
PHYSICAL REUIE% A VOLUME 29, NUMBER 5 MAY 1984

Anomalous diffusion of charged particles in a strong magnetic field
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A self-consistent mode-coupling theory is used to calculate the coefficient of self-diffusion in a three-
dimensional classical one-component plasma subjected to an external magnetic field. For asymptotically

large fields a Bohm-like behavior is found for diffusion in the plane perpendicular to the magnetic field.
The experimental consequences of these results are discussed.

In this paper we consider transport processes in a one-
component plasma with a uniform neutralizing background
and outline a computation of the dependence of transport
coefficients on the strength of an applied uniform magnetic
field 5. As an example, we will consider here the case of a
test particle diffusing in an equilibrium plasma and evaluate
the transport coefficient Dq for diffusion in a plane perpen-
dicular to the magnetic field. Our calculations are based
upon the application of mode-coupling theory to the evalua-
tion of the Green-Kubo time correlation function expres-
sions for the transport coefficients. A more detailed presen-
tation of this and related transport processes as well as a
derivation of the mode-coupling theory from a microscopic
point of view will be presented elsewhere. '

This work is motivated by the observations that in com-
puter simulations2 4 and in solid-state plasmas5 transport
properties of a dilute classical plasma in a strong magnetic
field deviate appreciably from the predictions of the
Balescu-Lenard-Guernsey (BGL) kinetic equation. 6' For
sufficiently weak magnetic fields Dq is larger than the value
predicted by the BGL equation and is independent of the
field strength, while for very strong fields D~ exhibits a 8
Bohm-like behavior. Here we show that the behavior of
Dq in these various regions can be accounted for on the
basis of mode-coupling theory. The relationship of the
present work to previous ones ~ 9 will be discussed below.

We consider a one-component plasma with plasma param-
eter ev = (47r nXD) ' ( 1, with n the number density,
h. D= [(4rrne')/ktt Tl '2, the Debye length where e is the
electronic charge, k~ is Boltzmann's constant, and T the ab-
solute temperature. We will also need the plasma frequency
cuv = (4vr nez//m ) ' 2, the cyclotron frequency catt = eB/mc,
and the Larmor radius rL = (ks T/m)' '&os '. The coefficient
of diffusion of a test electron in the plane perpendicular to
the magnetic field 5 can be written in terms of the velocity
autocorrelation function through the Green-Kubo formula:

Di= I dt(v, „(0)v,„(t)) (1)

Here we take the magnetic field to be B=Bz, where z is a
unit vector in the z direction, v~„(t) the x component of the
velocity of the test particle at time t, and the angular brack-
ets denote an equilibrium grand canonical ensemble aver-
age.

For very short times the decay of the velocity autocorrela-
tion function is described by the solution of the linearized
BGL equation. The corresponding contribution to D J

denoted by D j is easily computed, and for large enough
magnetic fields, v, /catt (( 1, where v, is the BGL collision

rate v, =aove~lne ' Dt = (3m''t ) 'r v = O(B ) The
behavior of the velocity autocorrelation function for inter-
mediate times is at present unknown. However, we expect
that the additional contribution to Dq for this time interval
can be described by a regular, if not analytic, expression in
powers of e~ and v,~~ ' about Dq, since the velocity auto-
correlation function will continue to decay through collision-
al processes, which can be described in terms of higher-
order density (i.e., e~) corrections to the BGL equation.
However, for longer times it can be shown by using either
kinetic theory or a more general approach that another type
of processes govern the decay of the velocity autocorrelation
function. These are the hydrodynamiclike decays of long-
lived collective excitations in the plasma. The contribution
of these collective excitations, or hydrodynamic modes, to
D j is computed by means of the mode-coupling theory. '

Thus we write Dq = Dq „,+ SDq, with DJ g being the con-
tribution to Dq in (1) from the short and intermediate time
regions" while the contribution to D j from mode-coupling
effects is given by

(,„0 -„C -„)(Ht-, C-„,„)5Di=
o)D(k)+ o)~(k)

(2)

Here 0 is the volume of the system and the prime on the k
summation indicates the restriction to k ~ ko where ko
represents the largest wave vector at which a hydrodynamic
description of the system may be applied. The summation
in Eq. (2) is over the five hydrodynamic modes of the sys-
tem. These hydrodynamic modes have been obtained in
two ways: (a) from the Liouville equation by using formal
projection operator methods, and (b) for small plasma
parameters, by looking for the hydrodynamic modes of the
Landau form of the BGL equation. In addition C-„

—ik ~ r i= e is the eigenfunction corresponding to the dif-
fusive mode for the tagged particle ~hose position is denot-
ed by r

& and coD(k) is the corresponding eigenvalue; 0 -„

and 0 -„are the right and left eigenfunctions of the hydro-
dynamic mode labeled by n, and cu (k) is the correspond-
ing eigenvalue. We consider now some specific details of
the five modes labeled by 0, . For a one-component plasma
in the presence of a magnetic field there are (in three
dimensions) four propagating modes and one diffusionlike
mode. In contrast to the case for neutral fluids, the four
propagating modes for a one-component plasma are also fin-
ite frequency modes. That is, the imaginary part of the
eigenvector co (k), describing propagation, approaches a
nonzero limit as k 0. This is a consequence both of the
long-range character of the Coulomb potential as well as of
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the presence of the magnetic field. The modes n are as fol-

lows.
(1) Two high-frequency modes, known in the Vlasov lim-

it as the first Bernstein modes, or the upper hybrid modes,
whose dispersion relation is given, for cd'/cds « 1, by

Cd@ (k) = ICTICdBI I+
2

kg+
pXT ~B

+ k 2v
jj (i cT I cd cc I ) + k $ v g (i cT

I cds I ) + 0 (k3), (3a)

with a-= +1. When B=0, these modes reduce to the plas-

ma modes.
(2) Two finite frequency modes, known in the Vlasov

limit as the propagating plasma modes, with frequency

cd„(k), for cd'/cds « 1

cd (k) = IcTcd&IkcI 1+ + k v jj(tcTcd&Ik I)
2pXT (g)p

+ k) vI (icrcdvIk, I)+ 0(k') (3b)

When 8=0, these reduce to the shear modes.
(3) One diffusive heat mode which is not needed here.

In Eqs. (3a) and (3b) terms of 0 (cd'/cds3) have been
neglected. Also kt=kq/k, k, =k,/k, where k =k, + k);
Dfj and Dj are the thermal diffusivities in the direction of
B and in the plane orthogonal to B, respectively, y = cv/c„ is

the ratio of specific heats, p= nm, and XT is the isothermal
compressibility. The quantities v [], v q, v

~~
and v j are linear

combinations of the five kinematic viscosities that appear in

the magnetohydrodynamic equations, with one important-
and for our work here —crucial difference. The kinematic
viscosities used here are complex, frequency-dependent
transport coefficients appearing in a set of "generalized"
magnetohydrodynamic equations and they are each to be
evaluated at the frequency indicated by their arguments.
When the kinematic viscosities are evaluated at the indicat-

ed frequencies, by using the BGL kinetic equation' one
finds that Rev jj and Rev jj are 0(cds), Revt and Rev j are

0(cds ), and Imvq as well as Imvj are 0(cdcc'). It is

worth noting that the presence of the frequency-dependent
viscosities in the dispersion relations [(3a),(3b)] means that

these relations cannot be obtained from the usual magne-
I

tohydrodynamic equations with constant transport coeffi-
cients. This point has been discussed in detail by Baus' for
the case 8=0. Finally we will need the eigenvalue for the
diffusive mode

cdD(k) = k, Djj+ k/Dj (4)

and

SD[~~ = Ref'[cd (k)+cd (k)]
nm

(Sb)

We have analyzed the contribution of the propagating plas-
ma modes SDj") to Dq and can show that in the thermo-
dynamic limit, in three dimensions, and for small 6p SDQ"

provides a correction of order ev3/B2 to the BGL value of
Dq. The contribution from the upper hybrid modes is given
in the thermodynamic limit 0 ~ by

~here Df[ is the coefficient of self-diffusion in the z direc-
tion.

In order to complete the preliminary discussion prior to
the actual computation of the mode-coupling effects, we
must estimate the values of the cutoffs on the k summa-
tions in Eq. (2). Because the magnetic field introduces an
anisotropy in the system, cutoffs in the k, sum may be dif-
ferent from those in the k„, k~ sums. Further the hydro-
dynamic mode description may extend over a larger region
of k space for one mode than another, so the cut-off values
may differ for the different modes. To estimate the order
of magnitude of the k cutoffs we require that the cd (k)
dispersion relation be well ordered in powers of k for all k
such that IkI & IkoI. We find that for the upper hybrid
modes the cutoffs are k, o

—(v,/Revjj)'i2 and kq 0- rL '.
For the low-frequency mode extension of the shear modes
we find that k, o and kt 0

—l ', where l=hDcdv/v, is the
mean free path of an electron in the plasma. This result is
consistent with the fact that, in the Vlasov limit, the pro-
pagating plasma waves are well-defined excitations only for

The mode-coupling contribution to Dq can now be
evaluated. We find that the heat mode does not contribute
to SDt, and that SD tSDj"~+SD[ 'cwith

k TCU
SDt" = Re $'k/[cdD(k)+cd„+(k)] ', (Sa)

nm ~B fL

( ) kBT l (v/D[f) i/2 f+ 1/PL
SDtv~ = dk, dkj k [cd (k)+ cd (k)]

27K Elm so

vc vc

4mn D

' 1/2''
2

1 Rev f[ m~B—1+ + (D, +Rev, ) +0(~ ) . (6)

For small values of the plasma parameter, the transport
coefficients appearing on the right-hand side of Eq. (6) can
be evaluated using the BGL equation. One then finds

SD(~) o) 2

(7)
D)0) ~ 2

The quantities SD/v~ and DID are of the same order for
large enOugh magnetiC fieldS that cdS/cd' = (cd'/evv, )'i'.
For larger fields the two-mode approximation for 5Dq is no
longer adequate and more complicated mode-coupling ef-

f

fects need to be taken into account. An approximate way of
doing this is to use a "self-consistent" mode-coupling
theory, whereby all the transport coefficients appearing in

the mode-coupling equations are replaced by their mode-
coupling values and the entire set of equations is solved
simultaneously. In our case it is essential to note that only
the kinematic viscosities v q and vz differ considerably from
their BGL values at the magnetic fields of interest.

When we take into account the cutoffs on the various k
integrands, we obtain the following self-consistent equations
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I'or 5psc and 5D~c where D& D&(0) +5D~c p p(0)+5psc.
f 1

kg T v,' 20 Re5v'j'. 1

mtas a) 9 5D[' 5D['
(8a)

and

Revj =o'2
co& ReSv g

(8b)

where o.~ and o, 2 are numerical constants and we used the
BGL values v

~~
and D~~ since their mode-coupling contribu-

tion is much smaller than their bare values for all values of
the magnetic field used here. Equations (8a) and (8b) are
easily solved with the result that Rep't and 5D[' —B '. In
particular,

(9)

where o. =0.5. For large enough magnetic fields, the con-

tribution 5D$' dominates the other contributions of
O(B '), and the leading magnetic field dependence of Dj
is of order B '. A crude estimate of the value of 8 where

the Bohm-like diffusion is dominant is easily found to be

given by cup/cu, —4(e,p, /cup)

As a result of this analysis we can describe the magnetic

field dependence of Dq for catt/cop & 1:
(a) a classical region where Dt —B ' for

p, /t0p ( t0s/tep ( 0.4(happ, /c0p)

(b) a plateau region where Dt —Bo for

0.4(tpp /Q)p) ( tds/Cop ( (eppz/QJ&)

(c) a Bohm region where Dt —B ' for

C0 tt /Ql p & 4 (epp & / t0p )

We conclude our discussion with a number of remarks.
(1) The results given by Eqs. (6)—(9) are cut-off depen-

dent and since we only have estimates of these cutoffs the
resulting numerical coefficients in these equations are not
precisely known. In principle the exact coefficients can be
obtained by using kinetic theory.

(2) A related calculation for two-dimensional (2D) sys-
tems was carried out by Krommes and Oberman. 4 In two-
dimensional systems only the two upper hybrid modes are
propagating modes. The two propagating plasma modes are
replaced with a single diffusive mode, usually referred to as
the "convective cells mode. " The dominant mode-coupling
effect is then due to the coupling of the convective cells
with the diffusion mode. In contrast, we find that for 3D

systems the dominant effect is due to the coupling with the
upper hybrid modes.

(3) The 3D problem has also been considered by Okuda
and Da~son and by Montgomery, Liu, and Vahala. 9 How-
ever, these authors effectively reduce the 3D problem to a
2D one by considering the case where the size of the system
in the direction of the field is small. As a consequence of
this, the contribution they calculate vanishes in the thermo-
dynamic limit.

(4) For bounded, finite systems both kinds of modes con-
tribute to ADA and we estimate that 5Dq will dominate
only if the size of the system in the direction of B, L„satis-
fies the inequality

L, /I & a'[(p, /cop)'ln(Lt/kt o) ]

where Lq is the size of the system in the direction perpen-
dicular to the field. This restriction is important for a com-
parison of the theoretical predictions with computer or ex-
perimental results.

(5) The size-dependent contribution 5D&~"' has been con-
sidered by us also. This term exhibits three regions with
similar behavior or 5Dj~ . However there is a substantial
difference between the qualitative features of the two ef-
fects. In particular, 5D~ is proportional to 6p for small E'p

while SDj" is independent of e~. For laboratory plasmas e~
is very small and the finite size of the system usually
guarantees that ADA" will provide the dominant effect.
Thus our calculations are not entirely relevant for the
description of such systems. A similar conclusion also ap-
plies to the computer experiments of Okuda and Dawson.
For these experiments the system size is only on the order
of a few mean free paths while the estimate in point (3)
above gives for the largest plasma parameter used in the
computer simulations, corresponding to p, /tdp —0.4x10
L, /I ~ 103 for 5Dj~pl to dominate.

(6) The bulk behavior should be seen in solid-state plas-
mas. The anomalous diffusion associated with ADA should
be observable for systems with L, & 10 cm, typically.
One might even hope to see the transition from the 2D-like
behavior given by BDq" to the 3D behavior of 5Dj
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