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Critical points in low-energy positron-atom scattering
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Critical points, which represent minima in differential scattering cross sections as a function of scattering
angle and incident projectile energy, are theoretically predicted for elastic scattering of low-energy positrons
by Ar, Kr, and Xe. It is demonstrated that these points arise due to low-energy positron diffraction effects.

It is well known that in elastic scattering of low-energy
electrons by heavy atoms, the angular distribution exhibits
several minima which are attributed to low-energy-electron-
diffraction effects. Similar minima are also observed when
the incident electron energy is varied for a fixed angle of
scattering. These points of minimum scattering, where a
small change in either the incident electron energy or the
scattering angle is associated with an appreciable increase in
the differential scattering cross section, are called critical
points of the electron-atom system.! The purpose of this
paper is to present, for the first time, predictions of critical
points for various positron-atom systems. These critical
points, as we will later demonstrate, arise due to low-
energy-positron diffraction. The clue for assigning the pat-
tern to the diffraction phenomena comes from some empiri-
cal relationships satisfied by various phase shifts at the criti-
cal energy.

The standard partial-wave decomposition of the elastic-
scattering amplitude? for positron- (or electron-) atom col-
lisions
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where a and b are arbitrary and real constants. A judicious
choice of a and b can lead to convenient expressions for the
differential cross sections.

At low energies, only the first few terms in expansion (1)
are important. If only the first two terms (/=0,1) are im-
portant and the contributions of other terms are negligible,
then choosing a =0 and b = §; in (2) gives

I(k, 0) = (1/k?){[sindgcos(8o— 8;) + 3 sind; cosh]?
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Note that the differential cross section assumes a minimum
value of

Im‘m(k, 0) =(1/k2) sinzsosinz(ﬁo—&) (33)
when the angle of scattering is
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lative angular momentum /% of the system. Here 0 is the
angle of scattering and %2k%/2m is the impact energy of the
positron. The differential cross section obtained by

I(k,0) =|f(k 0)|?

contains interference terms which lead to a diffraction pat-
tern in the differential cross section as a function of the in-
cident projectile energy and as a function of scattering angle.
The exact shape of this pattern, of course, depends upon
the nature of the phase shifts which, in turn, depend upon
the potential experienced by the positron due to the target
atom. A determination of the critical points, therefore,
could provide a sensitive test for the atomic potential used
in the calculations, and an experimental verification of the
critical points for heavier atoms could provide a means for
improving our knowledge of the atomic potentials for these
atoms which are generally not known very accurately. In
this investigation we have considered the heavier rare-gas
atoms Ar, Kr, and Xe, for which the low-energy positron-
atom scattering phase shifts for the first few partial waves
are available.® It is possible to write the differential cross
section I(k, ) in terms of sums over the partial waves.
The most general form for I(k, 8) turns out to be

3, (21 +1)sin(3,— b) sin(ﬁ,—a)P,(cosé’)]2
1

+sin2a[2(21+1)P,(cos0)]2, 2
!

[
Furthermore, at this angle no scattering occurs when

80—-81=m7r, m=0,l,2,... . (4)

Condition (4), that the phase difference of the two interfer-
ing partial waves should be zero or a multiple of 7 for no
scattering, is analogous to (but not the same as) the in-
terference condition encountered in wave optics. From the
numerical values of the phase shifts® it should be noted that
in the low-energy scattering region, where the contributions
of the d wave and the higher partial waves are completely
insignificant, the condition (4) for no scattering is satisfied
only for m=0. It is only at higher positron energies that
the difference between the phase shifts of the sand p waves
is a nonzero multiple of 7; however, at such energies the
contributions of higher partial waves to the differential cross
section become significant. Furthermore, relation (4) pro-
vides guidelines for obtaining conditions for interference
leading to minimum scattering when more than two partial
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waves contribute. The algebra involved when three or more
partial waves contribute becomes prohibitive; however, the
following empirical relationship among various phase shifts
appears to hold at the critical point of minimum scattering:

80— +8,—8;+ - =0 . (5

In the case of two partial waves the angle at which no
scattering occurs is obtained by substituting from (4) into
(3), which leads to

cosf= — % or #=109.5° 6)

This value of @ is independent of the parameter m intro-
duced in Eq. (4). However, in the energy region where the
two-wave approximation is good, only m =0 is important.
Interestingly, in this two-wave approximation 6 is indepen-
dent of the system under consideration. Of course, when
more than two partial waves contribute there may be more
than one angle of minimum scattering. In fact, in the case
of elastic electron scattering by various atoms, more than
one critical point has been discovered* for Ar, Kr, and Xe.
However, in our investigation of critical points for
positron-rare-gas-atom scattering at low incident positron
energies, we have found only one critical point for each sys-
tem. In our work we have used the phase shifts of the first
seven partial waves for elastic scattering of positrons by Ar,
Kr, and Xe, which have been numerically calculated by
McEachran, Ryman, and Stauffer,® while for higher partial
waves we used the Born approximation with known polari-
zation potentials to obtain the phase shifts.> For higher par-
tial waves it is also possible to obtain a more reliable set of
phase shifts from expressions (in terms of the coefficients
of the long-range potentials) obtained® by a solution of the
Schrédinger equation by the variable phase method. How-
ever, for the conclusions of the present work, the Born ap-
proximation for the higher phase shifts is deemed sufficient.
In the vicinity of a critical point, the numerical phase shifts
are least-squares fitted to a polynomial of the form

3
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Within the accuracy specified by such fits, the empirical re-
lationship (5) among phase shifts appears to hold approxi-
mately at the critical energy. In all calculations of the dif-
ferential cross sections, only the first 20 partial waves were
summed since the effect of higher partial waves was negligi-
ble.

A three-dimensional perspective of the angular distribu-
tions for Ar is shown in Fig. 1, and the presence of only
one critical point is clear in the low-energy region. The
three-dimensional perspectives for Kr and Xe (not shown)
are very similar to that of Ar. Figures 2 and 3 show the dif-
ferential cross section as a function of positron energy (at
the critical scattering angles) and scattering angle (at the
critical energies), respectively, for Ar, Kr, and Xe, with the
critical-point parameters given in Table I. It is rather curi-
ous that the angle of minimum scattering is almost indepen-
dent of the rare-gas atom under investigation and is not too
far from the two-wave approximation given by (6). There
are, however, small shifts toward larger critical angles and
lower critical energies, respectively, as one moves from the
smaller to the larger atoms. The trends of these shifts are
consistent with simple considerations of diffraction effects
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FIG. 1. Three-dimensional perspective of the differential cross
section for positron-Ar collisions plotted vs ka, (where k is the pro-
jectile wave number and a is the Bohr radius) and vs the scattering
angle. The dashed curve represents the projection of the locus of
the differential cross-section minima onto the projective-wave-
number (kag)-scattering-angle plane with the X representing the
critical point.
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FIG. 2. Differential cross section for positrons colliding with Ar,

Kr, and Xe plotted vs energy at their respective critical scattering
angles.
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FIG. 3. Differential cross section for positrons colliding with Ar,
Kr, and Xe plotted vs scattering angle at their respective critical en-
ergies.

when the de Broglie wavelength of the incident positron is
compared with the sizes of the respective target atoms. The
curves indicate the extreme sensitivity of the differential
cross sections to the projectile energies and scattering an-
gles, respectively, in the vicinities of the respective critical
points. One should be aware that the extent of the varia-
tions of the differential cross section that could be observed
experimentally as a function of either scattering angle or
positron energy would depend sensitively on the angular
discrimination of the apparatus and the beam energy width.
An additional experimental consideration is that the drop in
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TABLE 1. Critical angle of scattering and the critical impact ener-
gy corresponding to minimum elastic scattering of positrons by vari-
ous rare-gas atoms. I is the differential cross section correspond-
ing to the critical parameters.

Gas - 6. (deg) E, (eV) I, (ad/sr)
Ar 95.1 1.67 0.137x1073
Kr 95.3 1.54 0.741x10~3
Xe 95.8 1.37 0.540%x 102

the differential cross section near a critical point is so sharp
(decreasing by several orders of magnitude) that the proba-
bility of a positron, scattered a few degrees away from the
critical angle, undergoing multiple scattering and still reach-
ing the detector, may become comparable with a positron
reaching the detector after single scattering at the critical an-
gle. Such multiple-scattering effects have been partially ac-
counted for in electron scattering experiments.’

Experimentally, differential cross sections have only been
measured® (with a time-of-flight approach) for positrons col-
liding with one gas (Ar) in a very limited angular and ener-
gy range (20°-60° and 2-9 eV, respectively), but there are
other groups® 1° preparing experiments for measurements of
differential cross sections for positrons colliding with gas
atoms using crossed atomic and positron beams. With the
prospect of much more intense low-energy positron beams
in the near future,!! searches for critical points in positron-
atom scattering may be feasible.

Finally, it is interesting to note that the positrons scat-
tered at critical points may be fully polarized. In the case of
electron scattering, an analysis!? by Buhring shows that the
elastically scattered electrons are fully polarized when the
impact energy and the scattering angle correspond to the
critical values. The origin of this polarization effect is spin-
orbit coupling which has the same magnitude for positrons
and electrons.
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