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Transient noise-induced optical bistability
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We solve numerically the simplest Fokker-Planck equation which describes the effects of amplitude noise

in absorbitive optical bistability. When the semiclassical solution exhibits critical slowing down, the proba-

bility distribution becomes two-peaked in a sizable time interval during the approach to the one-peaked

steady-state distribution. The switching time undergoes considerable fluctuations, and on the average it is

shorter than predicted by semiclassical theory. These noise effects seem accessible to experimental obser-

vation.

Starting from Ref. 1 a large number of works were devot-
ed to the analysis of fluctuations in optical bistability (OB).
One of the most interesting results is the two-peaked char-
acter of the steady-state intensity probability distribution in
the bistability region. However, there is only one experi-
mental work which reports a double-peaked distribution
(DPD). This is obtained by using a hybrid device in which
fluctuations are artificially and skillfully introduced and con-
trolled. On the other hand, an observation of the DPD at
steady state with ordinary fluctuations seems difficult be-
cause the lifetime of the two metastable states is tremen-
dously long.

In this paper we propose a procedure that produces a nov-
el kind of OB, such that the observation of the DPD is ex-
perimentally accessible. This situation occurs in the tran-

sient, and in correspondence to values of the incident inten-
sity for which the system has only one semiclassical station-
ary state. Precisely, let us consider the typical experiment
on critical slowing down in which the incident field is

abruptly switched on to a value slightly larger than the up-
switching threshold y~ of the system (Fig. 1). As is well

known from the semiclassical theory (Ref. 3 and Fig. 2),
the time evolution exhibits a long lethargic stage, followed
by a rapid switching.

As we show in this paper, the statistical treatment predicts
that there is an observable time interval during which the
intensity probability distribution becomes two peaked, which
corresponds to an OB of statistical type. Another result is
that the switching time undergoes remarkable fluctuations,
such that the average switching time can be, according to
the noise level in the system, sensibly smaller than the one
predicted by the semiclassical theory (e.g. , by a factor 2).
This is relevant for the overall switching behavior, because
it shows that the lengthening of the evolution due to the
critical slowing down can be in part counteracted by noise.

We stress that this transient bimodality, which arises ex-
clusively from noise, is a phenomenon of general type.
Nicolis and collaborators4 first predicted it in the case of
combustion and suggested that the same phenomenon arises
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FIG. 1. Hysteresis cycle of normalized transmitted field x as a
function of normalized incident field y for C =20, according to the
mean-field state equation of absorbitive OB y=x+2Cx/(1+x2).
The arrow indicates a value of the incident field slightly larger than
the up-switching threshold y = 21.0264.

FIG. 2. Time evolution of the mean value (x) of the transmit-
ted field when the incident field is changed stepwise from zero to
the value y = 21.04. Time is expressed in units of the cavity buildup
time. (a) Semiclassical theory, q=0, (b) q=0.005, (c) q=0.02,
(d) q=0. 1.
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FIG. 3. Probability distribution P(x, r) is shown for q=0. 1 and five different vaues of time. (a) r=0.2, (b) r=1.8, (c) r=3.6, (d)
~=5.4, (e) 7=7.2. In this and in the following figures C=20, y=21.04.

r)P(x, r)
()7'

x —y+, +q, P(x, r)2CX 92

Bx 1+x ()x

whenever the evolution of the system involves a long induc-
tion period followed by an abrupt switching to a final stable
attractor. Thus, one can easily envisage a huge variety of
physical, chemical, biological, etc. , systems which may exhi-
bit this phenomenon. The specific interest of OB in this
framework lies in the fact that it lends itself as a promising
candidate for the observations of this effect.

We consider the case of purely absorbitive OB. The sim-
plest model which describes amplitude fluctuations in this
system'5 is given by the Fokker-Plank equation (FPE):

Nicolson discretization method. The delta-function initial
condition P(x, 0) =5(x) was approximated by a normalized
rectangular function. In Figs. 3 and 4 we see the time evo-
lution of P(x, r) when y is slightly larger than yM and
q=0. 1 or q=0.005, respectively. Figure 3 shows that at
r =0.2 the distribution is one peaked, but soon (r —1.8) it
develops a long tail and subsequently (r = 3.6, 5.4) becomes
double peaked. Finally the left-hand peak disappears
(r =7.2) and the distribution approaches the steady-state
one-peaked configuration. This transient bistability is par-
ticularly evident in the three-dimensional plot of Fig. 4. On
decreasing q the peaks become higher and narrower. These

in which x(y) is the normalized amplitude of the transmit-
ted (incident) field, P(x, r) the probability distribution of
the variable x at the time 7, where 7 is normalized to the
cavity buildup time; C =nL/(2T) is the bistability parame-
ter, where o. is the absorption coefficient per unit length, L
the length of the atomic sample, and T the mirror transmis-
sivity coefficient. The form of the diffusion term in Eq. (1)
corresponds to the situation of Gaussian white noise and the
diffusion coefficient q measures the noise level. If we drop
the diffusion term, we recover the semiclassical Eq. (3):

dx 2Cx de(x)=y —x
d7 1+x' dx

Uy(x) = —yx+ —,
' x'+ C ln(1+ x')

(2)

(3)

When y is slightly larger than yM (Fig. 1), the potential U„
presents a very flat part which produces the critical slowing
down, and a well with a minimum at the semiclassical sta-
tionary state. By solving Eq. (2) with x(0) =0 we obtain
the curve a of Fig. 2. More in general, the length of the
plateau in the lethargic stage is the larger the smaller is the
difference between the operating value y and the switch-up
threshold y~, and diverges for y y~. The slope of the
steep part of this time evolution is proportional to C.

We integrated numerically the FPE' using the Crank-
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FIG. 4. Time evolution of the probability distribution P(x, v) for
q =0.005.
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results fully agree with the picture of the process of internal

differentiation in time given in Ref. 4. This phenomenon
arises from the fact that, due to the critical slowing down,
the probability distribution sits for a long time in the flat
part of the potential. As a consequence of diffusion and of
the asymmetry of the potential, it broadens and develops a
long tail in the direction of the potential we11. Due to the
rapidity of the switching process, once the boundary of the
well is reached, the leading edge of the tail is quickly
transferred to the bottom, thereby giving rise to the second
peak. Therefore this phenomenon of transient bistability is

the more pronounced the longer is the semiclassical critical
slowing down (i.e., the nearer the operating value y is to
y~) and the steeper the switching process (i.e., the larger is

C). Figure 2 shows also the time evolution of the mean
value (x) for three different values of the noise parameter.
For q =0.1 the plateau of the lethargic stage is nearly ab-

sent, whereas it increases when q is lowered. Figure 5
shows the time evolution of the transition velocity, defined
as u(r) = dP&/dr, where P2(r) is the area of the second
peak at time r. Hence the quantity v(r)Ar gives the proba-
bility that the system switches between time ~ and time
r+hr. Accordingly, the distribution u(r) is normalized to
unity. The switching time distribution shown in Fig. 5 is

broad and its mean value is definitely smaller than the sem-
iclassical switching time. By decreasing q from 0.1 to 0.005
the v distribution broadens and the average switching time
increases.

These results show that in the range of values of the
noise parameter q considered in our calculations the switch-

ing process is diffusion (i.e., noise) dominated. The dura-

tion of the transient bistability phenomenon increases when

q is decreased. On this basis, we expect that the
phenomenon should persist when q is lowered to values as
10 ' or 10, keeping the other parameters unchanged.
However, when the noise level becomes so low that the
length of the plateau in the curve of (x) vs r approaches
that of the semiclassical plateau, the switching process be-
comes drift dominated and therefore we expect the transient
bistability to decrease and finally disappear. In this situation
the probability distribution P(x, r) is a narrow single peak
drifting in such a way that the mean value (x) follows the

semiclassical evolution. According to this descritpion, as y
is taken nearer and nearer to y~ the transient bistability
phenomenon persists for lower and lower values of q.

Our analysis is based on the simple model Eq. (1), which
neglects several facts such as, e.g. , phase fluctuations, the
possibility of multiplicative noise, etc. These additional
features will be considered in future work. However, we
expect that the main results presented here should remain
qualitatively unchanged. The message of our analysis is that
the transient bistaility phenomenon can persist for low noise
levels, hopefully comparable to those one has in real experi-
ments. We suggest to reconsider the experiments on critical
slowing down so far reported ' by repeating the same run
several times in order to obtain a statistics. The switching
time distribution can be obtained easily; in this connection
we note that large fluctuations of the switching time have
already been observed. ~ Also, one can obtain histograms of
the transmitted intensity for a number of selected times, to
be compared with the behavior of our probability distribu-
tion.

In connection with this suggestion, a remark is necessary.
With the value of y = 21.04 that we used, one has

(y —y~)/y~ —6.5& 10 4, and it seems hard to obtain such
a level of reproducibility. Actually, this difficulty is per se
one of the possible manifestations of noise. In fact it arises
on the one hand from the finite resolution of physical mea-
surements (observational noise), on the other hand from
the incident field fluctuations (external noise). In this con-
nection, we should like to propose the following interpreta-
tion of Fig. 5 in the paper by Grant and Kimble: the hor-
izontal error bar is an estimate of the variance of the in-
cident intensity fluctuations (observational and external
noise); the vertical bar is an estimate of the variance of the
switching time distribution. The data agree qualitatively
with our paper, because the vertical bar increases when

y —y~ decreases.
Our analysis shows that even very small noise (e.g. , in the

value of the incident intensity) produces dramatic fluctua-
tions in the behavior of the system, when critical slowing
down is involved. Hence, since the critical slowing down
situation is so sensitive to noise, it can even be used to esti-
mate the noise level in the system.
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FIG. 5. Switching time distribution for (a) q =0.1, (b) q = 0.02, and (c) q = 0.005 (see text).
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