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A four-component relativistic self-consistent-field scheme based on the squared Dirac operator is
presented. Just as in the one-electron case, discussed previously [Chem. Phys. Lett. 78, 341 (1981)],
the variation principle holds and no variational collapse appears if the expansion method is applied.
Numerical results with scalar Gaussian-lobe basis sets are given for He, Li, Be, H,, and LiH.

I. INTRODUCTION

Interest in relativistic corrections to quantum-chemical
descriptions of atoms and molecules during recent
years! 3 has stimulated the search for an appropriate rela-
tivistic many-electron Hamiltonian. The guideline has
been to use as much as possible schemes and algorithms
that are well established in nonrelativistic quantum chem-
istry.

Relativistic calculations based on the Hamiltonian
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with the Dirac operator D and Breit-type corrections B are
now standard for atoms, at least in the self-consistent-field
(SCF) approximation. Finite-difference methods have
been used to solve the Dirac-Hartree-Fock (DHF) equa-
tions*~13 (see Sec. II B)

Hgydi=€¢;, i=12,...,N.

The ¢; obtained in the DHF scheme are four-component
spinors.

Some confusion had been caused by the so-called
“Brown-Ravenhall disease.” Brown and Ravenhall have
shown!* that the Hamiltonian (1) does not have discrete,
bound eigenstates owing to the presence of continuum
states with negative energies in the spectrum of the Dirac
operator. However, various authors!>—1° have shown that
this problem actually does not concern SCF calculations.

Unfortunately, a generalization of finite-difference
methods for molecules is hardly possible. The only alter-
native, at present, seems to be the Roothaan expansion
method, which has been applied to atoms**~2° as well as
molecules.?2*2"=32 Most of these calculations have been
done with so-called “scalar” basis sets, i.e., the same basis
set was taken for all four components of the wave func-
tion, thus simplifying the integral evaluation for the ma-
trix representation of the Hamiltonian.

However, in such calculations with the expansion
method applied to the Dirac operator, a very unpleasant
basis dependence called “variational collapse”*® or “finite
basis-set disease”** is observed, especially for molecules
(see Appendix B). Given the Dirac operator

D=ﬁmc2+c&"f5+ V]l.4x4 , (2)
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0 being the vector of Pauli spin matrices 0,0,,03 and
1,xn the n-dimensional unit matrix, one finds that the
operator of Kinetic energy c&-P cannot be represented
properly with a finite and hence incomplete basis set.
Therefore, any finite matrix representation of the Dirac
operator has states with wrong kinetic energy in its spec-
trum. Moreover ca-P, in contrast to its nonrelativistic
counterpart p2/2m, is not bounded from below. Thus
those unphysical states can contaminate the whole spec-
trum.

Recently Kutzelnigg®® has explained the relation be-
tween the variational collapse and the wrong nonrelativis-
tic limit of the Dirac operator’s matrix representation. As
a possible way to avoid. the difficulties that arise from us-
ing the original Dirac operator, the many-electron (SCF)
version of the squared Dirac operator is presented in Sec.
II. Examples of numerical results for atoms and mole-
cules are given in Sec. III. The quality of the wave func-
tions calculated with the matrix representation of the
squared Dirac operator is considered in Sec. IV. In Ap-
pendix A a special feature of the squared Dirac operator
in connection with negative ions is discussed and in Ap-
pendix B an example for the variational collapse in mole-
cules is given.

II. OUTLINE OF THE METHOD

A. The squared Dirac operator

An operator, whose matrix representation has the
correct nonrelativistic limit, is obtained by squaring the
original Dirac operator (2,3)

DY=wv,
DN =DWY=W?¥ . (4)

To get rid of the constant rest-mass contribution, one de-
fines

D?—m?%* 2 [@-B, V] y?
Q=" = VvV 5
e’ o +BV + me T e (5
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and, with W =E +mc?,

E2
E+
2me?

2 2.4
V= w m2c
2mce

V=0V . (6)

Y=

The nonrelativistic limit (c— o) is given by the first two
terms on the right-hand side of (5). It is exactly the non-
relativistic Hamiltonian for the upper components of W
and a “positron Hamiltonian” (p?/2m — V) for the lower
components, reflecting the identity of positron and hole
states in the nonrelativistic limit.

Q is, like D? bounded from below (see Fig. 1). The
variation principle can hence be applied without taking
any special precautions. This has been done successfully
for one-electron systems by means of the matrix represen-
tation in scalar basis sets of Gaussian-lobe functions.?¢

B. A relativistic SCF scheme based on

In the DHF scheme the wave function usually is taken
as an antisymmetrized product of four-component one-
electron spinors

W= [41(1)$2(2) - - $n(N) | . 7)

Kramer’s restriction®’ could be imposed, in principle, but
will not be regarded in the following for simplicity.

The ¢; together with the corresponding spinor energies
€; can be obtained from (see Introduction)

Dgdi=¢€;¢; , i=12,...,N, (8)
with

Deg=PBmc*+cd-B+V +G )
and

N
G=3;—K;), (10
J

FIG. 1. Schematic representation of the spectra of Dirac
operator and squared Dirac operator. The eigenvalues of
D /mc?* and D*/m?c* are given in units of mc?.
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J and K being the relativistic analogs of Coulomb and ex-
change operators in nonrelativistic SCF theory. Relativis-
tic corrections to the electron interaction, e.g., the Breit
interaction, can be included, too.

To solve the DHF equations (8) one can apply the con-
cept of Q, defining

Dl—m2c*
Qeg=—"—7—
2mec
_p  [B+G], | (@46,
2m 2 2mc
(V+G)? (11)
Gyl
2mc?

It should be noted that 8 and K do not commute in the re-
lativistic case. Actually they anticommute since K cou-
ples upper and lower components of the ¢;.

In contrast to the original DHF equations, the set of

equations

Qe =0;¢; , i=12,...,N (12)

does not show the variational collapse on expansion in a
finite basis set. The spinor energies €; can be calculated

from the w; by
€ =—mc2+V m%*+2mcw; (13)

and the total SCF energy is given as

N
Erscr= 3 (6—5(; |G | ¢;)) . (14)
i
There is no other simple relation for the SCF energy be-
cause, in general,

(D2%)#(Des Y Degr ) -

The nonrelativistic limit of Q¢ is

2
=Lt 4BV +G). (15)
Again, for the upper components this is exactly the nonre-
lativistic Fock operator, whereas for the lower com-
ponents the sign of the potential is changed. Since G no
longer couples upper and lower components, it commutes
with S.
The last term in Eq. (11) contains the square of the elec-
tron interaction operator. From (10) one has
N
G*= (y—K I, —K)) . (16)
k1
The evaluation of matrix elements of G? would involve
the calculation of three-electron integrals (the four-
electron integrals factorize into two-electron integrals).
This can be circumvented if one forms G? from the ma-
trix representation of G, assuming that a completeness re-
lation holds. The error thus introduced affects the energy
only in O(c~2). It has been shown already for the one-
electron case®® that the results do not change significantly
if the products of V are formed with the respective matrix
representations and not on the operator level. For small
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TABLE 1. He atom, ground-state energies and expectation values. All values given in Hartree units.

This work ()

Other authors (original D)

Basis 4s /4p? 11s/11p? DHF® RSCF/Slater® RSCF/Gauss®
EXr —2.84675 —2.86164 —2.86168 —2.86168 —2.86166
AES: —0.00007 —0.00013 —0.00013 —0.00016 —0.000 15
1§1/2 —0.907030 —0.917942 —0.917954 —0.91796 —0.917949
Adesll/z —0.000014 —0.000034 —0.000037 + 0.00007 —0.000042
(J—K)™ 1.032 69 1.02576 1.02577 1.02576
A(J —K )™ 0.000 04 0.00006 0.00006 0.00007

“Basis sets are given in Table VIII.

°From Ref. 11, finite difference integration of the Dirac-Hartree-Fock equations.

°From Ref. 20, relativistic SCF calculation with the Roothaan expansion method. Slater-type functions
with noninteger main quantum number were used to expand the radial parts of the spinors.

9From Ref. 29, relativistic SCF calculation with the Roothaan expansion method in a basis of

Gaussian-lobe functions (11s /11p).

nuclear charges Z the expectation value (V) is of O(Z?),
whereas (G) only of O(Z). The situation should thus
even be better for G than for V.

The same argument holds, of course, for
[@'B,(V+G)];. The matrix representation of [&*PB,G]
can be obtained from the matrix representations of @-p
and G. Just like &P itself, the anticommutator couples
upper and lower components of the ¢;, the latter being of
O(c™1). Together with the coefficient 1/(2mc) a contri-
bution to the energy of O(c ~?) is found, too. Computa-
tional details are given in Sec. III.

III. NUMERICAL CALCULATIONS

Relativistic SCF calculations of some small atoms and
molecules have been performed by means of Egs.
(11)—(14) with scalar basis sets of Gaussian-lobe func-
tions. In particular, the matrix representations of
[@B,V], and V? have been calculated exactly, whereas
those of [&*B,G],, [FG],, and G? have been formed as

matrix products. The results are given in Tables I—VIIL.
In Tables VIII and IX the basis sets are listed.

A. Results for atoms

For He (Table I) and Be (Table II) the results are very
close to the DHF values of Desclaux,!! calculated with a
finite-difference method. In contrast to calculations with
the matrix representation of the original Dirac operator,?
the results obtained with () have a systematic basis depen-
dence, i.e., extension of the basis set always gives a lower
energy. This is certainly due to the fact that Q is bounded
from below.

The results for the ground state of the Li atom (Table
I show a splitting of the 1s;,, level into the m;=+ 3
and m;:——% sublevels. This is a consequence of the
unrestricted ansatz for the wave function. If one chooses
the one-electron spinors as eigenfunctions of j=1+%
the interaction between electrons is found to depend on

TABLE II. Be atom, ground-state energies and expectation values. All values in Hartree units.

This work ()

Other authors (original D)

Basis 8s/8p*® 14s /14p® DHF* RSCF/Slater?
E¥%g —14.5607 —14.5728 —14.5730 —14.5730
AES: ~0.0025 —0.0028 —0.0029 —0.0029
ek, —4.75047 —4.73259 —4.73269 —4.73267
Aeﬁ‘;‘m —0.00067 —0.00081 —0.00081 —0.00082
&, —0.312223 —0.309 260 —0.309270 —0.30927
A% —0.000048 —0.000052 —0.000053 —0.00005
(J—K)™ 4.43530 4.489 10
A(J —K)™ 0.00103 0.001 10

*Basis sets are given in Tables VIII and IX.

bSee Table IX, contraction: [4,10%1/4,10%1]. The first four s and p functions had fixed coefficients,
the remaining ten s and p functions were uncontracted.

See Table I, footnote b.
dSee Table I, footnote c.
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TABLE III. Li atom, ground-state energies an
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d expectation values. All values in Hartree units.

This work (Q) Original D
Basis 9s /9p* 14s /14p® DHF® (restricted)
EXp —7.42958 —7.43265 —7.43273
AES: —0.00078 —0.00079 —0.000 80
r 1
€is, /2<m, =+7 ) —2.48552 —2.486 65 247773
€ls, /2( —7) —2.46835 —2.46867
Ael, /2( i=+7) —0.00025 —0.00024
i —0.00025
A ,Sm(m, —7) —0.00025 —0.00023
egsl/z(m,=+%) —0.195057 —0.196 363 -0.196 323
Ae&i’m(mj:—{-%) —0.000013 —0.000016 —0.000016
(J—K)™ 2.28092 2.28096
A(J =K ) 0.00027 0.00031

“Basis sets are given in Tables VIII and IX.
®See Table IX, contraction: [4,10%1/4,10%1].
°See Table I, footnote b.

the m; values (projection of Y onto the axis of quantiza-
tion) of the respective spinors, according to their symme-
try. For example, there is no exchange interaction be-
tween 5y ,(m;= 5) and 54 mj= ) spinors. There-
by, the two 1s electrons of Li are no longer equivalent,
since only one of the ls;,, spinors can have the same m;
value as the 2s;,, spinor. This situation can be regarded
as an example of spin polarization. The calculated SCF
wave function turns out to be a linear combination of a 2§

and a *S state. Nevertheless, the relativistic contribution
to the total energy of the Li atom is not affected signifi-
cantly by spin polarization, as can be seen by comparison
with the (restricted) DHF result.

B. Results for molecules

Numerical calculations of molecules based on the origi-
nal Dirac operator may suffer very seriously from the

TABLE IV. H, molecule, ground-state energies and expectation values. Energies in Hartree units,

bond lengths in Bohr units.

This work (Q) Orig. D® D?*/c— " D°/c—® Pert. theory®
Basis 7s/Tp® 5s/5p/1d 6s/5p
RH-H) 1.3959¢ 1.4011¢8 1.408 1.40118
Etr —1.1304853 —1.132221 —1.133 106 —1.117 690 —1.174474 6
AE;%F —0.0000122 —0.000 898 —0.000014 —0.000014 —0.0000109
lwgm —0.5948892 —0.594 0049 —0.5943136 —0.58995
Ad"’gn/z —0.000003 1 —0.0003124 —0.000003 7 —0.00001
(J—K)™ 0.6570712 0.6579131 0.6581797
A{J —K)™ 0.0000060 0.0002733 0.000 006 6
DI 0.1331049
ADM 0.000000 4
D}(cp)t 0.1328114
AD*(cp) 0.000 000 4

2From Ref. 29, see footnote d, Table I.

®Nonrelativistic reference calculated by substituting for the lower components and setting ¢ — co.
°From Ref. 27, relativistic SCF calculation with the original Dirac operator. Different basis sets of

spherical Gaussian-type functions have been used
nors.

for upper and lower components of the molecular spi-

9From Ref. 39, first-order perturbation theory (Pauli approx.) with an explicitly correlated wave func-
tion. The nonrelativistic reference is not an SCF energy.

Basis set given in Table VIII, contraction: [2,5%

1/2,5%1].

fNonrelativistic equilibrium bond length for the basis given.

8Experimental bond length.
"Counterpoise-corrected values (see Sec. III B).
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TABLE V. LiH molecule, (a) ground-state energies and ex-
pectation values. Energies in Hartree units, bond lengths in
Bohr units. (b) Dissociation energies. All values in Hartree

units.
(a)
This work (Q) D/c— »?
Li 9s /9p® 12s/8p
Basis
H s /Tp© 4s/2p
R™(Li-H) 3.04034 3.0140°
e —7.981463 —8.05921
AES: —0.000797 —0.000 83
er —2.452811 —2.57561
Ae{ilm —0.000249
%1, —0.299869 1 —0.31272
Aegslm —0.0000117 0.00000
(J—K)™ 3.463110
A(J —K ) 0.000275
AR™(Li-H)f —0.0003
(b)
Covalent (LiH—Li+H)
DX 0.053192
AD 0.000014
D¥(cp)® 0.052741
ADM(cp)s 0.000012
Ionic (LIH—Lit+H™)
D;" 0.260220
ADM 0.000029

2From Ref. 28, see footnotes b and c, Table IV.

®Basis set given in Table VIII, contraction: [2,5%1/2,5%1].
“Basis set given in Table VIII, contraction: [3,4%1/3,4%1].
9Nonrelativistic bond length for the basis given.
*Experimental bond length.

fRelativistic bond contraction, see explanations in the text.
ECounterpoise corrected (see Sec. III B).
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TABLE VI. Li* and H™ atom, ground-state energies and ex-
pectation values. All values in Hartree units.

Atom Lit H-
Basis 9s /9p* s /Tp?
EXe —7.234552 —0.486691 1
AES: —0.000763 —0.000004 6

5 —2.790983 —0.043 8476
Ae{i‘m —0.000259 —0.0000004
(J—K)™ 1.652 587 0.3989960
A(J —K ) 0.000245 0.000004 0

“Basis sets given in Table VIII.

variational collapse. The mixing of physical and unphysi-
cal solutions can produce very poor results in calculations
with small basis sets. Even for linear molecules d-type
basis functions are needed to describe o-type spinors and
f-type basis functions for 7-type spinors if one wants to
have the correct order of magnitude in the relativistic con-
tributions to the energy®®3? (see Appendix B).

In contrast, the matrix representation of Q needs no ex-
tra basis functions of higher angular momentum. The cal-
culations of molecules reported in this paper have all been
done with basis sets composed of purely atomic basis sets.
Since scalar basis sets offer the same functions for all
components of the wave function, those functions which
are needed to describe the lower components of the atomic
spinors serve to polarize the upper components of molecu-
lar spinors, and vice versa.

Owing to limitations in core-memory size of the com-
puters used, the basis sets for the molecules (as well as the
large ones for the atoms) had to be contracted, i.e., the
coefficients of the basis functions with the highest ex-
ponents were kept fixed during the calculations. The con-
traction coefficients (see Table VIII) have been taken from
calculations of the separate atoms.

TABLE VII. Relativistic SCF energies, expectation values of the DHF operator and virial quotients
for He, Li, Be, H,, and LiH. All energies in Hartree units.

System Egsce® (Degr)® a° 9,° Basis*

H —2.846 82 —2.85827 0.998 967 0.993934 4s /4p
€ —2.86177 —2.86179 1.000016 1.000023 11s/11p

Li —7.43036 —7.486 31 1.013487 1.019468 9s /9p
—7.43344 —7.43349 1.000019 1.000031 14s /14p

Be —14.5632 —14.5921 1.000793 0.999 599 8s/8p
—14.5756 —14.5758 1.000015 1.000021 14s /14p

H, —1.130498 —1.134408 1.003497 1.003 495 7s/Tp

LiH —7.982260 —8.025 694 1.007 512 1.009 564 f

*Relativistic SCF energy calculated with Q.¢, see Egs. (11)-(14).
*Expectation value of Dg=B'mc? +cadB+V + 3 (Jj—K;) with the wave function obtained from

Qets; B'=B—1.

‘g1=—(V+ 3,;(J;—K;)) /{c@ B ), V contains the nuclear repulsion; see Sec. IV.

dg,=Egscr/{B'mc?); see Sec. IV.
*See Tables VIII and IX.
fLi:9s /9p, H :7s /Tp.
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TABLE VIII. Exponents and contraction coefficients of Gaussian-lobe basis sets for H, He, Li, and

Be.
s-type functions p-type functions
Atom Contraction Contraction
designation coefficients Exponents coefficients Exponents
H 0.005517 1293.70 0.0677 1681.81
s /Tp 0.061 569 196.000 0.2348 254.800
0.554 750 29.7000 0.9678 38.6100
He 4.500 38 5.85049
0.681277 0.885 660
0.151374 0.196786
0.034 000 0.044 000
He 117.000 181.765
4s /4p 13.6232 17.7102
1.998 94 2.598 63
0.382938 0.497819
Be 4360.00 6233.43
8s/8p 438.000 779.178
74.2075 111.311
16.8753 25.3129
4.64675 6.97012
1.406 95 2.11042
0.281 390 0.422096
0.0562779 0.0844169
Li 0.0734 86979.3 0.0318 173959.0
(9s /9p) 0.9637 9685.89 0.1417 19371.8
1294.90 2589.81
207.850 415.700
40.0481 80.0963
9.028 71 18.0574
2.43300 4.866 00
0.710627 1.42126
0.0477893 0.0955786
He 279951.0°
(11s/11p) 35891.1
4984.88
755.285
124.505
28.0994
7.92166
2.58074
0.918171
0.347207
0.137777

*The same exponents have been taken for s- and p-functions.

For H, as well as for LiH, a nonrelativistic potential
curve was calculated to find the nonrelativistic equilibri-
um bond lengths for the respective basis set. In addition,
for LiH a symmetric pattern of five different internuclear
distances, including the nonrelativistic equilibrium value,
was examined to obtain an estimate of the relativistic
correction to the bond length.

The results for H, are given in Table IV. For compar-

ison, results of other authors are included. There is an ex-
cellent agreement in the relativistic correction to the total
energy between the () result and the perturbational result
of Kolos and Wolniewicz,*® taking into account that the
latter was obtained with an explicitly correlated wave
function. The results of Mark and Rosicky?® have been
obtained with the original Dirac operator and a scalar
basis set comparable to those used in this paper. A
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TABLE IX. 14s/14p Gaussian-lobe basis sets for Li and Be.

Li Be
Contraction Contraction
coefficients coefficients
s P Exponents K P Exponents
0.0003 0.0106 737726.0 0.0005 0.0017 1035170.0
0.0046 0.0452 87824.5 0.0047 0.0060 147882.0
0.0499 0.1982 11555.9 0.0511 0.0267 21126.0
0.5534 0.8034 1699.39 0.5744 0.1112 3018.00
280.136 498.020
63.2235 112.397
17.8237 31.6866
5.806 66 10.3230
2.065 89 3.672 68
0.781216 1.38883
0.309 998 0.551108
0.123999 0.211965
0.049 5997 0.078 505 4
0.0198399 0.0280377

reasonable relativistic correction was found only by means
of the so-called “high ¢” approximation, i.e., by defining
the correction in relation to the actual nonrelativistic limit
of the matrix representation of the Dirac operator. In a
similar way the results of Matsuoka et al.?’ have been ob-
tained.

The lower bound of Q allows to look at quantities other
than the total energy. For example, one finds that the re-
lativistic correction to the dissociation energy is even an
order of magnitude smaller than the correction to the total
energy of a single hydrogen atom. To exclude artifacts of
the basis set, the dissociation energy has also been deter-
mined with respect to H atoms calculated with the basis
set of the whole molecule (counterpoise correction). Obvi-
ously the relativistic correction to the dissociation energy
is not changed and can thus be regarded as being signifi-
cant. The invariance against the counterpoise correction
is not surprising since the relativistic details of an atomic
wave function cannot be improved very much by basis
functions located “outside” the atom, i.e., far away from
the nucleus.

Clearly, for LiH relativistic corrections are much more
pronounced [Table V (a)]. The results roughly agree with
those of Aoyama et al.,?® which have been obtained at the
experimental bond length. This bond length differs con-
siderably from the equilibrium value obtained in this
work. Therefore, a large influence of electron correlation
is to be expected. As electron correlation tends to reduce
the ionic character of the Li-H bond, a reduction of
charge density at the hydrogen nucleus, together with a
shortening of the bond length, is very likely to enlarge the
relativistic corrections.

By the procedure described above, a relativistic bond
contraction of 0.010% was found, which fits very well
into the rule of thumb of Pyykké and Desclaux® predict-
ing 0.008%. There are also certain parallels to H,. For
example, although the relativistic correction to the co-

valent dissociation energy [Table V (b)] is much larger
than for H, it is, just as for H,, 3 orders of magnitude
smaller than the correction to the total energy. Also for
LiH the correction to the dissociation energy is nearly not
modified by the counterpoise correction.

The ionic dissociation energy of LiH [LiH —
Lit+H™, Table V (b)] is, of course, much larger and has
a relativistic correction twice as large as the covalent one.
The difference between both corrections is roughly equal
to the relativistic correction to the 2s,,, spinor energy of
the Li atom (see Table III). It thus should be due to the
transfer of an electron from the “slightly” relativistic H
nucleus (see Table VI) into the influence of the Li nucleus
on forming the LiH molecule from Li* and H™.

IV. QUALITY CONSIDERATIONS

In a complete basis set eigenfunctions of Q¢ are eigen-
functions of D,y as well. Accordingly, the expectation
value of D¢ with an eigenfunction of Q¢ should be close
to the SCF energy calculated from the w; [see Egs.
(12)—(14)]. Table VII contains these values for the atoms
and molecules, discussed in Sec. III.

For He, Li, and Be, Eggcr and (D) do not agree very
well in the small basis sets. Obviously {(D.g) tends to
overestimate the relativistic contributions to the SCF ener-
gies. This is not surprising since D, is not bounded from
below. For the large basis sets, however, there is no con-
siderable difference between both kinds of values. They
can hence be expected to converge to the same limit with
increasing size of the basis set. The wave functions then
become eigenfunctions of Q. and D at the same time.

Similar information can be taken from the relativistic
virial theorem.?’ For atoms and molecules one has

W =E +mc*={(Bmc*) +{c@P)+(V)
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or
E=(Bmc*)+(cadB)+(V),
with
O2x2 O2x2
022 2]12><2)

B'=B—14x4= [

The nuclear repulsion has to be included in V if one has
molecules in their equilibrium geometry. For the exact
wave function

(cad-B)=—(V),

such that
W ={Bmc?)
and
E=(Bmc?) .
For an approximate wave function the quotients
V
T
(ca-P)
and
E
Q.= (B'mc?)
or, in the SCF scheme (see Sec. II B),
_ _{V+G)
ql - — —>
(cd'B)
and
4= ERrscr
27 (B'mc?)

should be as close as possible to unity. G is the electron
interaction (10) and Ergcr the relativistic SCF energy ac-
cording to Egs. (12)—(14). The quotients g, and ¢, are
listed in Table VII, too.

Again, for the large basis sets good results are found.
Both versions of the relativistic virial theorem are ful-
filled. The deviations for the small basis sets, however,
have two different aspects.

On the one hand, the wave function obtained from
does not reproduce correctly the relation between kinetic,
potential, and rest-mass energy that is to be expected for
eigenfunctions of the Dirac operator. This is equivalent to
the finding that Egpgcp and (D.s) do not agree (see
above), showing that the wave functions obtained are not
eigenfunctions of the Dirac operator.

On the other hand, B'mc?, cdp, and V or V+G,
respectively, are no explicit parts of Q (11) but constitu-
ents of the operator products contained in Q. Thereby, er-
rors in the matrix representation of the Dirac operator are
not automatically contained in the matrix representation
of Q. Owing to the variational collapse, deficiencies of
the basis set are much more critical for the Dirac operator
than for Q. This makes q; and g, very sensitive parame-
ters for the saturation of the basis set.
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For H, and LiH only comparatively small basis sets
could be taken (see ¢; and g,). Nevertheless, satisfactory
SCF energies and relativistic corrections have been ob-
tained by means of Q.4 According to (D) the wave
functions obtained from () differ considerably from those
that would have been obtained from the original Dirac
operator (see Appendix B), since there is no variational
collapse for Q.

V. CONCLUSIONS

The validity of the variation principle for Q, which has
been documented previously for one-electron systems,’¢ is
maintained in an SCF scheme based on Q. Calculations
with scalar basis sets do not suffer from the variational
collapse and can thus be performed in a straightforward
manner, much like in nonrelativistic quantum chemistry.
The lower-bound property and the correct nonrelativistic
limit of the matrix representation of Q allow to calculate
even very small relativistic corrections.

The additional operators that are contained in ) are no
trouble in practical calculations, especially if a parallel
computer is employed. Vectorization of the Q-based SCF
program on the CYBER 205 of the Rechenzentrum der
Ruhr-Universitat Bochum is in progress and can be done
even more efficiently than for a nonrelativistic SCF pro-
gram.

Alternative modifications of the Dirac operator that
can be used for SCF calculations have been proposed by
Mark and Schwarz,*’ by Kutzelnigg,*> and by Wallmeier
and Kutzelnigg.*! Nevertheless, of all the operators pro-
posed, Q is still the only one which is bounded from
below. Future calculations will show which modification
is best suited for many-electron systems, especially in con-
nection with a relativistic CI scheme.
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APPENDIX A: REMARK ON THE SPECTRUM
OF

The spectrum of () contains a continuum where particle
and hole states are degenerate (see Fig. 1). As a conse-
quence, linear combinations of particle and hole states can
be eigenstates of () but not of the original Dirac operator.
In principle, this fact can raise complications if weakly
bound electrons are present. A good example for that sit-
uation should be the H™ atom.

Table X shows the lowest ten Hartree-Fock spinor ener-
gies of H™ from a relativistic SCF calculation with Q in a
7s /1p Gaussian-lobe basis set (see Table VIII). Obviously
the ground-state spinors (1s;,,) do not have the lowest
spinor energies. There is a set of spinors that have ener-
gies below those of the ground-state spinors. On inspec-
tion they are identified as hole states, i.e., they have large
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TABLE X. H™ atom, spinor energies from a SCF calculation with Q in 7s /7p Gaussian-lobe basis
(see Table VII). All energies in Hartree units. Expectation values of 72 in (Bohr units)?.

j degeneracy € (r?)

+ 2 —0.166 568 6 21.5173

5 2 —0.0903562 28.6805 hole states

3 4 —0.090355 1 28.6806

% 2 —0.043 8478 8.6425 particle states®

3001

21s,,2 SCF ground-state spinors.

lower and negligible upper components. At first glance
this looks like a contradiction to the lower bound of Q.

To clarify the situation one has to keep in mind the
correspondence between Dirac holes and positrons. In the
SCF calculation the hole states have been treated as virtu-
al spinors for which Q does not distinguish between holes
and positrons. Compared to the H atom, the virtual hole
states get a lower energy under the influence of the nega-
tive charge of the H™ atom. This situation, which actual-
ly is an artifact of Q, is valid only as long as the hole
states are unoccupied.

Putting a positron in one of the virtual hole states with
spinor energies lower than those of the electronic ground-
state spinors does not necessarily lead to a total energy of
the (2¢ —,le*) atom, which is lower than that of the H™
atom, i.e., to a bound positron. The repulsive interaction
between the nucleus and the positron will change the pic-
ture drastically. To what extent the attractive interaction
with the electrons is compensated can only be figured out
by a calculation of the (2¢ ~,1e +) atom.

A real mixing of particle and hole states was not ob-
served. All eigenspinors could definitely be classified as
either particle or hole.

APPENDIX B: VARIATIONAL COLLAPSE
IN A DIATOMIC, HOMONUCLEAR
ONE-ELECTRON MOLECULE

For molecules the variational collapse of the Dirac
operator leads to a mixing of physical and unphysical
states if they have the same symmetry and degenerate or
near-degenerate energies. The unphysical states are gen-
erated by the inappropriate matrix representation of the
kinetic energy operator c@-p. They are characterized by
a wrong relation between upper and lower components of
the respective spinors. As an example, the ground-state
spinor of the H,* molecule is considered. According to
the formalism of molecular spinors from linear combina-
tions of atomic orbitals (LCAO-MS),* it is called 15042,
being a linear combination of two ls;,, atomic spinors
[see Table XI (a)].

The corresponding eigenspinor of the matrix representa-
tion of the Dirac operator in a basis of Gaussian-lobe
functions (s and p type only) is given in Table XII (a). One
can see that there are contributions not belonging to the
5041/, symmetry. For example, the upper components

TABLE XI. Schematic representation of a soy,,,, and a poyy,, spinor for a homonuclear diatomic

molecule as linear combination of atomic spinors.

(a)

le Ml(SA +SB )
mi=+1/2_ 0 mi=+1/2 0
Sy iN3p, T Pmsayy, = iM3(p,4+p28)
iN4(px+ipy) iM4(pxq +ipys +Pxp +iDy5)
(b)
Nip. M (P —pz5)
mj=+l/2 NQ(Px‘i'iPy) mj=+1/2 M;(pr'FipyA —pr"‘iPyB)
Prpy,y = —iN3s T Pripoy = —iM5 (s, —Sp)
0 0

n,n’: atomic main quantum numbers; N,N’,M,M': normalization factors; 4,B: atom indices.
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have m-type contributions. On comparison with Table
X1 (b), the spinor can be identified as a linear combination
of a 5041/, and a pog,, spinor. The alternating signs in
the po,/, contributions indicate that the latter stem from
a virtual spinor, which should have an energy much
higher than the ground-state energy.

Table XIII(a) shows the corresponding spinor calculat-
ed with Q. The spurious 7 contributions in the upper
components are negligible. However, one can observe a
polarization along the (internuclear) z axis by means of the
o-type basis functions. This is in agreement with the fact
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that only the projection of 3'= T+7 onto the internuclear
axis provides a good quantum number for classifying
molecular spinors in linear molecules.

Inclusion of d-type functions in the basis set reduces the
w-type contributions to the Dirac eigenspinor by an order
of magnitude [Table XII(b)]. The main effect of the addi-
tional d functions is probably to improve the representa-
tion of the virtual spinor. Its energy gets more reasonable
and mixing with the ground-state spinor is reduced.
Apart from further polarization, the d functions have no
significant effect on the Q eigenspinor [Table XIII (b)].
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