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Causality bound on the density of aggregates
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The irreversible accretion of diffusing particles onto a large cluster results in a tenuous aggregate charac-

terized by a fractal dimension Do smaller than that of space. The rate of aggregation onto the fastest-

growing sites in such a process must not increase indefinitely as the cluster grows. This fact sets a lower

limit on the fractal dimension, viz. , the dimension d of space minus 1. For aggregation of ballistically

moving particles, this bound implies that the aggregate must be compact: The fractal dimension must

equal that of space. In general, if the aggregating particles follow trajectories of fractal dimension D&, the

bound implies Do~ d —D&+1.

The spatial structure of the random clusters formed by
the irreversible aggregation of particles has been the subject
of several recent studies. ' Many of these aggregates ap-
pear to have spatial correlations of power-law form, so that
their average density decreases indefinitely as their size in-
creases. The recent Comment of Bensimon, Domany, and
Aharony4 described clusters formed from "ballistic" parti-
cles, moving in random straight-line trajectories in two
dimensions. They found that the mass M of such a cluster

increases as its linear size R according to M-R with
"fractal dimension" Do= 1.93. This means that the densi-
ty decreases as R

This Rapid Communication describes a bound on the de-
crease of density of an aggregating object, based on the ob-
servation that the growth rate of the outer radius is limited
by microscopic considerations: The boundary of the aggre-
gated region can only move at a limited speed. This may be
viewed as a sort of causality limit. For diffusing particles in
d-dimensional space (diffusion-limited aggregation) this
bound implies Do~ d —1, in agreement with simulation
data. For ballistic particles it implies that Do ~ d, in
disagreement with the results of Bensimon et al.

The bound describes aggregation from a dilute gas of
moving particles of some microscopic radius a. Initially the
aggregate consists of a seed particle at the origin. Whenever
a moving particle touches the aggregate, it is adsorbed, thus
increasing the mass and size of the aggregate. Because of
this adsorption, the outer radius R of the aggregate grows in
time. Initially, the growth speed dR/dt has some value vo
proportional to the density u of moving particles. Later, the
growth speed is proportional to the flux of particles onto the
outer tips of the aggregate. This flux is partly screened by
the rest of the aggregate, and is thus smaller than it was ini-
tially. Thus the growth speed can only decrease in time:
dR/dt & uo —u. Other characteristic radii, such as the ra-
dius of gyration, are necessarily smaller than the outer ra-
dius, and thus can grow no faster than this dR/dt

The flux of particles onto an existing aggregate is related
in a simple way to its radius. This may be seen for a variety
of types of motion using a geometric picture. We imagine
the trajectories of all the moving particles as they would
have been in the absence of the aggregate. We suppose that

each particle takes one step per unit time. For ballistic
motion the steps are in a straight line; for diffusive motion
the steps are in random directions. The steps may also fol-
low a Levy flight, with a power-law distribution of jumps.
The density of steps after time t is simply ut, and the aver-
age number of contacts with the aggregate is Mut. The tra-
jectories which produce these contacts evidently enter the
aggregate region, within distance R of the origin. The aver-
age number of contacts of such a trajectory with the aggre-
gate depends on the spatial correlations of each. The aver-
age number of contacts at a given point is the product of
the aggregate density and the step density on that trajectory.
The trajectories considered here have power-law density
correlations like the aggregate itself. The average number
of steps within radius R of a step thus grows as a power D~
of the radius, with D~ ( d. The average number of contacts

DO+ D) —d
of one trajectory with the aggregate thus goes as R
If this power is positive, a typical trajectory within the clus-
ter region intersects the aggregate many times. The number
C of first contacts between trajectories and the aggregate is
the total number divided by the number per trajectory:

d —D -D d-D
C —MutR 0 ' —utR

The number is thus independent of Do, since a particle
entering the aggregate region has a probability of contact ap-
proaching one, the number of first contacts is the same as
for a solid adsorbing sphere with radius of order R. The ag-
gregate is "opaque" to the particles, and the actual density
within the aggregate is not important.

Each time C increases by one, a trajectory touches the ag-
gregate and is adsorbed. Thus the flux onto the aggregate is
dC/dt This adsorbed. flux increases the mass M of the ag-
gregate: dM/dt = dC/dt. This, in turn, can be related to the
growth speed dR/dt: dM/dt = (dM/dR) (dR/dt). Using
our expression for the flux dM/dt, and the power-law rela-

tion M —R 0, this gives

uR ' c —dR/dt

This relation for dR/dt was derived for diffusing particles by
Deutch and Meakin7 using a more conventional approach.
Since dR/dt is bounded by vc —u, the exponent of R must
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be nonnegative —even in the dilute limit u 0. Thus

DP» @+DE,—1

This is the causality limit on Dp.
The above argument assumed that Dp+ Di was greater

than d, so that the aggregate was opaque to the moving par-
ticles. In the opposite limit, the average number of contacts
per trajectory in the aggregate region goes to zero. Then the
aggregate is transparent to the particles, and growth occurs

nearly equally over the entire aggregate. Such growth can
only increase the average density until the aggregate is no
longer transparent. Thus asymptotically, the cluster cannot
be transparent, and Dp values in this range need not be con-
sidered.

We are grateful to Philip Pincus for his suggestions on the
manuscript.
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