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Optically induced molecular reorientation in a smectic-C liquid crystal
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The Euler equations for describing the director in the optically induced molecular reorientation of
a smectic-C hquid crystal in an external magnetic field are presented. The optical alignment effect
is shown to be localized and not to produce point defects. Analytic expressions are given explicitly

in the small-distortion regime, which, generally, have the form of zcroth-order Bessel functions.

Threshold bchavioI' exists if thc polarization of thc optical beam is normal to thc magnetic field.

For a magnetic field of the order of 1 kG, the threshold power varies from 3 to 120 mW for a typi-

cal smectic-C sample with a laser spot size of about 1 to 100 pm, but is independent of the thickness

of the sample. For polarizations oblique to the magnetic field, there is no threshold and the ampli-

tude of rotation of the director depends on spot size, laser power, and the angle between laser polari-

zation and external magnetic field. The transient response of molecular reorientation to the laser

switch on is shown to have exponential time dependence for a normally polarized incident beam

with an incident intensity greater than the threshold intensity. The response time of such a reorien-

tation is of the order of milliseconds, depending on incident laser intensity. We propose that, exper-

imentally, the molecular reorientation can be quantitatively measured by the reflectivity or
transmissivity of a normally incident probe beam. Optical reAectivity and transmissivity from a

typical smectic-C film are also calculated.

I. INTRODUCTION

Recently the nonlinear optics of liquid crystals has re-
ceived a great deal of attention. Shelton and Shen initiat-
ed the study of the normal and umklapp optical third-
harmonic generation in cholesteric liquid crystals
(CLC).' The orientational optical nonlinearity of CLC
was recently considered by Tabiryan and Zel'dovich in
1981 and by Winful in 1982. Tabiryan and Zel'dovich
showed that when a light wave propagates along the heli-
cal axis, self-focusing should not occur for circularly po-
larized light, but for linearly polarized light the nonlinear
dielectric constant e'2 is about 8X10 cm ferg. The
elliptic-function solutions in the Bragg regime have been
obtained by Winful and the results show that optically in-

duced changes in the pitch of the cholesteric helix lead to
a bistable reflection even in the absence of external reflec-
tors. In the nematic-liquid-crystal (NLC) phase, the opti-
cally induced Freedericksz transition has received even
more attention. The effect of the optically induced molec-
ulaI' reorientation 1n the NI C was cxpla1ncd quRlltat1vcly

by Zolot'ko et aL in 1980. A quantitative theory was
later constructed by Zel'dovich, Tabiryan, and Chilingar-
yan using the geometrical-optics approximation. In 1981,
Durbin, Arakelian, and Shen reported the first observation
of the optically induced Freedericksz transition in nematic
5CB (4-cyano-4'-pentylbiphenyl) and showed that the re-
sults were in quantitative agreement with their theoretical
predictions using the infinite-plane-wave approximation.
In 1981 Khoo also presented an approximate solution and
made a quantitative experimental verification of the asso-
ciated nonlinear optical processes. Recently the exact
solution describing the orientation of the NLC molecule

was obtained by Ong. These studies show that for cer-
tain NLC's with large dielectric and elastic anisotropies,
the transition can be first order accompanied by hys-
teresis, and that the optical nonlinearity of NLC's is larger
by eight to ten orders of magnitudes than that of carbon
disulfide (CS2). The term "gigantic optical nonlinearity"
(GON) has been coined by Zel'dovich for such large non-
linearities.

Contrary to cholesterics and nematics, not much work
has been done regarding the effects of external fields on
smectics. The possibility of a Freedericksz transition in a
smectic liquid crystal by an external dc magnetic field has
been considered by Helfrich, " Rapini, ' Hurault, ' and
Meirovitch et al. ' ' The results show that all transitions
requiring a distortion of the layers are probably not ob-
servable because the distortion is a very weak function of
the field. Such a transition has therefore been called a
"ghost" by Rapini and has not been observed experimen-
tally. However, those magnetic-field-induced transitions
which involve the rotation of the director about the nor-
mal to the smectic-C-liquid-crystal (SmC) layers should be
observable, as discussed by Rapini' and by Meirovitch
et al. ' Indeed, magnetic fields have been used to align
the azimuthal angle of the Smc experimentally. ' ' The
effects of weak anchoring between the smectics and the
surfaces on the dc-field-induced Freedericksz transition
have also been studied by Mcirovitch et al. '

In contrast, using a linearly polarized light source with
the electric field directed in the plane of the layer at an
angle to the initial orientation, it is possible to reorient the
azimuthal component of the director of the SmC mole-
cules. This transition involves only a rotation of the
director about the normal to the layers and does not in-
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volve any distortion in the layer. Indeed, the optically in-
duced molecular reorientation in the SmC was recently
directly observed by Lippel and Young using a linearly
polarized laser beam incident on a freely suspended film
of a SmC. ' They reported that large reorientations have
been observed with an incident optical power of less than
50 mW and have presented a simple theory explaining the
reorientation effect. The theoretical study of the orienta-
tional optical nonlinearity of SmC induced by an optical
field in the presence of an external orienting dc inagnetic
field has been considered by Tabiryan and Zel'dovich who
showed that the effective nonlinear dielectric constant e2
is -0.2 cm /erg for the self-focusing light and
X,rr-0. 6X 10 cm /erg for the four-wave interaction. '

These nonlinear constants are, respectively, nine and five
orders larger than those of CS2. However, the solution to
the spatial orientation of the director of the SmC has not
been found.

It is the purpose of this paper to present the Euler equa-
tions for describing the director in the optically induced
molecular reorientation in a SmC sample. The sample is
assumed initially oriented by a homogeneous dc magnetic
field in the SmC layer so that without the optical field, the
azimuthal angle of the SmC is well aligned in the magnet-
ic field direction. A polarized light beam is then normally
inciden. t on the sample. If the polarization is at an angle
to the magnetic field, the azimuthal angle of the director
will vary under the action of the optical field. We discuss
the general properties of the solution for the director and
give analytic expressions explicitly in the small-distortion
linearized regime. The results show that the optical align. -

ment effect is localized and does not produce point de-
fects. Generally, the solutions in the small-distortion re-

gime have the form of zeroth-order Bessel functions. Us-
ing the continuity condition at the boundary imposed by
the spot size of the optical field, the amplitudes of the de-
formations can be determined. In regions far away from
the optical field, the azimuthal angle approaches its
asymptotic orientation exponentially -e /v qr where q
is the inverse magnetic field coherence length. If the po-
larization is normal to the orienting magnetic field, there
exists a characteristic threshold intensity below which no
molecular reorientation can be induced. The threshold
power depends on the applied magnetic field and the laser
spot size, but is independent of the sample thickness. For
a magnetic field of the order of 1 kG, the threshold power
varies from 3 to 120 mW for a typical SmC sample with a
laser spot size of about 1 to 100 pm in radius. We also
discuss the dynamics of the transition. The transient
response of molecular reorientation to the laser switch on
is shown to have exponential time dependence for a nor-
mally polarized incident beam with an incident intensity
greater than the threshold intensity. We propose that, ex-
perimentally, the molecular reorientation can be quantita-
tively measured by the reflectivity or transfnissivity of a
normally incident probe beam. The reflected and
transmitted power of the probe beam covering a known
area are derived.

In the following sections, we first discuss the free ener-

gy density and the Euler equations (Sec. II). A section on
the solution describing the orientation of the director in

the small-distortion regime follows (Sec. III), including a
general discussion of the solutions at the origin and at in-
finity. Finally, proposed methods to observe the optical
nonlinearity effects experimentally are discussed in Sec.
IV.

II. FREE ENERGY DENSITY
AND EULER EQUATIONS

(a)
A

z, k

(b)

H, , y

FIG. 1. Assumed structure of a smectic-C liquid crystal. (a)

A homogeneous dc magnetic field Ho is directed along the y

direction so that the unperturbed state of the SmC sample has k

along the z axis and n =no in the y-z plane making an angle 00

with the z axis. (b) An orienting optical beam is linearly polar-
ized in the x-y plane with the electric field directed at an angle

Po to the y axis and is normally incident on the SmC sample. In
equilibrium, the director n of the SmC i.s oriented at an az-
imulthal angle P with the y axis with the polar angle go being
fixed.

The elastic theory of SmC has been considered by the
Orsay group' and by Rapini. ' Both approaches use the
Oseen description of smectic 3, neglecting all changes in
internal parameters such as density, interlayer distance,
and tilt angle. The Orsay group used the Lagrangian
description for the elastic strains with a vector Q(r)
describing the local rotation of the director. In order to be
consistent with the elastic theory for NLC's, we shall use
the Eulerian description developed by Rapini based on the
director.

We introduce two unit vectors k and n to describe the

SmC structure. k is normal to the layers and n is along
the "long axis" of the molecules as shown in Fig. l. In
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the following discussion, an orienting uniform dc magnet-
ic field Hp=(0 Hp, O) directed along they direction is ap-
plied to the sample so that in the absence of an optical
field, the preferred azimuthal direction is along the y axis.
The unperturbed state then has k along the z axis, and
rt=no in the z-y plane making an angle Ho with k. It is
convenient to introduce a vector n ~

=n (n—k )k which
lies in the plane normal to k and which satisfies

I

w2
n j ——const.

When a light beam linearly polarized in the x-y plane
with the elastic field directed at an angle Pp to the y axis is
normally incident on the SmC layer, there is an additional
term in the total free energy density of the system due to
the optical field. For the discussion of the optical-field-
induced Freedericksz transition, the total free energy den-
sity F (erg/cm ) can be written as

IF= 2a~~(divnj ) + —,'aqua(nq curlnq) + —,a33(k curlnz) —a&3(nz curln~)(k curlnz) — (E D+B H) —2X, (n Hp)
8~

(2.1)

where 7, is the magnetic susceptibility anisotropy,
a,'J =a;~sin 00, and a,&

are the smectic corvature elastic
moduli. ' The smectic curvature elastic moduli have the
same dimensions and the same magnitudes as the Frank
elastic constants for NLC. ' ' The first three terms of
Eq. (2.1) are analogous to splay, twist, and bend in a NLC.
These types of deformations were first discussed by
Saupe. ' The term —(E D+B H)/8~ is the electromag-
netic energy density of the light beam and the last term is
the dc magnetic energy density. The Euler equations for
the director n( r ) have the form

5F
6n;

a
Bxj, 5(Bn;/Bxk)

(2.2)

where A,(r) is an undetermined Lagrange multiplier which
ensures that the condition

~

n
~

=1 is satisfied. The orien-
tation of the SmC sample is then completely described by
the solution to Eq. (2.2) subject to initial and boundary
conditions.

From the results of Rapini' on the dc-field-induced
Freedericksz transition, which show that one needs an ex-
tremely high field to vary the polar angle of the SmC sam-

ple, it is reasonable for us to assume that the polar angle
00 remains fixed. We denote the angle between the direc-
tor and the y axis by P [Fig. 1(b)], then the director is
given by

n = ( sinOpslng, sinOpcosg, cosOp),

The elastic deformation energy density Fd is then given by

Fd ———,sin Op(a~~cos P+a33sin P)
1 Z 2

Bx

2

+ —,sin Op(a &
&sin P+ a33cos P)2 2

By

+ —,sin Opsin(2$)(a33 af))1 ay ay
Bx By

(2.4)

Fd ———,a sin Op(grad/) (2.5)

For the optical field, the electric and magnetic energy
densities are equal so that the total electromagnetic ener-

gy density can be written as F,~, = —E D/4'. It has been
shown that SmC is nearly uniaxial with the optical axis
along n. ' ' Using the uniaxial dielectric tensor'

Experimentally, the exact values of the elastic constants of
SmC have not yet been. measured but are of the same or-
der of magnitudes as NLC's, ' ' and since the equations
that arise from unequal elastic constants are very compli-
cated, we shall use a single-elastic-constant approxima-
tion, a» ——+33—(x to simplify the discussion. Then the
deformation energy is reduced to the form

nz ——(sinOpsing, sinOpcos$, 0) .

(2.3) ~lJ ~l~lJ +~N 5 J

for the SmC, e can be written as

(2.6)

@~+@,sin Opsin P

e, sin Opsingcosg

e, sinOpcosOpsing

e, sin Opsing cosP e, sinOpcosOpsing

g+ E sin Op'cosp E& sinOpcosOpcosg

e, sinOpcosOpcosg cj +e, cos Op

(2.7)

where e, =@~~—e~, and ez (=np) and e~~ (=n, ) are the
dielectric constants perpendicular and parallel to the local
director, respectively, at the incident optical-field frequen-
cy. Thus, the total electromagnetic energy density of the
optical field F,„,can be written as

F, , = — [E~
~

E +e, sin Op
~

E
~

cos (Pp —P)] . (2.8)
8~

Similarly, the magnetic energy density of the dc magnetic
field can be written as
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F& ————,X,sin OpHpcos P . (2.9)

+e
I
E

I

sill Opcos (4p 4)]
Sm.

2 g+Hpsln Opcos P (2.10)

In general, the fields produced by a monochromatic
wave incident upon a slab of SmC consists of four partial
waves. The fields as well as the polarization of the opti-

Consequently, the total free energy density of the SmC
can be written as

I' = —,
' a sin Op(grad/)

cal beam in the SmC clearly depends on the orientation of
the SmC. The complete determination of the electromag-
netic fields in the SmC is complicated and will be left for
further investigation. To simplify the discussion, we shall
fix the amplitude and polarization of the electric field.

Then the term —ei
~

E
~

/Sm in the optical energy makes
no contribution to the Euler equation. By the cylindrical
symmetry of the problem, the relevant total free energy of
the sample can be written as

W=d sin Op f Fdr
0

with the final planar total free energy density per area in

the x-y plane F (erg/cm ) given by

1 dP ~a~Ea +
dr 4m.

sin (P —Pp)++, Hpsin P r, r &rp

2

a +X,Hpsin P r, r ~ rp
2. Z

2 cjl'

(2.11)

const, r ( ro

0, r&r, .

The resulting Euler equations take the forms

a'y 1 ay ——,[u cos(2$p)+q ]sin(2$)2

r Br

(2.12)

where d is the thickness of the sample and ro is the cutoff
radius defined by the profile of the intensity of light beam

except that P changes sign, i.e. if Pp~ —Pp or

Pp~ 2ir —Pp theil P(r)~ —P(r).
Equations (2.13) are nonlinear in P and general solu-

tions cannot be found except by numerical means. How-

ever, by considering small distortions, the equations can
be linearized and solved. Physically, there are now two
competing alignment fields: the external magnetic field
and the optical polarization field. It is these two fields to-
gether with the elastic energy that determines the spatial
orientation of the SmC director.

and

+ —,u sin(2$p)cos(2$)=0 for r &rp (2.13a) III. GENERAL PRGPERTIES
AND SMALL-DISTORTION-REGIME SOLUTION

BP 13$+— ——,q sin(2$)=0 for r &rp
Qr r ()r

(2.13b)
A. General properties of the solution

at the origin and at infinity

where u—:
~

E
~
Qe, /4~a and q= Hp+X, /a ar—e the in-

verse optical and magnetic coherence lengths. Since the
intensity of the incident field in related to the electric field

through I=cnp
~

E /8~, we have u =2e,I/cnpa. For a
typical SmC liquid crystal, 7, —10 in cgs units,
a-0.5)& j0 dyn, and e, -0.6, we have q -0.2HO and
u2-0. 5I, where I is expressed in mW/cm . For a spot
size of 100 pm in radius and a magnetic field of about 1

kG, q-4SO cm ' and qr0-4. 5, u-400 cm ' for an op-
tical field of about 100 mW in total power P=vrrpI. In
the following, we consider solutions which minimize the
total free energy. Consequently, P must be a continuous
function of r and must tend to zero (i.e., aligned in the
magnetic field direction) as r~ oo. At the boundary
r =ro, the solution and its first derivative must be
continuous. Since cos[2(2m —Pp)] =cos(+2gp) and
sin[2(2m' —Pp)] =sin( —2$p) = —sin(2$p), the orienting ef-
fmts of an optical field with polarization Pp is the same as
that of an optical field with polarization —Pp or 2a —Pp,

tan(2$)=u sin(2$p)/[u cos(2$p)+q ] (3.1)

and so we may have dP/dr =0 at r=0. Since P is bound-

ed, we deduce that

BP
lim r + =0.

p Qr Br
(3.2)

Suppose that in the neighborhood of r =0 there exists a
series

ay = g C„r".
Br

(3.3)

Then

We first formulate the general conditions for which the
solution must satisfy. From the form of Eq. (2.13a), we

can establish the general behavior of P at the origin.
Equation (2.13a) is exactly satisfied by the constant defor-
mation angle determined from the following equation
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lim g C„r"=—lim g nC„r",
r~Oa p r~pa =

(3.4)

from which follows that Cp ——0, so that the first derivative
of the solution with respect to r must vanish at the origin:

8 =0 at r=0. (3.5)

B. Linearized regime

Thus, there is no point defect at the origin. Consequently,
the exponential functions exp(ar), the normal and modi-
fied Bessel functions of the second kind, 1'„(ar) and
K„(ar),cannot be the solutions of the deformation angle
for r & ro, where a is a characteristic wave vector and n is
any integer.

We now consider the asymptotic behavior of the defor-
mation an.gle. The constribution to ~ for r ~ rp is

W) ———,ad sin 00
ay +q sin P rdr . (3.6)

ro

Therefore, the solution must tend to e ~'/v qr so that the
integral converges at infinity. Since the solution ap-
proaches zero for large I., the optical alignment effect is
localized.

angle to the dc magnetic field: po&1r/2.
Case 2. The incident wave is polarized normal to the dc

magnetic field: Po ——1r/2.

C. Obliqae polarization

For oblique polarization (po&1r/2), the differential
equation is inhomogeneous for r &ro with a particular
solution given by

/=Co ———,tan '[u sin(2$o)/g ] . (3.9)

Notice that Cp is positive for g & 0, negative for g &0,
~/4 for g =0. The solution to the homogeneous part can
be modified Bessel functions or normal Bessel functions of
order zero, depending on the sign of g being positive or
negative. Since the deformation angle is finite at r =0, the
solution for the homogeneous part is Io(gr ) for g & 0 and
Jo(gr) for g &0. Together with the particular solution,
by imposing the boundary condition that the solutions and
their first derivatives must be continuous at the boundary
r =rp, the amplitudes of the deformation angles can also
be determined. For g ~0, the solution which is finite at
r =0 and which satisfies the boundary condition at r =rp
can be expressed in terms of the zeroth-order modified
Bessel function of the first kind:

We now consider the equilibrium orientation state in
the linearized regime which can be described by lineariz-
ing Eqs. (2.13a) and (2.13b):

P =C'&Io(gr) +Co for r (ro

with

(3.10a)

1 8
2 +— —g p+ 2u sin(2po)=0 for r &ro

r Br
(3.7a)

qK, qro CS
qIo(gro)K1(qro)+gI1(gro)Ko(qro)

(3.10b)

BP 1 i)$+— —q /=0 for r &ro,
Qp' T QT

(3.7b)

where g =u cos(2$o)+q . g is always positive for
q & u. However, if q (u, g can be positive, zero, or nega-
tive depending on the polarization angle Po. We let P, be
the smaller positively valued angle satisfying
P, = —,'cos '( q /u ) —Then 0&. P, &~/2 and g &0 if( ~4o( «m+4 g=0 1f )4o~ =nrr+4»d
g (0 if nm+P, ( ~Po~ &(n+1)n P„we—hre

n =0, 1,2, . . . . In the following discussion, we always set
2~1/2

For r & ro, P satisfies the modified Bessel equation for
which the solutions are the zeroth-order modified Bessel
functions of the first and second kinds, Io(qr) and Ko(qr).
Since as r~ Oo, the solution must tend to e q'/V qr, the
physically acceptable solution is the zeroth-order modified
Bessel function Ko(qr) of the second kind:

P=C' Ko(qr) for r &ro . (3.8)

The amplitude of the deformation angle for r & rp C),
will be determined later by matching the solution for
r &rp at r=rp.

For r (I"p, the nature of the solution depends on the az-
imuthal polarization angle Po. We shall consider the fol-
lowing two cases separately.

Case J. The incident wave is polarized at an oblique

gI1(gro)Cs Co (3.10c)
qIo(g "o )K1(qr ) +gI1(gr )K (qro )

for Eq. (3.8). The solution for g &0 is the zeroth-order
Bessel function of the first kind and has the form

P=C'&Jo(gr)+C'o for r &ro

with

CS q 1 q 0K(r)
Cp

qJO(gro)K1 (qro) g&1 (gro)KO(qro—)

(3.11a)

(3.11b)

gJ1(gro)C') =- Co (3.11c)
qJo(gro)K1(qro ) —gJ1 (gro )Ko(qro)

for Eq. (3.8). Since sin[2(21r —po)] =sin( —2po)= —sin(2$o) we have, as Po~ —Po or Po~ 2~ Po, —
then C' ~ —C'( and P(r)~ —P(r), which show that the
orienting effects of an optical field with polarization Po is
the same as that of an optical field with polarization —Po
or 2mPo, except that P

.c—hanges sign [P(r) + —P(r)] as-
shown earlier in Sec. II.

For the special case where g =0, i.e., cos(2$o)
= —q /u, the linearized equation for r(rp takes the
form
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r + —,u sin(2gp) =0 .
1B BP
r Br Br

(3.12)

Again, by using the boundary conditions at r=0 and
r =ro, the complete solution for g=0 is

1 2rpKp(q"p)
y = —»in(2yp) p r'+- f01 r&rp

qKi(qrp) 10

with

C' =rpu sin(2$p)/[4qKi(qrp)] (3.13b) 00

200
for Eq. (3.8).

The spatial orientation of the azimuthal angle of the
director as a function of the optical-field intensity is
shown in Fig. 2. For qrp ——5 and Pp ——40, substantial
alignment is already present for u =q/2 or incident total
power of 30 mW. Almost complete alignment at the
center of the spot can be achieved with u =3q or I'- l. l
W. (For rp —100 pm, qrp-5 corresponds to a magnetic
field of 1.1 kG. ) Figure 3 shows the spatial orientation of
the azimuthal angle of the director as a function of the ra-
dius of the laser illumination spot for q=500 cm
urp ——2. 5, and iI)p

——40'. With magnetic field and incident
optical power fixed, further increases the alignment can be
achieved by using a smaller laser spot at low laser power.
The alignment at the center of the spot can increase
dramatically by a reduction of the illumination-spot ra-
dius from 100 to 10 pm. The dependence of the deforma-
tion on the polarization of the optical field is shown in
Fig. 4 for a fixed magnetic field and optical beam power.
The results indicate that there is a polarization angle Pp
which gives the maximum alignment effect.

D. Normal polarization

For a normally polarized incident light beam (Pp
=ir/2), there exists a threshold intensity below which no
molecular reorientation can be induced. To investigate the

FIG. 3. Spatial orientation of the azimuthal angle of the
director as a function of the radius of laser illumination spot for
q =500 cm ', uro=2. 5, and go=40'.

threshold behavior, we again linearize Eq. (2.13a) at small
distortion. The resulting equation takes the form of the
zeroth-order Bessel equation

BP 1BQ
Q p' p' Bf'

+— +(u —q )/=0 for r &rp . (3.14)

We let iJ =
~

u —q ~. We first consider the case
where u &q. Then the possible solutions are 0, Kp(tpr),
and Ip(uir). Neither Kp(lpr) tloi' Ip(Mr) can be the solu-
tion because the first derivative of Kp(wr) diverges at the
origin and Ip(tpr) does not satisfy the condition of con-
tinuity of the logarithmic derivative to a Kp(qr) function
at the boundary r =rp. Therefore, the solution zero is the
only acceptable solution for u ~ q.

When u &q, the solutions of Eq. (3.14) are 0, Jp(tpr),
and Pp(tpr). 1'p(tUr) is not an acceptable solution since it
diverges at r =0. Consequently, the only possible nonzero
solution is the zeroth-order Bessel function of the first
kind Jp(tpr). The continuity of the logarithmic derivative
of the solutions at the boundary r =rp yields the following
equation for determining the threshold intensity

U =3q

30

o' U=20
20

10

0

/ I'0

FIG. 2. Spatial orientation of the azimuthal angle of the
director as a function of the reduced optical-field intensity
u =[2eaI/cnoa]'~ for qro 5and Po=40'. ——

0

r / r,
FIG. 4. Spatial orientation of the azimuthal angle of the

director as a function of the polarization of the optical field Po
for uro ——qro ——5.
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~ thJi(~o, ro} q&i(qro}

Jo(~t ro} &o(qro)

In the case qro « 1 we obtain, from Eq. (3.15),

w, hro ——2/[0. 5772+in(qro/2)] .

Fol gp'p 1 wc have

FOI gP'p Q &~

ma ro- Joi [1 Jot@—o(qro)/qro&&(qro}]

(3.15)

(3.16}

the nonhncar terms in the Euler equation. By expanding
Eq. (2.13a) up to and including terms -P we obtain

Qr r dr
+— +to (1——P )/=0 for r&r . (3.20)3 0 .

We look for an approximate solution of the form

(3.21)

where C'& ——P(r =0) is the deformation angle at the ori-
gin. By putting Eq. (3.21) into Eq. (3.20) and evaluating
at r =0 we obtain

where Jo~ =2.405 is the first zero of the Bessel function
Jo. In the limit of qro » 1, Eq. (3.18) shows that

m,„rp—J„.The threshold intensity is then given by

2I,h «——oau, h /2e, ,

C'& ——[3(1—to,h/w )/2]'i' . (3.22)

Therefore, when the incident intensity is above threshold,
the approximate solutions are given by Eqs. (3.8) and
(3.21) with the respective amplitudes given by Eq. (3.22)
Rnd

where u,h
——w,h+q . The threshold power of the light

beam 1s

2 2 2
P~h =~r Ah =~«oau pro/2~a .

C'& ——C'& Jo(to,hro)/Eo(qro)

outside the illuminated region.

(3.23)

For qro —5, u~hro —5.4 and P&h ls of the order of 145 mW.
ln the limit qrp ~~1, mthro 1s 111uch greater than qrp so
that u,h —tU„h——2/ro [0.5772+ in(qro/2)]. Thus the
threshold optical energy is essentially independent of the
external magnetic field and works against the elastic de-

formatton energy. Fol' qro ))1, tothro Jo) ((qro so that

u,h-q which shows that ~E,h~ -2l/X, /e, Ho and the
threshold optical field is essentially competing against the
magnetic field. The reduced threshold power as a func-
tion of the spot size and reduced magnetic field strength

gl p 1s shown 1Il Flg. 5.
The amplitude of the azimuthal angle in the region

above the threshold can not be determined from the linear
approximation, but can be determined with allowance for

OJ

O

E. Dynamic response

We now consider the time dependence of the molecular
reorientation. For the total free energy density defined by
Eq. (2.1) we include a dissipative term g(Bn/Bt)/2 which
will contribute a viscous torque opposing any rapid
change of the director, where g is the viscosity of the
SmC. The dynamic behavior is described by the I'esulting
Euler equations of the forms

Z i 2.
Qr2 r dr

+— ——,g sin(2$)+ —,u sin(2$o)cos(2$)

for r & ro (3.24a}

——,q sin(2$) =h for r & ro
t) 1 t)P i p . pt)

Qr r Br r}t

where h =g/a.
Although backflow effects are completely ignored in

the dynamic equations (3.24a) and (3.24b), these equations
RI'c still complicated cvcn 1n thc lincarizcd rcgiHlc. In thc
following, we consider only the case of normal polariza-
tion in the small-distortion regime which can be described
by

+to2(1 ——', P )P=)'t for r &ro . (3.25)

FIG. 5. Threshold power as a function of the spot size and
reduced magnetic fidd strength qro Qg, /aHoro. Threshol——d
power P,h is related to (u,hro) by Pth ——mcnoa(u, hro) /2e, . For
a typical SmC sample, P-5(pro) and the thresold power for
P,h ——5(u,hro) is shown in -the figure where the power is ex-

pressed in m%'. Insert shows the variation of the function
$8thro=(Q th

—g ) ro with respect to log]o(pro).

By assuming a weak time dependence of the spatial dis-
tribution of the deformation angle, we look for an approx-
irnate solution for I &I,1, of the form

'C", (r)Jo(~,„r),r &r,
P(r, t) = (3.26)

C & (r)ICo(qr), r & ro

where C & and C& are the amplitudes of the distortion for
r &ro and r &ro, respectively. Putting Eq. (3.26) into Eq.
(3.25) and evaluating at r =0, the amplitude for the distor-
tion within the optical-field illuminating region is
described by
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(3.27)

where a:—(w —tv, h )/h and b —=2tv /3h . Equation
(3.27) is of the same form for the optically induced
Freedericksz transition in a NLC. ' Since there is no con-
stant term on the right-hand side of the equation, C &

——0
can be a solution. Therefore, we need a small fluctuation
C; at t=O to get the distortion started. Equation (3.27)
can then be solved to give

1/2
Cd C'&, (3.28)

1

1 +C2 —2at

C ) ( r ) = C( ( t)J o( lv, hr o) /K 0( qr o) . (3.29)

At t-O, Eq. (3.28) describes the exponential growth of a
small fluctuation C; with a time constant 1/a:

C & (t-0)-C;e" . (3.30)

For r &~1, the deformation amplitude C & reaches its final
value C'& exponentially with a smaller time constant
1/2a:

C&(t))1)-(1——,C„e ")C'& . (3.31)

Note that the time constant 1/a is proportional to
(w —w, q)

' and is dependent on the incident laser power.
For a 10-pm-radius laser beam incident on a sample in an
external 1-kG magnetic field, the threshold power is —8

mW. Using g-1 cp and o.-0.5&10 dyn for a typical
SmC sample, the time constant is —16 msec for incident
power twice threshold, decreasing to 2 msec for a power
ten times threshold. Hence, in general, the response time
is of the order of milliseconds, which is faster than typical
response time ' ' in the nernatic case.

IV. OPTICAL REFLECTIVITY
AND TRANSMISSIVITY

Experimentally, the molecular reorientation can be
qualitatively measured by the reflectivity or transmissivity
of a normally incident probe beam. In the following, we
consider a probe beam incident normally onto the SrnC
polarized along OI' which is selected by a polarizer mak-
ing an angle Pz with the y axis (Fig. 6). On entering the
SmC, each ray is divided into two rays with different ef-
fective refractive indices, and with their electric displace-
ment vectors Dz and D, vibrating in two mutually orthog-
onal directions at right angles to the SrnC normal. Dz lies
in the plane containing the optical axis of the SmC. The
ray vibrating along D& acts like the extraordinary ray hav-

ing an effective refractive index

~n= ~n~n( /~ni snOo+n, icos Oo)'~

where C„=[(C'&/C;) —1]'~ and

C'& ——t/a/b = [3(1—w,h/tv )/2]'

= lim C"
t~ oo

which is the static solution [Eq. (3.22)]. By matching the
solution at r =ro, we have

FIG. 6. Construction of the vibration components transmit-

ted by a polarizer and analyzer for the reflectivity and transmis-

sivity measurements. The director of the SmC is oriented at an

azimuthal angle P with the y axis. A probe beam is incident

normally onto the SmC with polarization selected by a polarizer
which is denoted by OI' making an angle P~ with the y axis. On

entering the SmC, each ray is divided into two rays with dif-

ferent effective refractive indices, and with their electric dis-

placement vectors D~ and D, vibrating in two mutually orthog-

onal directions at right angles to the SmC normal. D~ lies in the

plane containing the optical axis of the SmC. The ray vibrating

along Dz acts like the extraordinary ray. The ray vibrating

along D„actslike the ordinary ray. Eo is the electric field of the

probe beam. V=/~ —P is the angle that the polarizer makes

with the plane containing the optical axis OD~. The measured

quantity can be either the reflectivity or the transmissivity. The
direction of vibration of the measured field is selected by an

analyzer which is represented by OA making an angle g with the

polarizer.

where n,&
and n,,z are the ordinary and the extraordinary

refractive indices at the probe-beam wavelength Az. The

ray vibrating along D„actslike the ordinary ray having an
effective refractive index n„=n,~ The direct. ion of vibra-
tion of the measured field is selected by an analyzer which
is denoted by OA and the measured quantity can be either
the reflectivity or the transmissivity.

In the following, we denote by subscripts p and v quan-
tities referring to the ray vibrating along D~ and D„.
let R and T be the reflection and transmission coeffi-
cients of the ray vibrating along DJ (j=@ or v). Since the
azimuthal angle of the director depends only on r, the
SrnC medium can be considered as an anisotropic dielec-
tric medium with an refractive index depending on r but is
independent of z. Then the refractive index X of the sys-
tern 1S

1, z&0
X= ~ nj(r), 0&z &d

1~ z)d

The amplitudes of the reflected (r) and transmitted (r)
waves at the interfaces z=O (subscript 1) and z=d (sub-

script 2) are, respectively,
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(r ) )J = (nJ —1)/(1+n& ),
(rz)J =(1 n—J)/(1+n, )= —(r, )J,

2l+nj
tan5' = tanPJ ——tan

2n ' 2J
(4.6c)

and (4.2)

(t ) )J
——2/(1+ nj ),

(t2)J ——2nJ/(1+nJ) =n/(t~ )J .

By taking into account multiple reflections at the two in-

terfaces z=o and z=d, the reflection and transmission
coefficents are

i2P-
(r, ), +(r, ),e

i2P1+(r])J(r2)Je

The phase difference between the two transmitted rays
5'=5' —5„' is the same as 6', i.e., 6'=5'=5. By Eqs.
(4.4)—(4.6), the reflection and transmission coefficients
satisfy

l RJ l
+

l TJ l
=1 which is in agreement with the

law of conservation of energy.
Since the analyzer transmits only the components paral-

lel to OA, the resultant fields of two rays after passing
through the analyzer are given by

E,z Ez Q~——cos(% X)e—
i5

=EOQ~cos+ cos(%—g)e
ancl

ip
(t, ),(t, ),e '

i2P1+(r $ )J(r2)Je

(4.3)

E» ——E„Q,sin( 4—g )e

i5.=EoQ„sinful sin(%' —g )e

(4.7)

Rj ——
I Rj e

with

(nJ 1)sin—PJ

[4nJ +(nj .1) sin. p—J]'~

(4.4a)

(4.4b)

where p~ =2nn/d/Az With .the use of Eq. (4.2), RJ is re-

duced to where O'—:Pz —P is the angle that the polarizer makes
with OZ)p, P is the angle between the analyzer and the po-
larizer, QJ ——

l RJ and 5J =5J for the reflectivity measure-
ment, QJ —— TJ and 5J ——5& for the transmissivity mea-
surement, and Eo is the electric field of the probe beam.
The two rays E,p and E„aresuperposed at the observa-

tion point with the field given by E,b ——E,& +E„:
c 2

(E.„)
4m

2n&
tan5J = —

2 cotPJ )+ 2
(4.4c) =ID [Q~cosX+ (Q„—Q~)sinqI sin(% —g)]2

n„(1+nz )tanP& n~ (1+—n„)tanP,

4' n„+(1+nz )(1+n„)tanP&tanP„
(4.5)

Similarly, the transmission coefficient can be reduced to

T;=lT;le ' (4.6a)

and

2nj
ITJ I

=
2 z 2 z tnJ [4 2+( 2 1)2 zP ]1/2

(4.6b)

Consequently, the phase difference between the two re-

flected rays 5"=5&—5"„is given by
—Q~Q, sin(2%) sin[2(W —g)]sin —,(4.8)

where Io c(EO)/4—r—r is the probe-beam intensity. Equa-
tion (4.8) is the general expression for the reflected and
transmitted intensities for the probe beam at a point where
the local orientation of the director is known. In our cal-
culations, the molecular orientation is cylind. rically sym-
metric. Hence, the total reflected or transmitted power of
the probe beam covering an area of radius rob Is given by

Pb
P, =2m. I,b r rdr . (4.9)

Consequently, the reflectivity (A) and transmissivity (P )

are given by P, /Po where Pa =mr, b Io is the pow. er of the
probe beam:

obI [ lR& icos++( l
R, l

—lR& l

)sin+sin(ql —7)] —lRr l lR„l
sin(24) sin2[(W —X)]sin —rdr

"ob

(4.10)

l'
b

Tp cosX + T Tp sin% sin 4—7 — Tp T„sin2% sin 2 '0 —7 sin —r dr
rob
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We now consider two special cases corresponding to po-
larized and depolarized reflection and transmission,
respectively.

1 0

Case 1. Polarizer and analyzer are parallel. Then 7=0
and

I,b Ip ——[Qz+(Q„—Qy)sin 4] —Q&Q„sin 2+sin—
2

(4.11)

Case 2. Polarizer and analyzer are perpendicular. Then
X=m./2 and

I,b =Ipsin 2$ —,(Q„Qq) ——Qq Q„sin—
2

(4.12) U / q

Figure 7 shows the depolarized reflectivity and transmis-

sivity for a 3000-A-thick SmC film as a function of re-

duced reorientating intensity u/q=[2e, I/cnpX, H ]'
The probe beam has a wavelength of 6328 A, polarized
along the direction of the unperturbed director (y axis)

and has the same spot size as the orienting beam which is

polarized at 40' to the y axis (same case as presented in

Fig. 2). The depolarized intensities increase strongly and

approach limiting values as the power of the orienting
laser beam is increased. Therefore, these molecular
reorientation effects are measurable and can be quantita-

tively compared with the calculations presented in this pa-

per.

FIG. 7. Optical reflectivity and transmissivity as a function

of the reduced intensity u/q=[2e, I/cnp+, H ]'~2 for a cell of
0.3 pm thick with qro ——5 and (ip ——40'. For the probe beam, we

set k~=6328 A, n,~=1.55, n,~=1.75, 00——30', +=90', and

P~ =0'.
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