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Method for calculating a Lyapunov exponent
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A new method is presented for calculating the leading Lyapunov exponent directly from experimental

data for systems having a strange attractor with dimensionality near 2. The method is exact for one-

dimensional maps and gives good results for systems that have approximate one-dimensional maps associ-

ated with them even in the presence of some noise. Numerical examples are given.

I. INTRODUCTION from region dx, around x, and from de around xq.

The experimental determination of Lyapunov characteris-
tic exponents is a problem of current concern. In this paper
we will describe a method when there is only one positive
exponent and the dimension of the strange attractor is near
2. In a recent report' W@lf and Swift reviewed some other
possible methods.

A few years ago Chang and the present author2 derived a
formula for the Lyaponuv exponent of a one-dimensional
map. The advantage of that formula is that it involves cer-
tain invariant densities associated with the underlying map
which are the experimental observables. In this paper, I will

show how to apply the formula to experimental data and
show how to accelerate convergence if only limited data
points are available. I will also demonstrate how to treat
maps that are multivalued, but still almost one dimensional.
Finally, we note that the method is robust in the presence
of noise. In Sec. II we discuss the method. In Sec. III we
treat in detail the one-dimensional logistic map. There we
will present the numerical details of our method and also
will show results in the presence of noise. In Sec. IV we
will give results for the Lorenz equations, and in Sec. V we
will show how to treat a one-dimensional map associated
with a multivalued function. This latter situation is typical
of maps derived from physical situations or from differential
equations.

II. ENTROPY OF MIXING

The Lyapunov exponent measures a rate of expansion
and if the volume is bounded the expansion implies some
folding. For a one-dimensional map this folding becomes a
two or more to one mapping. So instead of looking directly
at the expansion we look at the folding. For a complete dis-
cussion and derivation we refer to the paper by Chang and
Wright;2 here we will only present the relevant formula,

Consider a one-dimensional map:

x„+t=f(x„) .

Further suppose for simplicity that it has only one ex-
tremum inside the mapping region. Associated with the
map will be an invariant measure @(x). Now if x, and xb
both map to x, we can define the invariant measure @ as
made up of two pieces corresponding to points that map

d (x) = @.(x) + @,(x),
where

P(x. )dx. =—P.(x)dx,

d (xb)dxb —= Pb(x)dx
(3)

This says that the points in dx came from either dx, or dr~,
and no points are lost in mapping. This looks like the mix-
ing of two independent densities, and in fact the Lyapunov
exponent is just the entropy of mixing

d. (x), y. (x) yb(x), yb(x)
ln + ln

)I'd, (x)dx

(4)

The generalization to 3 to 1 (or more) foldings where x„
xb, and x, all map to x is obvious.

This gives a reasonable estimate for p, but it is possible to
improve upon it. We can vary either the number of bins or
the number of total points. We can get a substantial im-
provement by varying the number of total points and a
somewhat lesser improvement by varying the number of
bins. We are interested in extrapolating from measure-
ments at a few different values of N (for fixed number of
bins) to N = ~. We have to make an assumption about the

Note that there is only a contribution when there is fold-
ing. For regions of x where the mapping is one to one then
@,(x) =@(x) and pb(x) =0. This is a very nice result as
the densities are directly observable experimentally. Also it
is easy to show that p, ~ ln2 for a one-humped map.

The simplest way to evaluate this is to collect a number of
points x~,x2, . . . , x~ and divided the x axis into a number
of bins Nb;„,. For a case where there is no more than a 2 to
1 mapping, we examine the points in each bin and ask what
fraction came from each of the two regions a and b. Then
if 71;(a) is the fraction of points coming from region a in
the ith bin, and q;(b) from b and N; is the number of
points in the ith bin,

N bins ~
p, = — g ' [q;(a) 1n71;(a)+q;(b) in';(b)] . (5)
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TABLE I. Lyapunov exponent for Eq. (6).

200 400 800 1000 Infinity

0.307
0.292
0.310
0.317
0.313
0.296
0.282
0.277
0.271
0.293
0.289

0.326
0.340
0.339
0.332
0.336
0.323
0.317
0,319
0.316
0.330
0.318

0.350
0.356
0.350
0.339
0.343
0.335
0.331
0.337
0.334
0.340
0,336

0.355
0.361
0.355
0.349
0.349
0.336
0.338
0,343
0.342
0.348
0.337

0.353
0.360
0.354
0.349
0.347
0.341
0.342
0.344
0.347
0.351
0.336

0.367
0.382
0.368
0.356
0,358
0.352
0.356
0.363
0.365
0.365
0.352

asymptotic behavior as N ~ ~. We assume that

p, (N) p, (~)+—+ +8
N

(6)

III. NUMERICAL EXAMPLES

In this section we will consider in detail the map

x„+(=ax„(l-x„) .

Since we know thc form of the map, it is easy to compute p,

by the conventional formula,

/V

p, =—Xlnlf'(x;) IN;

Thc data to be presented in Sec. III support this form. We
note here that if this extrapolation is not done, the estimate
1s somewhat unccrtaln. Wc did a least "squaI cs fit to data
from five different values of N keeping only thc first three
terms in Eq. (6). Keeping only two terms does almost as
well, and keeping more terms is not useful with limited
data. Wc also point out that the measurements are of a sta-
tistical nature and there will be fluctuations.

The next improvement is to calculate p. (N = ~,Nb;„, ) for
several different values of Nb;„,, At this stage we average p,

for several different Nb;„,.

Fol' a = 3.7 wc used 10 po1nts and obtained

p, 37= 0.359

To obtain the data for TaMe I, we iterated thc map a
number of times to get rid of transients and then collected a
sequence of 1000 points. p, (X) was then calculated for
N = 200, 400, 600, 800, and 1000 for several different
numbers of bins. For each fixed Nb;„, a least-squares fit
was done to the form given in Eq. (6). The results are
shown in Table I. It should be noted that a calculation of p,
from Eq. (g) using only 1000 points would have fluctuations
with a standard deviation of 0.01. The average of the last
column of Table I is 0.362 with a sample standard deviation
of 0.009 which is comparable to that from Eq. (g). When
the function f (x) is unknown, our method does not re-
quire the estimation of f'(x) which would introduce addi-
tional errors. Note that the extrapolation using Eq. (6) is a
definite improvement over the result that would be obtained
from column 5. Averaging p, for different Nb;„, also im-
proved ouI' cst1IHatc

We now turn to the question of noisy data. Because our
calculation of the I.yapunov exponent has the form of an
entropy me expect it to be relatively robust, with the errors
related to thc entropy change due to noise. We now consid-
er the case where the dynamical system is an exact one-
d1mcns1onal IHap, but thc measurements BI'c sub]cct to cl'-

ror. As an example wc work with the quantity with x„gen-
erated from Eq. (7) and e„an error uniformly distributed

TABLE II. Lyapunov exponent for Eq. (11) and Fig. 1 using 4000 points.

+bins 800 1600 2400 3200 4000 Infinity

10
20
30
40
50
60
70
80
90

100

0.676
0.608
0.607
0.565
0.559
0.545
0.529
0.485
0.468
0.460

0.678
0.641
0.639
0.620
0.622
0,608
0.606
0.598
0.580
0.574

0.677
0.644
0.644
0.632
0.635
0.626
0.623
0.617
0.613
0.607

0.678
0.648
0.651
0.638
0.642
0.635
0.636
0.626
0.628
0.622

0.679
0.652
0.651
0.642
0.644
0.638
0.638
0.629
0.631
0.628

0.679
0.663
0.664
0.664
0.670
0.665
0.670
0.675
0.679
0.675
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TABLE III. Lyapunov exponent for Eq. (11) and Fig. 1 using 1000 points.

bins 200 400 600 800 1000 Infinity

10
20
30
40
50
60
70
80
90

100

0.539
0.402
0.304
0.259
0.217
0.198
0.145
0.].75
0.131
0.151

0.622
0.520
0.420
0.346
0.331
0.293
0.269
0.257
0.215
0.207

0.653
0.560
0.518
0.429
0.435
0.379
0.359
0.325
0.283
0.292

0.659
0.581
0.544
0.499
0.477
0.418
0.431
0.391
0.345
0.358

0.667
0.597
0.578
0.541
0.510
0.469
0.473
0,433
0.391
0.395

0.694
0.649
0.715
0.732
0.674
0,623
0.663
0.601
0.556
0.588

6 = 0.1, p, = 0.351

5 = 0.04, p, = 0.41

5 = 0.02, p, = 0.4

Note that there is not a dramatic effect on p, .

(10)

on ( —1, 1) and 5 is the level of error. We report on three
different values of A.

bling regime. There are actually two strange attractors as
the symmetry of the equations is broken by the solution and
hence there are two attractors. We plot successive maxima
of x in Fig. 1. The curve is of course an infinity of curves,
but we are supposing our resolution is not good enough to
resolve them. We have calculated the Lyapunov exponent
using the prescription of Ref. 4, and obtained p, =0.0274.
The average period is T,„=23.15 and the exponent of the
map is related to that of the curve by

IV. LORENZ MODEL
p map Tavp diff. eq.

p map 0,634 (13)

e = 0.02216,

e =Sl3,
cr=10

(12)

These parameters are in a regime very near the period dou-

We now consider a dynamical system with a strange at-
tractor with one positive Lyapunov exponent. The equa-
tions, which are simple rescalings of those due to Lorenz, 3

are

x =y —oex

y = —xz+x —ey

z =xy —ebz

The parameters are taken to be

p, = 0.67 (14)

which is slightly larger than the correct value. After we dis-
cuss how to treat multivalued cases, it will be apparent that
because the bound on p, is nearly attained, we should expect
the exact answer to be smaller than the estimate given by
Eq. (14).

As experiments may have many fewer points, we now
consider 1000 points rather than 4000. There are barely
enough points to divide amongst 100 bins and we expect the
answers using larger bin numbers to be of questionable vali-

Note that this number is near ln2; that is, it is almost as
large as it can be. We now calculate this number from Eqs.
(5) and (6). Using 4000 points we obtain the numbers
shown in Table II. Averaging the numbers in the last
column, we obtain

TABLE IV. Lyapunov exponent for Eq. (11) and Fig. 2.

bins 200 400 600 800 1000 Infinity

10
12
14
16
18
20
22
24
26
28
30

0.539
0.546
0.516
0.482
0.454
0.402
0.357
0.369
0.363
0.366
0.304

0,622
0.610
0.593
0.596
0.576
0.520
0.508
0.497
0.486
0.487
0.420

0.653
0.640
0.626
0.628
0.609
0.560
0.556
0.552
0,541
0.530
0.518

0.659
0.645
0.632
0.634
0.611
0.581
0.574
0.572
0.578
0.560
0.544

0.667
0.653
0.640
0.641
0.618
0.597
0,591
0.589
0.591
0.566
0.578

0.702
0.680
0.673
0.689
0.670
0.642
0.651
0.641
0.641
0.617
0.626
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FIG. 1. Plot of successive maxima of x from Eq. (11)
X,„{@+1)vs X,„(W).

Xm;n(N)

FIG. 2. Plot of successive minima of X.

dity. That feature can be seen in Table III. To get reliable
estimates it is necessary to restrict the number of bins.
Table IV shows the result for between 10 and 30 bins. The
average is 0.67 + 0.006.

Now the generalization of Eq. (5) is obvious. Each bin
has an x label and is either a or b as appropriate. In this
case there are still no more than two points mapping to the
same point. Appiying Eq. (5) suitably modified and using
1000 points, we obtain

V. MULTIVALUEDNESS p, = 0.62

It is quite common to plot successive maxima (or some
other quantity) and obtain a multivalued function. In fact if
we plot minima of the example treated in Sec. IV we obtain
the curve shown in Fig. 2. There are two kinds of mul-
tivaluedness present —the obvious one which we call macro-
scopic, and a microscopic multivaluedness that we cannot
resolve. Of course we must get the same answer for the
Lyapunov exponent as that given in Eq. (14).

We first explain the way to handle such multivalued
maps. For the region of overlap define two separate x axes.
Call one a and the other b. If the x value has label a use
the lower curve and if label b use the upper. To determine
when to use a and when to use b, follow an iteration se-
quence. For this particular case it will turn out that the first
time a point enerts the region between the points labeled 3
and 8 the next point is determined from curve a.
Thereafter there is an alteration between a and b until the
iterate leaves the region. Then the process is repeated.
Other situations can have slightly different rules, although
just as simple. It is necessary to know the rule in order to
obtain correct results.

We have also tried adding measurement noise and the
results were even less sensitive than those reported in Sec.
III.

If we could resolve the curve in Figs. 1 or 2 to the next
scale we would see instead two curves. Our prescription
could then be applied to it. We expect the calculated p, to
now be slightly smaller. The reason is that there will still be
only 2 to 1 mixing and for p, to be near its maximum value
the two densities being mixed must be equal. Any change
will only decrease p, . This may not be the case for p, much
less than ln2.

IV. CONCLUSION

We have demonstrated a method for calculating
Lyapunov exponents for maps that are approximately one-
dimensional. The method is not exact because all scales
cannot be resolved; however, it gives answers that are very
nearly correct even in the presence of noise. It has the ad-
ditional benefit of being very easy to implement.
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