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Lyapunov-exponent spectra for the Lorenz model
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Using a fast algorithm we have calculated the Lyapunov exponents at about 6000 parameter points in the

range 0.1 & r & 520, o-= 10, and b =
3 of the Lorenz model. In the chaotic region we find a large number

of narrow windows containing periodic orbits —somewhat similar to what is the case in the one-dimen-

sional loglstlc map.

I.. INTRODUCTION

The interest in nonlinear dynamical systems has rapidly
increased over the last few years, and a large number of
more or less physically realistic models have appeared. A
common feature of these models is the stochastic, or chaot-
ic, behavior they show for certain ranges of parameters
governing the systems. This behavior is now understood to
be due to the presence of so-called "strange attractors. "'2
For the description of a model it is of great importance to
be able to describe the regions in parameter space where
strange attractors are expected to appear in the system.
Also, in systems where chaotic behavior seems to dominate,
narrow regions with ordered periodic orbits may exist. The
existence and positions of these "windo~s" arc also impor-
tant to ascertain.

Onc of the most powerful tools in this respect is thc study
of the asymptotic divergence or convergence of nearby or-
bits in the system. The behavior of these orbits are, in
turn, characterized by their Lyapunov exponents. (See, for
instance, Ref. 3 and references therein. ) Numerical
methods for calculating these exponents have been given by
Bcnc'ttln, Cjralganl, Qcolglclll, and Stl'clcyn ' and by Shlma-
da and Nagashirna. 3 Unfortunately, the need for frequent
coordinate changes makes these methods rather inefficient.
However, recently one of us has proposed an algorithm
that, RpparcAtly ls much fastcl than cx1stlng ones, at least
for low-dimensional systems. The main purpose of this pa-
per is to demonstrate the use of this method. %'e do this by
investigating the behavior of the Lorenz model, as one of
the controlling parameters is varied in a systematic manner.
The Lyapunov exponents arc found to bc 8 practical tool in
discussing the phenomena of bifurcations and in finding
pcl'1od1c orblts.

Thc number of papers dedicated to the study of the
Lorenz model is truly astonishing. (The book by Sparrows
contains an extensive bibliography. ) In spite of this large ef-
fort, however, our investigation reveals that there are still
basic properties of the model left to be discovered and stu-
dlCd.

where D'k'(0) are arbitrary nonzero initial states and M(k)

are rI matrices defined in Ref. 6. By integrating this system
of equations along with the orbit Rnd forming

$(k)(r) XD (k)(r) (2)

OAc caA show that thc Ly8punov cxponcnts Rl'e g1vcn by

I'"'= hrn —ln(S(k)(&)/S(k "(r) (

III. LORENZ MODEL

Thc sct, of thrcc real, first-order dlffcreA tlal equations
describing the Lorenz model are"

X = OX+OP

xz + rx

i =Xy —bZ

(4)

where o, b, and r are real parameters. The M k matrices
associated with Eqs. (4) are

M"'= —z+r

X

X

g )

(5b)

Under- and overflow problems are easily taken care of by
us)ng the seal)ng properties of Eq. (I).

As was shown in Ref. 4 and recently in Ref. 9, at least
one of the Lyapunov exponents vanishes exactly, unless the
orbit ends on 8 flxcd point. This property of thc cxponcnts
serves as as useful check on the accuracy of the numerical
calculations.

II. ALGORITHM

The theoretical basis for the calculations performed in this
study is given in Ref. 6, but for the sake of completeness
we shall here repeat thc main results.

Let D'"'(r) be an (k)-dimensional vector satisfying

Since M ', the trace of the, Jacobian, is constant, it follows'
that

(k)(r) ~(k)[x(r)]D(k)(r) (I) independent of the orbit. This constitutes another check on
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the numerical accuracy of the algorithm used. This also im-
plies the interesting result

—~(1+(r+ b) ~ l~ ~ ~0

The lower limit is realized when f~2'= l~3' (and, hence,
l"~= 0). As we shall show in Sec. IV this may happen over
an interval in parameter space, not just at isolated points.
In general, this occurs for Lyapunov exponents associated
with a complex conjugate set of eigenvalues of the Jacobian
matrix. This kind of phenomenon is also observed in other
systems, e.g. , the Henon map. 'o

It has become customary in studying the Lorenz model to
keep the parameters o. and b fixed while considering the
"Reynolds number" r as the controlling parameter. The
characteristic behavior of the system as r is varied can then
be roughly summarized as follows: For 0 & r & 1 there is
one fixed point 0 = (0, 0, 0) and it is stable. When r in-
creases above 1 this becomes an unstable saddle point while
two new stable fixed points appear at

C+ = [ + db (r —1), + db (r —1), r —1]

These are stable for r ( r, (assuming a. ) b+1), where
r, = o.(o. + b + 3)/(o —b —1). At this point an inverse
Hopf bifurcation takes place and chaotic behavior, due to
the appearance of a strange attractor, is observed. Howev-
er, for r, & r & r„where r, = 24.06, chaos and fixed points
may coexist. " ' In the chaotic range r, & r, several period-
ic windows have been discovered and studied, ' " and the
Feigenbaum-type period doubling sequences of bifurca-
tions' have been identified for decreasing values of r, to-
gether with symmetry-breaking bifurcations. Also, inverse
bifurcations have been observed in the chaotic region. " For
very large values of r, approximate, analytic, periodic solu-
tions have been obtained in Ref. 18.

We note that Eqs. (4) are invariant under the transforma-
tion x —x, y —y, z z (reflection about the z axis).
For a stable periodic orbit this implies that either the orbit
will transform into itself —this will be called a symmetric or-
bit, or it will transform into a new stable and periodic
orbit —this will be called an asymmetric orbit.

IV. RESULTS AND DISCUSSION

We have calculated the three Lyapunov exponents of the
Lorenz model for fixed "canonical" parameter values
o-=10 and b = ~, varying r in steps of Ar =0.1 in the range

0.1~r ~520. We have employed the algorithm briefly
outlined in Sec. II together with a standard fourth-order
Runge-Kutta integration scheme. The step length used in
the intergration was ht =0.01 throughout, which for our
purposes gave sufficiently accurate results. However, we
noted occurrences of spurious dips in the Lyapunov ex-
ponents near points where very fine details of the orbit are
important, i.e., accumulation points of the period doubling
bifurcation series. These dips disappeared when At was di-
minished to 0.001.

The main result is displayed in Fig. 1, where the
Lyapunov exponents (l~+, k = 1, 2, 3) are shown versus r.
We started the calculation at the highest-r value (r = 520)
and with an initial position in the vicinity of one of the un-
stable fixed points. After a suitable transition time, t =50,
the integration of Eq. (1) was started and carried on for an
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FIG. 1. Three Lyapunov exponents in the range 0.1 & r & S20.0.
Intervals between points are Ar =0.1. Neighboring points have
been joined by a straight line to guide the eye.

additional time t = 400. The Lyapunov exponents were
then calculated from Eq. (3) and r was decreased by
Ar =0.1. The integration at the new r value was started at
the last obtained position on the orbit at the previous r.
This reduced the time necessary for transients to die out.
This procedure was continued down to r =24.0, which is
somewhat below the critical value r, = 24.74 for this system.
For values below r = 24.0 we used the fixed points C+ as
the orbit. This resulted in a small jump in l at the transi-
tion point.

For r & 24.74 either l ' or l'" must vanish and this is
clearly shown in Fig. 1. Furthermore, for our choice of
parameters, l' is limited to the range —6.833~/' ~~0
[cf. Eq. (7)]. Hence i~ ~ may be obtained from /~'~+ l~z~

when r ~ 24.06 by a trivial reflection about the line
l = —6.8333. Nevertheless, we have displayed all three
Lyapunov exponents in Fig. 1. This is done in order to em-
phasize the cause of the flat bottoms of some of the dips,
and the flat region starting at r =475, and apparently con-
tinuing forever. In fact, although hardly visible on the scale
of Fig. 1, the dip near r = 163.5 has a flat interval of finite
length at the bottom. Perhaps the most striking feature of
Fig. 1 is the large number of periodic "windows, " i.e., re-
gions where l ' =0, while l and l & 0. The most
prominent ones, largely described in the literature al-

ready, ' ' " are found at r values in the vicinity of
150—167, 133, 100, and 93, but, in addition, there is a large
number of narrower windows seen as vertical lines in the
figure. Furthermore, by decreasing the step length in r,
numerous other windows become visible. We shall return
to this point later.

Figure 1 should be closely compared with Fig. 2, which is
a quasi-Poincare plot generated by plotting the distance
between the origin and the intersection point between the
orbit projection into the x-y plane and the line x=y vs r.
By doing so we identify points in the first and third
quadrant in the x —y plane, and hence do not distinguish
between orbits of opposite symmetry. In other words, one
includes automatically points from orbits that may be
reached by the transformation x —x, y~ —y, z z.
For chaotic orbits, 300 points have been plotted for r values
separated by Ar =0.67. As one can see from a comparison
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FIG. 2. Quasi-Poincare plot (see Sec. IV) in the range 24& r & 520. At each r value 300 points have been plotted. Intervals in r are

hr = 0.67.

with Fig. 1, the Lyapunov exponents behave as expected in
that the periodic orbits bifurcate whenever l hits zero,
while I ' & 0 signals chaotic orbits.

Starting from the highest-r value, the first bifurcation oc-
curs at r = 313. This is not a period doubling bifurcation,
but a bifurcation that destroys the symmetry of the periodic
orbit. Near this bifurcation the plot in Fig. 2 looks decep-
tively normal, but in fact, the two prongs emerging from
one bifurcation point belong to two different orbits with op-
posite symmetry. Thus, from r =313 and down to the
band merging point at r = 205, there are at least two
separate basins of attraction. The bifurcation sequence fol-
lowing the symmetry-breaking bifurcation at r =313 is of
the normal period doubling type with an accumulation point
at' r =215.364. The observed convergence rates apparent-
ly agree with the asymptotic value 5=4.66920. . . expected
from universality. ' This type of behavior has also been ob-
served in other periodic windows, and is probably a charac-
teristic of all of them. Figure 2 has many additional
features in common with, or reminiscent of, similar plots
for the one-dimensional logistic map. ' Notably, we find
sharply defined dark bands crisscrossing the plot in both
cases. One can even see regions similar to the "crisis" re-
gions. o However, the details are different. For instance,

r„= r exp[c/(n +d) ] (8)

very closely. In Eq. (8), r, c, and d are constants, while n

the upper edge of the plot in Fig. 2 is poorly defined for
r & 197 (i.e., after the appearance of the crisis regions). In
contrast to the upper edge, the lower edges in Fig. 2 seem
to be sharply defined down to some r value where also these
boundaries become fuzzy. We have magnified the relevant
region plotting up to 600 points at each r value, but the
qualitative picture does not change.

A periodic orbit may be characterized (not necessarily
uniquely) by its winding numbers in the x-y plane around
the three unstable fixed points C, 0, and C+. In order to
study the positions of a few of the windows in r space, we
have focused our attention on symmetric orbits with wind-
ing numbers of the form (n, l, n), where n is a positive in-
teger and 1 is the winding number around the origin. We
have also studied asymmetric orbits with winding numbers
(I, l, n). Projections of the symmetric orbits are shown in
Fig. 3 for n = 1-7. The corresponding r values for the ap-
proximate positions of the minimum values of the second
Lyapunov exponent are listed in Table I for both symmetric
and asymmetric orbits. The position in r space of these
periodic orbits are found to follow the relation

475.0 163.5 93.00 69.75 58.71 52.2452 4S.02696

FIG. 3. Projections into the z-x plane (upper row) and the y-x plane (lower row) of the symmetric orbits of the type (n, l, n) (see Sec.
IV). The scales are arbitrary and special in each case.
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TABLE I. Approximate positions of the local minima of l for
symmetric orbits of the form (n, 1,n ) and asymmetric orbits of the
form (1, 1,n).

Symmetric (n, l, n) Asymmetric (1, 1,n)

475.0
163.67
93.015
69.7436
58.7120
52.2452
48.026 96

262.0
100.55
71.5
59.25
52.4544

CI

40.025 48.026 48.027 48.028

is the winding number defined previously. In the sym-
metric case a good fit is obtained with r =28.55, while in
the asymmetric case r =30. The main purpose of these
fits was to use them to predict the position of the next r„ in
the series. Taken at face value, Eq. (8) would suggest the
existence of accumulation points, but we have reasons to
believe that such accumulation points do not exist for

8b=~.
A noteworthy difference between the logistic map and the

Lorenz model is illustrated in Fig. 4, where we have
displayed the two largest Lyapunov exponents in the very
narrow windo~ 48.0253) r ) 48.0272 associated with the
(7,1,7) symmetric orbit. The similarity between this and
other, much wider windows (Fig. 1) is amazing. Notice that
I"' apparently goes smoothly to zero as the window is ap-
proached from below, while there is a finite jump at the
high-r end of the window. Provided this last phenomenon
is genuine, it is in contrast to the one-dimensional case
where this type of transition probably has a critical ex-
ponent" of ~. The jump in the highest Lyapunov exponent

may be due to bistability of the system which precludes an
intermittent behavior just above the window. This is in
contrast to what has been found for higher values of r.

FIG. 4, Two largest Lyapunov exponents in the interval
48.0252 & r ( 48.0276. Intervals in r are b, r =0.00005. Neighbor-
ing points have been joined by a straight line.

However, our conclusion is uncertain due to the relatively
short orbits we have used.

The last autonomous periodic orbit found by us is the
(7,1,7) symmetric orbit which is maximally stable at
r 7=4 8. 0269 6+ 0. 000 02. With the use of Eq. (8) to extra-
polate to n =8 gives 45.05 & r8 & 45.10. We have searched
this region without finding any new window. This, of
course, does not exclude that it is there. It may have been
overlooked for a number of reasons: The step length in
time and/or r may have been too large, the transition time
allowed at the beginning of each calculation may have been
too short, or we may have been outside the relevant basin
of attraction.

All calculations were carried out in double precision on
the 32-bit computer NORD-500. One of us (J.F.) is grate-
ful for the financial support from the Norwegian Council for
Sciences and the Humanities.
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