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With use of variational wave functions, oscillator strengths have been calculated for all the al-

lo~ed transitions between the states n 'S, n 'I', n 'D, n S, n 'I', and n D, n &9, in neutral helium,

with an estimated accuracy of better than 1% for most of the transitions and better than 0.1% for
about a third of the transitions. The error estimate is based on numerical convergence as the num-

ber of expansion terms in the wave function is increased. By use of rapidly converging trial func-

tions consisting of two sets of Hylleraas-type basis functions differing in the values of nonlinear pa-
rameters, the expansion lengths required are kept moderate (at most 140 terms). A discussion is

given about the completeness of the Hylleraas-type basis.

I. INTRODUCTION

Continuing efforts have been devoted to determine reli-
able atomic oscillator strengths (f values) and lifetimes.
In the case of helium and heliumlike ions, accurate f
values have been calculated by Schiff et a/. for theI 'S—n 'P and I 5—n P transltlons with m, n &5. '

They used variationally optimized wave functions con-
taining hundreds of or about a thousand expansion terms,
and attained an estimated accuracy of 1% or better for
the large majority of the transitions. For neutral helium,
however, the uncertainty of their results is still somewhat
larger when transitions involve higher-lying excited states.
In view of recent precision measurements of f values and
lifetimes with an accuracy of a fraction of a percent for
selected atomic systems, ' it seems desirable to improve
some of the results of Schiff et al. and to carry out pre-
cise calculations for a wider range of transitions. In this
paper we report the results of such calculations for neutral
helium; the transitions included are those between the
n 'S, n 'P, n 'D, n 5, n P, and n D states with n &9.
The wave functions employed are truncated expansions
based on complete Hylleraas-type basis functions, and the
accuracy of the results is estimated from numerical con-
vergence as the expansion length ls increased. To ac-
celerate convergence, we included in the expansion two
sets of basis functions differing in the values of nonlinear
parameters; although the expansion lengths employed are
moderate (at most 140 terms), the present method im-
proves the results of Schiff et al. for the majority of the
tI'RIlsltlons commonly tlcatcd.

u jk ——( I+P&2)r'~r2r ~ze Pt(cos8&),
—gl' l

—IP'2

where Pl2 is the permutation operator, PI is the Legendre
polynomial giving the symmetry of the desired angular
momentum state, g and g are adjustable parameters, and
the + and —signs refer to the singlet and triplet states,
respectively. (The basis employed by Schiff et al. was
essentially of this form though they used perimetric coor-
dinates. ) One can attain a fairly high accuracy by using
expansions containing a relatively small number of u,jk
terms. For further improvement of the accuracy, howev-

er, it seems not very effective simply to increase the ex-
pansion length, as we consider below. Since the factor
rt'e has its maximum at r~ i/g and ——becomes zero

—g'r l

when r
&
~0 or r2 +Do, th—e terms involving this factor are

considered to be suited for modifying the value of the
wave function in the neighborhood of r& i/g ——Conse. -

quently, if the value of g is fixed at an optimum value for
a short expansion, the terms involving higher powers of
r&, which are added as the expansion length is increased,
will not effectively modify the value of the wave function
in the range of middle and small r ~, where the wave func-
tion is expected to require more accurate representation;
on the other hand, if the value of g is increased in order to
make such terms effective by decreasing the value of i/g,
the accuracy attained by the terms with lower powers of
r

&
will be deteriorated.

On the basis of the above consideration, the trial func-
tion in the present work were taken to be the expansion of
the form

The wave functions were obtained by variationally solv-
ing the Schrodinger equation with the usual nonrelativis-
tlc spin-independent Hamiltonian glvcIl 1Il atomic units by

Z ZH
r l2

It is common to use a trial function consisting of a linear
comblnatlon of the Hylleraas-type correlated basis of the

g atjkutjk + X btjkUtjk
i,j,k r,j,k

for 5 (l =0) and P (l =1) states. Here a;jk and ljjk are
the linear variational parameters, u,jk is given by Eq. (2),
Rnd Ugjk ls glvcn by

Utjk —(1+P)2)r tr2r t2e Pt(cosset ),—g(r 1 +@2) (4)

where g is the nonlinear variational parameter. The sum-
mations in (3) run over linearly independent terms with
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to form a complete set, where m is the angle between the
radius vector of the two electrons. The trial function for
D ( I =2) states was thus taken to be4

0= g IIIJ'kurt + g 5rgv Us@ + g c(gv IUrgv ~

S,j,k i,j,k

i & I and j,k & 0. The role of each term in (3) may be in-

terpreted as follows. The first summation roughly ap-
proxirnates the true eigenfunction using a relatively small
number of terms; the second summation accurately com-
pensates for the remaining discrepancy, the value of g be-

ing chosen so as to make this compensation most effective
without affecting the (fairly high) accuracy of the approx-
lmatlon by thc Q)~k terms.

In order to estimate the accuracy of the results correct-
ly from convergence study, it is necessary to choose the
trial fllilc'tioil so tllat lt cali Rppl'oxiIIlatc thc tlllc cigcil-
function to any desired degree as the number of expansion
terms is increased. For 5 and I' states, the U,jk terms
form a complete set in the subspace of the functions of a
given symmetry. For D states, however, the v,zk terms
must be supplemented by the terms given by

Iojk ——(I+PI2)rir2rile (3cos8icos&I cosm—)
—4~~i+~2~

TABLE I. Values of v„, v„, and v„associated with the long-
est expansion for each state.

State

11
10
12
11
10
9
9
8
9

ing the eigenvalue equation for a series of g points taken
at intervals of 0.1 (when g&1) or 0.05 (when g~ 1) in
atomic units; further optimization was thought meaning-
less since the dependence of the energy eigenvalue on g
was very small in the neighborhood of its optimum value.
For expansions other than the longest ones, g was fixed at
the value thus obtained.

After determining wave functions, we calculated f
values using both the length and velocity formulas

fI =C(Eb E, ) I fb(z—i+zl)p, dr (g)
where the first two summations run over linearly indepen-
dent terms with i & 2 and j,k &0, and the last summation
with ij & 1 and k &0. We show the completeness of the
expansion using v,zk and m,jk in the Appendix.

In the actual calculations, we truncated the expansion
so that the powers of ri, r2, and riz satisfy the inequality

C 8 8 d'
(E E) — Bz Bz

Here C is equal to 2 for the S-I' transitions and is equal to
for the I' Dtransition-s; E, and EI, are the energy

eigenvalues of the initial and final states, respectively.
Each of these formulas was evaluated using the wave
functions of four different expansion lengths (in such a
way that the nth longest expansion of the initial wave
function was used with the nth longest expansion of the
final wave function). In these calculations, we always
used the energy eigenvalues obtained from the longest ex-
pansions.

v„,v„v &i+j+k+ ~i —j ~5ko,

III. RESULTS AND 13ISCUSSION

A. Energy eigenvalues

In order to see the quality of the calculated wave func-
tions, we first compare the obtained energy eigenvalues
with those of the highly accurate calculations by Pekeris
RIld Accad er a/. Tllcsc Rl'c 11stcd ill Table II ill terms of
the iomzation energy I, converted from the energy eigen-
value E using the relation I =( 2E —4)&H„whc—rc the
value of ABC Used was 109722.267 cm . Also llstcd arc
flic cxpailsioil lcIlgtlls cIIlploycd, tllc opflIIlllIIl valllcs of g,
and the experimental ionization energies. Following Pek-
eris and co-workers, the number of digits given for the
present results is determined so that the listed values
differ from the extrapolated values (which one would ob-
tain from the expansion of an infinite length) by not more
than onc or occasionally two ln thc last dlglts quoted, Un-

less they are underlined. The expansion lengths employed
by Pekcris and co-workers were more than 1000 (to 2300)

where 5ko is the Kroneckcr 5, and v„, v„and v are cer-
tain integers specified for the u;Jk, v;~k, and Io;Jk terms,
respectively. For the u;Jk terms, we further imposed the
restrictions j,k & 1 and j &i The term.

~

i —j ~
5ko in (7)

is included in order to omit some of expansion terms
which have nonzero k and large

~
i —j ~; the ri2 depen-

dence of the terms with large
~

i —j ~

is thought less im-

portant, since they have appreciable values only when the
two electrons are far apart. Exclusion of such terms en-
ables one to obtain larger values of v„, v„and v~ without
unduly increasing the total number of terms in the expan-
sion. In order to Undertake a convergence study, we cal-
culated the wave function of each level for four successive
integral values of v„and v„with the value of v„ fixed.
The values of v„, v„, and v associated with the longest
expansion are summarized in Table I.

As in the usual manner, the linear variational parame-
ters a;Jk, b,jk, and c,jk were determined from matrix
eigenvalue equations. In these calculations, the nonlinear
parameters g and I) were fixed at the values
( 2E —Z ) Rlld Z, rcspe—ctlveiy, where E ls tllc cIlcIgy'
eigenvalue of the state in question (thus the u,p, terms
have the correct asymptotic form as ri, r2~ Oo ); for this
pulposc, wc Used thc c1gcnvalUcs calcUlatcd by Pekcris
and Accad eI; al. when available and, otherwise, experi-
mental energy values. The nonlinear parameter g was
optimized for the longest expansion for each state by solv-
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for S states and 560 for P states. In spite of the quite
moderate expansion lengths used in this work, the accura-
cy of our results compares favorably with that attained by
Pekeris and co-workers. The results for P states indicate
that in the method of Pekeris and co-workers the conver-
gence of the energy eigenvalues becomes rapidly poor as
one deals with higher excited states, while in the present
method this effect is not as serious. Such a tendency is
more clearly seen in Fig. 1, where as a typical example of
the convergence the ionization energies of the 2'P and 5'P
states are plotted as a function of the (logarithmic) expan-
sion length employed.

The estimated uncertainties of the calculated ionization

50 100 500
Number of expansion terms

FIG. 1. Convergence of ionization energies for the 2'P and
5'P states as the number of expansion terms is increased.
Present results ( X ) are compared with those of Accad et al. (0,
Ref. 6). Right-hand-side scale for the 5'P state should be used
for the latter results.

energies are comparable to, or smaller than, the experi-
mental uncertainties. Any discrepancy between the calcu-
lated and experimental ionization energies therefore sug-
gests the effect of various correction terms for nonrela-
tivistic ionization energies.

B. f values

The results of f-value calculations are summarized in
Tables III and IV. The listed f values are "recommend-
ed" values and are selected from "length f values, " "ve-
locity f values, " and occasionally values lying between
these. The estimated uncertainties of the listed f values
are +1 in the last digits quoted when these are not under-
lined, and +3 when underlined. The estimation of the ac-
curacy is based on the following requirements: For each
transition, both the length and velocity f values lie in the
range specified by the above error estimate when they are
calculated using the longest expansion, and at the same
time both are expected to converge on some value in this
range. In Figs. 2 and 3 we illustrate the convergence of
the results for some of the ' S 'P an-d 'P 'D transi-tions
(the convergence for the P Dtrans-itions would show
similar features and is not given here).

Figure 2 also shows the convergence of the results of
Schiff et al. , ' who used wave functions containing up to
364 terms (1078 terms for the 1'S state). It is seen that
the present results generally give better convergence than
those of Schiff et al. A full comparison between the two
sets of results shows that the present results give im-
proved f values for the majority of the transitions com-
monly studied (and of course that all of the two sets of f
values agree within the uncertainties specified by Schiff
et al. ).

For P-D transitions, the present results also give sys-

TABLE III. f values for S Ptransitions in -neutral helium. S states are assumed to be the initial states. Estimated uncertainties
are +1 in the last digits quoted if these are not underlined, and +3 if underlined.

1'S
2'S
3'S
4's
5's
6's
7'S
8'S
9'S

2'P

0.276 16
0.376 44
0.145 47
0.025 87
0.009 652
0.004 769
0.002 739
0.001 730
0.001 167

3'P

0.073 44
0.151 34
0.626 2
0.307 5
0.055 48
0.021 11
0.01064
0.006 23
0.003 999

0.029 863
0.049 16
0.143 90
0.858
0.476
0.0862
0.033 05
0.016 81
0.009 94

5'P

0.015 039
0.022 34
0.050 5

0.146 3
1.083
0.647
0.1172
0.045 1

0.023 05

0.008 628
0.012 13
0.024 19
0.052 8
0.152 6
1.305
0.819
0.148 2
0.057 1

0.005 405
0.007 360
0.013 68
0.025 88
0.055 6
0.1609
1.53
0.993
0.179 3

8'P

0.003 610
0.004 813
0.008 57
0.014 95
0.027 60
0.058 8

0.170 5

1.745
1.166

9'P

0.002 530
0.003 325
0.005 76
0.009 54
0.016 13
0.029 3
0.062 3
0.181
1.963

2S
3$
4'S
5'S
6S
7S
8S
9'S

2P
0.539086
0.208 53
0.03172
0.011 34
0.005 488
0.003 113
0.001949
0.001 306

3P
0.064461
0.890 9
0.435 7
0.06761
0.02470
0.012 21
0.007 07
0.004 51

4P
0.025 769
0.05008
1.215 3
0.668
0.1040
0.038 2
0.019 10
0.011 17

5P
0.012491
0.022 92
0.04423
1.531
0.903
0.1403
0.051 7
0.026 0

6P
0.006 982
0.01199
0.021 63
0.041 5

1.842
1.139
0.176
0.065 0

7P
0.004299
0.007 07
0.01178
0.021 11
0.040 3
2.151
1.376
0.212

SP
0.002 836
0.004 54
0.007 16
0.01174
0.021 0
0.039 9
2.458
1.613

9P
0.001 970
0.003 09
0.00471
0.007 27
0.011 8
0.021 2
0.040 0
2.764
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TABLE IV. f values for I' D-transitions in neutral helium. I' states are assumed to be the initial states. Estimated uncertainties
are +1 in the last digits quoted if these are not underlined, and +3 if underlined.

5'D 7'D 8'D 9'D3'D

2'P

71P
8'P

0.043 26
0.1413
0.648
0.0573
0.068 4
0.01501
0.005 95
0.003 06

0.01190
0.028 90
0.063 6
0.1632
0.703
0.089
0.135
0.0307

0.007464
0.01708
0.033 6
0.069 3
0.1732
0.741
0.105
0.171

0.005 015
0.01104
0.020 34
0.037 3
0.074 5

0.183 7
0.784
0.120

0.12026
0.648 1

0.040 1

0.039 3
0.008 38
0.003 27
0.001 664
0.000979

0.02095
0.056 29
0.152 9
0.670
0.074
0.100 8
0.022 6
0.009 03

0.71016
0.021 14
0.015 31
0.003 11
0.001188
0.000 594
0.000 345
0.000220

7D 8D3D

2P
3P
4P
5P
6P
7P
8P
9P

0.013 56
0.028 16
0.055 2
0.125 4
0.434
0.426
0.276
0.055 5

0.008 603
0.01698
0.0303
0.057 1

0.128
0.445
0.496
0.343

0.005 823
0.011 12
0.01871
0.0318
0.058 9
0.132
0.460
0.564

0.023 47
0.05301
0.124 0
0.430
0.354
0.210
0.042 0
0.01627

0.04701
0.124 6
0.439
0.280 1

0.1470
0.028 9
0.011 16
0.005 67

0.122 85
0.447 6
0.200 9
0.088 3
0.0170
0.00650
0.003 27
0.001 919

0.61022
0.112 1

0.0370
0.006 90
0.002 58
0.001284
0.000743
0.000474
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FIG. 2. Convergence of f values for S Ptransitions. The value of g-=(f, —f b)/f b, where j and f „are respectively
calculated and tabulated iTable III) f values, is plotted as a function of the average expansion length for the g- and p-state wave
functions. Present results I, Q ) are compared vvith those of Schiff eg &I. (~, Ref. 1). I and v on each curve refer to the length
veloctt& f v»ues «spect»e4' ««-hand-»de sc»«« ~ should be used for the presen~ results and the right hand»de scale f«
those of Schiff et aI.
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FIG. 3. Convergence of f values for 'P 'D transiti-ons. The value of A=(f„]—f„b)/f„b, where f„]and f„b are, respectively, the

calculated and tabulated (Table IV) f values, is plotted as a function of the average expansion length for the P and D-sta-te wave

functions [ &&, the present results obtained using expansions given by Eq. (6); ~, expansions with wjk terms omitted]. 1 and v on each

curve refer to the length and velocity f values, respectively. Also plotted, regardless of the expansion length, are the results of Green

et al. (, length formula; o, velocity formula; see Ref. 11). Left-hand-side scale for 6 should be used for the present results associat-

ed with full-term expansions ( X ), and the right-hand-side scale for the rest.

tematically closer agreement between the length and the
velocity f values than the best theoretical data in the
literature. ' ' We include in Fig. 3 the results of exten-
sive calculations by Green et al. " For 2' P-3' D transi-
tions, Davis and Chung' have compared their results
with those of other authors ' we refer the reader to
their paper for comparison with the present results:
f](2'P 3'D) =0.710 16-, f„(2'P 3'D) =0.710 18-, fi(2 P
3 D) =0.61022, f„(2 P 3D) =0.61024-.

It may be of interest to see how results are affected if
we omit the w;Jk terms from the expansion for D states
(the Hylleraas-type trial function used in Ref. 10 involved

no terms similar to w,zk ). We made such calculations for
the 2'P 3'D and 3'P-3-'D transitions. The results for the
2'P-3'D transition are plotted in Fig. 3. It is seen that the
length and velocity f values appear to converge on dif-
ferent limits whose discrepancy is 0.5%. The calculations
for the 3'P-3'D transition show that the length f value ap-
pears to converge on 0.021 14 while the velocity f value
converges on 0.0241, the discrepancy being 14%. Thus
the importance of the tv,jk terms for accurate f-value cal-
culations is clear.

To summarize, we have calculated accurate f values in
neutral helium for the transitions between the S, P, and D
states with the principal quantum number of the running
electron n (9. By using rapidly converging variational
wave functions consisting of two sets of Hylleraas-type
bases differing in the values of the nonlinear parameters,
we were able to keep the number of expansion terms
moderate. Judging from the convergence of the results as
the number of expansion terms was increased up to

106—140, we may conclude that the accuracy of the f
values obtained is better than 1% for most of the transi-
tions and better than 0.1% for about a third of the transi-
tions.
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APPENDIX COMPLETENESS
OF THE EXPANSION USING v;,k AND w;Jk

Coolidge and James showed the completeness of the
series

J k g~]+~2~
Cr = alJkr 1r2r 12e

ij,k

in the subspace of the S-state functions, which depend
only on r &, rz, and r &2.

'
Combining this result with the

fact that any P-state function with M=O and odd parity
(M denotes the projection of the total orbital angular
momentum on the quantization axis) can be written as'

/= R](r],r2, r]2)coso]+R2(r], r~, r]2)cos02,

we readily deduce the completeness of the P-state expan-
sion using v;Jk. Here we show the completeness of the
present S-, P , and D-state expans-ions in a somewhat dif-
ferent way by giving an explicit relation between the ex-
pansion using a correlated basis and that using an un-
correlated basis.
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Let us consider the following functions for L=0, 1, or

I

EI. iji =r I ri2e ' ' g C(l +L, /, m, —m;L, O)
m= —I

&& ~i+L, (8I ml)~i™(81qz)

(i & I +L, j& I, I )0) (Al)
I

EI .
;&~ r I

r——ile ' ' g C(l, l +L,m, —m;L, O)
m= —I

&& 1"I (8I V I ) 1"I+I.(82 c/z)

(i &I, j&I+L, l&0) (A2)

Gii =rI rile ' ' g C(/, I,m, —m;2, 0)

&1"I (8I VI)1'i™(8zV I)

(i,j)l, /&1) (A3)
I

—g(r] +/'2)
fz, ;iik =r irzr IIe Pz(cos8I)

(j,k)0, i &L) (A4)
—Or~+~2~

fr. ;erik
=r Irsr Ice PL(cos81}

(i,k &0, j&L) (A5)

(i,j&1, k &0) .

Herc thc C s 8« th«lcbsch-««Rn coefficients and the
1'I 's 8« the nolTn»ized spherical harmonics. %'e know
the fact that Eo.;II form a complete set in the subspace of
the S-state functions, El,;,i and Fl,;ii In the subspacc of
the P-state functions with M=O and odd parity, and
Fz ;II, Fz. ,J.I, and G;ii in the subspace of the D-state func-
tion with M=O and even parity. Our purpose is to find a
I'clatlon IMtwccIl ( EI .,iI,EI, iii, Giii) Rlld (fI i'~fI, iik, g. iik ).
Using the spherical harmonic addition theorem

l
Pi{cosco)= y &p(8l„q I) 1'I (8p, qg), (A7}2I+1

together with a recurrence relation

(2/ + 1)(2l +3)
(/+m +1)(l—m +1)

(2/+3){l +m)(l —m)
(2/ —1)(/+ m +1)(l—m +1)

and some recurrence formulas for the Legendre polynomials, '" we can reduce the summations in Eqs. {Al)—(A3) as fol-
lows:

so —— (2/ + 1)'~~pi(cosco),
4m

(A9}

[Pi+ I (cosco)PI {cos8l)—Pi' (cosei)PI (cos81)], {A10)

40(2/ +1)!
[Pi'+q(cosco)PI(cos8I )+Pi"(cosco)PI(cos81)—Pi'+ I (cosco)(3 cos8lcos81 cosc0)], —(Al 1)

4m 3(2l +4)!
I

sz ——
I (2/ + 1)Pi"(cosc0)[Pz(cos8I )+P2(cos81}]

( —1) 80(2/ —2)!
4m (2/ +3)!

—[(2/ —1)Pi'+ I (coseI )+(21 +3)Pi" I (costa)](3 cos8lcos8z —cosco)/2I .

cosco=(rlr2 +rl rp —I'I r2 rig)/2
—1 —I —1 —I 2 {A13)

Here so, s~, s2, and s3 denote the summations associated,
respectively, with Eo ;Ji, EI ;II, Ez.;~~., and .GIT, and the first
and second derivatives of the Pi's are written, respective-
ly, as I'I' and I'~". The summations associated with I'I, ,JI
and I'2. ,~I are obtained l3$ exchanging 8I and 82 in Eqs.
(A10) and (Al 1). Derivation of these relations is straight-
forward though somewhat tedious, and we do not give de-
tails here. Substituting

into Eqs. (A9)—(A12) and noting that Pi is a polynomial
of the lth degree, we find that Fo ;iI is given as a su.m of a
flllltc 11UIIllMI" of fo.iik tcITIls, FI.,ii Rllcl FI ,il Rs 8 sllnl of 8.
flIlltc IlullllMr of fI.

haik
Rllcl fI.iik 'tcITIls, Rllcl E2 iii, FliiI~.

Rlld G~i Rs 8 sulll of flllltc IlllInllcl' of fl.,~k, fl.,ik, Rnd giik
terms. This pmves the completeness of the expansions us-
IIlg fI,~k, fI .,Ili, Rlld giik, Rlld llcllcc U,ik Rllcl I0,~1», II1 tlM
subspace of the functions of a given symmetry [the terms
with even k are sufficient for the completeness of the ex-
pansion, since Eq. (A13) involves rlz only in the second
power].
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