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Evolution equations for Taylor vortices in the small-gap limit
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We consider the centrifugal instability of the viscous fluid flow between concentric circular cylinders in

the small-gap limit. The amplitude of the Taylor vortex is allowed to depend on a slow time variable, a
slow axial variable, and the polar angle 0. It is shown that the amplitude of the vortex cannot, in general,
be described by a single amplitude equation, In the absence of any slow axial variations it is shown that a
Taylor vortex remains stable to wavy vortex perturbations.

In two recent papers Tabeling' and Brand and Cross have
independently proposed an amplitude equation which
governs the slow azimuthal and axial evolution of a Taylor
vortex in the small-gap limit. In this Brief Report, we show
that this amplitude equation corresponds to a velocity field
which necessarily violates the no-slip condition at one of the
cylinders. The remedy for this difficulty is well known in
hydrodynamic stability theory following the work of Davey,
Hocking, and Stewartson, ' and requires the insertion of an
eigenfunction in the expansion of the disturbance pressure
field. The presence of this eigenfunction means that the
evolution of a Taylor vortex cannot be described by a single
amplitude equation.

We shall see that if axial variations are ignored then it is
possible to describe the azimuthal evolution of a Taylor vor-
tex by a single amplitude equation. Ho~ever, even this re-
duced equation differs from the reduced form of the equa-
tion of Tabeling, Brand, and Cross. The appropriate ampli-
tude equation is discussed in some detail and it is shown
that in the small-gap limit a Taylor vortex is stable to wavy
vortex perturbations. Thus the evolution equation approach
to describe the azimuthal evaluation of a Taylor vortex
gives results which are not consistent with the classical
results of Davey, DiPrima, and Stuart and the available ex-
perimental results. The implications of this situation will be
discussed later.

We consider then the stability of the flow of a viscous
fluid of kinematic viscosity v between cylinders of radii R l,
R l+d. The outer cylinder is held fixed while the inner one
rotates with angular velocity 0 l. We define the Reynolds
number R and the parameter 5 by
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v Rl

In the limit 5 0 it is known that instability occurs when
the Taylor number

where Tp= 3390 is the critical Taylor number in the small-
gap limit. The velocity components in the radial, azimuthal,
and axial directions are scaled on v/d, QtR~, and v/d,
respectively, while the pressure is scaled on pvz/d2.

In the small-gap limit the basic flow (0, 0 ~R ~v, 0) has the
asymptotic form

~= I —x+0(5),
where x is a radial variable scaled on d. The equations
governing the stability of this basic flow can be written in
the form

Lu = — +Qi+ Tuu+ 0(5)8p
X
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(2b)

Lw = — +Q3+0(5)Bp
Bz
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(2c)
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where z and r have been scaled on d and u/dz, respectively.
The nonlinear functions Q~, Qz, and Q3 are 0(5 ) while
the operator L is defined by
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L—=—+5' — v]/2 T —6 8 8
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sidering a further limiting process.
At this stage we restrict our attention to Taylor vortices of

fixed axial wavelength with amplitude dependent on the po-
lar angle 8 and time. We consider the limit 5 0 with

2R = —(Tp+ 5Ti+ 5 Tz+. . . ) =-2=1 2 =T
5 5

is 0 (5 ). Following Krueger, Gross, and Diprima' and
Davey et al. 4 it has been customary in the small-gap limit to
consider disturbances with azimuthal wave numbers
0(5 '~z) even though all the available experimental results
suggest that only azimuthal wave numbers of order 5 are
important in the transition from Taylor vortex flow to wavy
vortex flow. Hence we shall take 8/68 —0(50), but the
scalings of Davey et al. which were used by Tabeling,
Brand, and Cross can be recovered at a later stage by con-

Since the Taylor number differs from its critical value by
0 (5) we expect a finite amplitude motion of 0 (5'~2) and
therefore expand u = ( U, V, W) in the form

u =8 UP+Su]+5 u2+ (4)

together with a similar expansion for the pressure. We then
define the slow time scales 7=5' 't, t=ht. The details of
such an expansion procedure follow closely those of Tabel-
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ing, Brand, and Cross and at order 5'/2 it is found that

A (e, r, f)e'"
uo= ' ' [Uo(x), Vo(x), IVo(x) j+c.c.

2

where 12 ls thc cIltlcal axial wave nulTlbcf whllc ( Uo, Vo, Wo)
is the velocity eigenfunction corresponding to the critical
point on the neutral curve. At order 8 it is found that A

must satisfy the equation

1/2
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and Tabeling has calculated so numerically and found that
so=0.5261. This equation had been derived previously by
%einstein 6 It follows from the above equation that
A = A (4, t), where

, 1/2

4 = 8 — sot'
2

The equation for po is now integrated once and the arbitrary
constant which appears in the resulting expression for
Iipo/88 is fixed by insisting that po be periodic in 8. The
function v~ is then completely determined and we find

~~= ——,I& I'+o(x) + ( , —~o —30ol& I') (x' —x),
where

0O id2w

~o=3- (a (2dg .
m

Th c ampllt Udc cqU8tlon fGund by TabcllA g, Brand, and
Cross corresponds to Ii~ ———

2 ~A ~ Fo(x) so that the radial

mean flow 1AdUccd at hlghcr order ln thclr cxpanslons can-
not satisfy the no-slip condition at both cylinders. At order
5 2 we find that A satisfies the equation

9A f BA= '1IA +c2 2
—c4A [di ) +c5( 2 Iro —30o(dI ( )di

1 2
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At order 5 thc first harmonic and mean flow correction are
determined, and it is at this stage that the difficulty over-
looked by Tabeling, Brand, and Cross arises. The mean
flow correction at this order is in thc 8 direction and we
denote lt by U~. Howcvcr, wc scc from thc cqUatloA of
continuity that this mean flow drives a radial mean velocity
field of O(51~'), which we denote by u~. The equation
which determines uM is

' l/2
To

Bx 2 ] 88

and this equation must be integrated to satisfy u~ = 6 at
& = 0, 1. This cannot bc achlcvcd Unless lP~ contains some
arbitrary function of 8 and t. It is for this reason that thc
solution given by Tabeling, Brand, and Cross does not satis-
fy thc AG-slip condltlon cvcl'ywhclc. The remedy ls to allow
for a pressure eigenfunction in the manner discussed by
Davey et aI.3 and Diprima and Stuart. Thus the perturba-
tion pressure must be expanded in the form

p = ~"'po+Spl+g"'pl+ +g "Yo(«r)+
(5a)

where the relatively large size of the induced mean pressure
field is, of course, a lubrication effect. The equation for vM
Aow becomes

2 I3JIo I 2 d2
' 1/2

( Uo I'o) ~

To 88 2 dx

which caA bc integrated subject to v/M=0 8t x=0, l. %C
can then substitute for v~ into the equation of continuity to
find u~. The condition that u~ should vanish at both x =0
and x = I glvcs

(5c)

1

go= J Fo(x)dx

wllcfc TI = (co/2 To) (Tl —Tl), with Tl thc ofdcf g coffcc-
tion to thc axisymmetric critical Taylor number. The con-
stants co, c3, and c4 81'c glvcn by Tabcllng whllc c5 ls glvcn
by DlpriIY18 Rnd Stuart. Thc RIYlplitudc cquatlon glvcn by
Tabcling, Brandt, and Cross corresponds to setting cs= 0 in
(7). The iinearized form of (7) shows that the nonaxisym-
metric mode with wave number M is linearly unstable for

Tl & Tie=&3~'

and the finite amplitude mode which bifurcates from Tl, is

and of course only integer values of M have any physical
relevance. The first mode to bifurcate is the Taylor vortex
solution which has M =0. In order to investigate the stabil-
ity of (9) wc wfltc dI = dI + & arid IIIlcaflzc to glvc

, —(TI —.,M') (b+ ~e"I')(I+.)+c,M2~
Bt

eiM4 p2m

( T' c M2)
~

(P&iM4+ y iMdo)d@ —
(10)
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If we set M = 0 in (10) we can study the stability of a Tay-
lor vortex to 4-dependent perturbations. %e can then see
from (10) that the growth rate of a disturbance proportional
to i cosM4 or i sinM4 is —c3M2 so that, in the small-gap
limit, there is no bifurcation from a Taylor vortex to a wavy
vortex solution. The nonaxisymrnetric modes with M &0
are susceptible to thc Eckhaus-Benjamin-Feir sideband in-
stability mechanism. Following Stuart and Diprimas it can
be shown from (10) that the nonaxisymmetric mode is un-
stable to sidebands with integer wave numbers
yM, (2 —y)M for —1 & y & 3, y A 1. The nonaxisym-
metric mode with wave number M which bifurcates from
Tl, is found to be Unstable to such a sideband for

Fo(x) = Jl, UDVDdx —I f, UoVodx



BRIEF REPORTS

which reduces to Eckhaus's result Ti & 3Ti, in the limit
1 with ~=0. We see then that the Eckhaus criterion is

altered if & A 0 so that the pressure eigenfunction decreases
the unstable regime. In the present problem only integer
values of yM are physically acceptable so that the nonaxi-
symmetric mode is unstable for

F

( — / ')
1@+ 1 & 2(1+ ) 1c

We shall now derive a generalized form of (7) which
takes account of slow variations of the vortex amplitude in
both the axial and azimuthal directions. Such an equation
has been given by Tabeling, Brand, and Cross but the velo-
city field associated with that equation does not satisfy the
no-slip condition at one of the cylinders. We again assume
that 8/88 —0(1) and now define )=8'i'z. We retain the
expansion (4) but allow for a slow dependence of the ampli-
tude function on f. In the absence of any pressure eigen-
function the radial mean flow at order 5 cannot satisfy the
no-slip condition at both cylinders. We therefore retain
(5a), the expansion of the pressure field, but allow for a
slow dependence of po, p~, etc. on f. However, it follows
from (2c) that po will drive an axial mean flow of order go if
8po/8) &0. Thus we set 8po/8)=0 and 8@~/8(=0 in or-
der that the azimuthal and axial mean flows induced by the
disturbance should be comparable.

The radial mean flow at order 5 ~ is now driven by both
the axial and azimuthal mean flows and satisfies the no-slip
eonditon at the outer cylinder if

8 8PO+ P2 6 8 )~)2g 0T
"'

88 8(' 88 2

We see that if the disturbance has no 8 dependence the
pressure eigenfunctions po and p2 both vanish, while if
there is no g dependence we recover (5c). The amplitude
function A is now found to satisfy

QA, 9A 9A . 9A= 'rfA +c3 z +cO 2 +ic7 —c4A I~ I

8t 8g~ 8/2 8(88

~PO . ~72—c5 ~ —ics
88 8(

~here c3, c4, and c5 are as defined previously awhile Tabel-
ing has calculated c6, c7. The constant cs is purely real and
determined in terms of the first-order eigenfunetion and its
adjoint. Equations (11) and (12) are coupled and cannot, in

general, be reduced to a single evolution equation. Howev-
er, if the disturbance is, for example, assumed periodic in g

it is a simple matter (see Hall ) to express po and p2 in
terms of A.

The evolution equations which describe Taylor vortices in
the small-gap limit have been derived in a self-consistent
manner. An alternative single evolution equation had been
previously proposed as a possible means for studying the
possible flow configurations in the supercritical regime in
much the same way that has been so successful in Benard
convection. We have sho~n that a second equation is need-
ed and that the evolution equation approach does not
predict the transition from Taylor vortex flow to a wavy
vortex flow which is well known to occur at quite small
values of 5.

The reason for this surprising result was recognized some
time ago by Davey et al. and can be traced to the fact that
any nonaxisymmetric mode with azimuthal wave number M
has an eigenfunction coincident at first order with the Tay-
lor vortex eigenfunction in the limit 5 0. Thus in order
to produce a secondary bifurcation to a wavy vortex flow it
is necessary to distort the axisymmetric and nonaxisym-
metric eigenfunctions sufficiently by splitting apart the cor-
responding eigenvalues. This is essentially the aim of the
expansion procedure of Davey et a/. who take
M —O(8 'i') when 8 0. The results obtained by Davey
etal. 3 were applied at finite values of M at quite small
values of 5 and agree well with experimental observations
and with the subsequent higher-order theory of Eagles. '0 It
seems, therefore, that their expansion procedure gives a
good approximation to the solution of the appropriate partial
differential system even for finite values of M with 5 not
too small.

It is possible that at sufficiently small values of 5 no tran-
sition to a wavy vortex flow would be observed experimen-
tally, at least with small wave numbers, and the evolution
equation approach would be useful. It does, ho~ever, seem
that in order to understand the experimental results which
are presently available, the failure of the evolution equation
approach to predict the crucial bifurcation. from Taylor vor-
tex to wavy vortex flow means that this approach should
not be used.
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