociation energy is nearly not
modified by the counterpoise correction.

The ionic dissociation energy of LiH [LiH
Li++H, Table V (b)] is, of course, much larger and has
a relativistic correction twice as large as the covalent one.
The difference between both corrections is roughly equal
to the relativistic correction to the 2s»2 spinor energy of
the Li atom (see Table III). It thus should be due to the
transfer of an electron from the "slightly" relativistic H
nucleus (see Table VI) into the influence of the Li nucleus
on forming the LiH molecule from Li+ and H

IV. QUALITY CONSIDERATIONS

In a complete basis set eigenfunctions of Q,rf are eigen-
functions of D,II as well. Accordingly, the expectation
value of D,fr with an eigenfunction of Q,rr should be close
to the SCF energy calculated from the co; [see Eqs.
(12)—(14)]. Table VII contains these values for the atoms
and molecules, discussed in Sec. III.

For He, Li, and Be, ERscF and (D,fr) do not agree very
well in the small basis sets. Obviously (D,fr) tends to
overestimate the relativistic contributions to the SCF ener-
glcs. Tllls ls Ilot sllrPrlslng slllcc Derr ls llot bounded fl'oII1

below. For the large basis sets, however', there is no con-
siderable difference between both kinds of values. They
can hence be expected to converge to the same limit with
increasing size of the basis set. The wave functions then
become eigenfunctions of Q,rr and D,II at the same time.

Similar information can be taken from the relativistic
virial theorem. For atoms and molecules one has

W=E+mc =(Pmc )+(ca p)+(V)
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or

E=&P'm"&+& -
p&+&V&,

with
r

O2X2 02X2
P'=P —I4X4= 0

The nuclear repulsion has to be included in V if one has
molecules in their equilibrium geometry. For the exact
wave function

(ca p&= —(V&,

such that

W=(pmc &

E=(P'mc & .

For an approximate wave function the quotients

(V&

(ca p&

(p'mc'&

or, in the SCF scheme (see Sec. II 8),

(V+G&
(ca p&

and

ERscF

& p'mc'&

should be as close as possible to unity. 6 is the electron
interaction (10) and ERscq the relativistic SCF energy ac-
cording to Eqs. (12)—(14). The quotients q~ and q2 are
listed in Table VII, too.

Again, for the large basis sets good results are found.
Both versions of the relativistic virial theorem are ful-
filled. The deviations for the small basis sets, however,
have two different aspects.

On the one hand, the wave function obtained from Q
does not reproduce correctly the relation between kinetic,
potential, and rest-mass energy that is to be expected for
eigenfunctions of the Dirac operator. This is equivalent to
the finding that ERscz and (D,fr& do not agree (see
above), showing that the wave functions obtained are not
eigenfunctions of the Dirac operator.

On the other hand, p'mc, ca p, and V or V+ G,
respectively, are no explicit parts of Q (11) but constitu-
ents of the operator products contained in Q. Thereby, er-
rors in the matrix representation of the Dirac operator are
not automatically contained in the matrix representation
of Q. Owing to the variational collapse, deficiencies of
the basis set are much more critical for the Dirac operator
than for Q. This makes q& and q2 very sensitive pararne-
ters for the saturation of the basis set.

For H2 and LiH only comparatively small basis sets
could be taken (see q~ and qz). Nevertheless, satisfactory
SCF energies and relativistic corrections have been ob-
tained by means of Q,ff. According to (D,ff& the wave
functions obtained from Q differ considerably from those
that would have been obtained from the original Dirac
operator (see Appendix B), since there is no variational
collapse for Q.

V. CONCLUSIONS

The validity of the variation principle for Q, which has
been documented previously for one-electron systems, 36 is
maintained in an SCF scheme based on Q. Calculations
with scalar basis sets do not suffer from the variational
collapse and can thus be performed in a straightforward
manner, much like in nonrelativistic quantum chemistry.
The lower-bound property and the correct nonrelativistic
limit of the matrix representation of Q allow to calculate
even very small relativistic corrections.

The additional operators that are contained in 0 are no
trouble in practical calculations, especially if a parallel
computer is employed. Vectorization of the Q-based SCF
program on the CYBER 205 of the Rechenzentrum der
Ruhr-Universitat Bochum is in progress and can be done
even more efficiently than for a nonrelativistic SCF pro-
gram.

Alternative modifications, of the Dirac operator that
can be used for SCF calculations have been proposed by
Mark and Schwarz, by Kutzelnigg, and by Wallmeier
and Kutzelnigg. ' Nevertheless, of all the operators pro-
posed, Q is still the only one which is bounded from
below. Future calculations will show which modification
is best suited for many-electron systems, especially in con-
nection with a relativistic CI scheme.
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APPENDIX A: REMARK ON THE SPECTRUM
OFQ

The spectrum of Q contains a continuum where particle
and hole states are degenerate (see Fig. 1). As a conse-
quence, linear combinations of particle and hole states can
be eigenstates of 0 but not of the original Dirac operator.
In principle, this fact can raise complications if weakly
bound electrons are present. A good example for that sit-
uation should be the H atom.

Table X shows the lowest ten Hartree-Pock spinor ener-
gies of H from a relativistic SCF calculation with 0 in a
7s/7p Gaussian-lobe basis set (see Table VIII). Obviously
the ground-state spinors (1s~&z) do not have the lowest
spinor energies. There is a set of spinors that have ener-
gies below those of the ground-state spinors. On inspec-
tion they are identified as hole states, i.e., they have large
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TABLE X. H atom, spinor energies from a SCF calculation vnth 0 in 7s/7p Gaussian-lobe basis
(see Table VII). All energies in Hartree units. Expectation values of r in (Bohr units) .

degeneracy

—0.166568 6

—0.090 3562
—0.090 355 1

—0.043 847 8

21.5173

28.6805

28.6806

8.6425

hole states

particle states'

'1sl/, SCF ground-state sp1nors.

lower and negligible upper components. At first glance
this looks like a contradiction to the lower bound of Q.

To clarify the situation one has to keep in mind the
correspondence between Dirac holes and positrons. In the
SCF calculation the hole states have been treated as virtu-
al spinors for which 0 does not distinguish between holes
and positrons. Compared to the H atom, the virtual hole
states get a lower energy under the influence of the nega-
tive charge of the H atom. This situation, which actual-

ly is an artifact of 0, is valid only as long as the hole
states are unoccupied.

Putting a positron in one of the virtual hole states with
spinor energies lower than those of the electronic ground-
state spinors does not necessarily lead to a total energy of
the (2e, le+) atom, which is lower than that of the H
atom, i.e., to a bound positron. The repulsive interaction
between the nucleus and the positron will change the pic-
ture drastically. To what extent the attractive interaction
with the electrons is compensated can only be figured out

by a calculation of the (2e, le+) atom.
A real mixing of particle and hole states was not ob-

served. All elgensplnors could defliIlltely be classlflied as
either particle or hole.

APPENDIX 8: VARIATIONAL COI.LAPSE
IN A DIATOMIC, HOMONUCLEAR

ONE-ELECTRON MOLECULE

For molecules the variational collapse of the Dirac
operator leads to a mixing of physical and unphysical
states if they have the same symmetry and degenerate or
near-degenerate energies. The unphysical states are gen-
erated by the inappropriate matrix representation of the
kinetic energy operator co; p. They are characterized by
a wrong relation between upper and lower components of
the respective spinors. As an example, the ground-state
spinor of the H2+ molecule is considered. According to
the formalism of molecular spinors from linear combina-
tions of atomic orbitals (I.CAO-MS), it is called Iscrs&&2,
being a linear combination of two is~~2 atomic spinors
[see Table XI (a)].

The corresponding eigenspinor of the matrix representa-
tion of the Dirac operator in a basis of Gaussian-lobe
functions (s and p type only) is given in Table XII (a). One
can see that there are contributions not belonging to the

sag&&2 symmetry. For example, the upper components

TABLE XI. Schematic representation of a so&1/2 and a pogl/2 spinor for a homonuclear diatomic
molecule as linear combination of atomic spinors.

(b)

m. =+1/2J
&»3p,

i»4(p„+ ipy )

m. =+1/2J
P7PfSO'

Ml(s~+s~)
0

iM3(p~ +p,~ )

IM&(pw +&pyw +pea+ Ipya )

»1P,
.=+1/2»' (p +ipy)
J
~1/2 —l»3$

M 1 (p~ —p.a)
M2 (pxA +Ipya —pxa —Epya )

~m'pe ~ I~ gl/2 —iM3 (s& —s~ )

n, n'. atomic main quantum numbers; »,»', M, M'. normaliZatiOnn factors; A, B: atom indices.
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have ~-type contributions. On comparison with Table
XI (b), the spinor can be identified as a linear combination
of a sosi&2 and a @osis spinor. The alternating signs in
the pos t~2 contributions indicate that the latter stem from
a virtual spinor, which should have an energy much
higher than the ground-state energy.

Table XIII (a) shows the corresponding spinor calculat-
ed with Q. The spurious m contributions in the upper
components are negligible. However, one can observe a
polarization along the (internuclear) z axis by means of the
cr-type basis functions. This is in agreement with the fact

that only the projection of j = 1+ s onto the internuclear
axis provides a good quantum number for classifying
molecular spinors in linear molecules.

Inclusion of d-type functions in the basis set reduces the
m-type contributions to the Dirac eigenspinor by an order
of magnitude [Table XII (b)]. The main effect of the addi-
tional d functions is probably to improve the representa-
tion of the virtual spinor. Its energy gets more reasonable
and mixing with the ground-state spinor is reduced.
Apart from further polarization, the d functions have no
significant effect on the 0 eigenspinor [Table XIII (b)].
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