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We report the first calculations on a molecular collision system using a fully self-consistent time-

dependent Hartree-Pock (TDHF) method. The nuclear motion is treated classically with the forces deter-
mined by the time propagating electronic charge density. The electronic state is generated using a finite-

difference TDHF calculation. We present results including a typical reactive trajectory, a corresponding

time evolution of the electronic energy, and density plots of the molecular wave function evolving through

the collision.

Finite difference and finite element solutions to the
time-dependent Schrodinger equation or the time-
dependent, Hartree-Pock (TDHF) equations have provided
very accurate results for atomic collision processes at
medium- and high-collision energies. There have been
many applications in the fields of nuclear collisions, elec-
tronic collisions, ' and molecular dynamics. " The calcula-
tions using one of these methods which we report here are
unique in two respects. It is the first application of finite-
difference techniques for TDHF in a molecular collision
problem and secondly, it is an application to a range of col-
lision energies (a few eV) in which the nuclear degrees of
freedom cannot be treated trivially. Here the forces on the
nuclei, determined by the instantaneous electronic charge
density, are large enough that a simple straight line or
Coulomb trajectory is inappropriate. In addition, since we
are studying a molecular collision problem, we must be able
to treat reactive trajectories in which the incident and scat-
tered particles are different. Thus in our calculations we
solve self-consistently for the time evolution of the elec-
tronic wave function in the field of the scattering nuclei
whose motion, in turn, is governed by the electronic state.

The system we have chosen to study is the collision
bctwccn a proton and a hydrogen 1Tlolcculc. This systcIYl is

important from an experimental point of view. In H plas-
mas the cross sections for these collisions will affect the
concentrations of the different ionic species and may be im-
portant in determining the vibrational state distribution of
H2, which is a crucial parameter in the kinetics leading to
H production. Theoretically, this system is also important
because its collisions are known to be highly nonadiabatic.
Due to the strong interaction between the lowest two adia-
batic electronic states, no accurate collision calculation can
ignore the influence of the first excited state.

Since the system has only two electrons, it is in many
respects the simplest polyatomic molecule and its adiabatic
potential energy surfaces have been determined very accu-
rately. The lowest surface is strongly attractive and the
first excited state is strongly repulsive. These two states are
degenerate or have avoided crossings for some internuclear
geometries in the entrance and exit channels. Due to the
deep well in the lower surface, a very large number of quan-
turn states are energetically accessible, although most of
them are closed asymptotically. For this reason a full
quantum-mechanical calculation for collisions in three
dimensions is not possible. However, semiclassical methods
have been used successfully. 7 Also, a quantum-mechanical

calculation does exist for the collinear system. Therefore
we decided that a suitable test case for our method would be
to consider collisions in this system with the constraint that
all three nuclei lie on a straight line. The possible conse-
quences of such collisions are represented by the following
equations:

H+ + H2~ H+ + H2

H++H, —H+H, +,
H++ H2 H2++ H

H+ + H2~ H2+ H+

(2)

where the spatial orbital satisfies the usual TDHF equation

ih 4( r, t) =—h&b( r, t)
Bt

t' &2 e', I' d r 'p( r ', t)
2m 2

8 4 (r, t)

Expressing this wave function in cylindrical coordinates,
(R,z, Q), which are appropriate for collinear nuclear
geometries, we have

4 ( r t) =R 't'x(R, z, t)e' 4',

~here for the relevant molecular X state, I = 0.
%'e use standard finite difference techniques to solve the

time evolution of the wave function, X, in two spatial
dimensions. The second derivatives are evaluated using a
three-point difference formula and the time integration is
performed using the Peaceman-Rachford alternating direc-

The first two of these represent nonreactive collisions which
result in the exchange of translational and internal (vibra-
tional) energy or charge. The last two represent the various
final states in a reactive collision.

%C will briefly outline the calculational details and then
present illustrative results from a single trajectory. The
singlet electronic wave function is written in the Hartree ap-
proxiIYiation as

e( r t, r z, t) = (1/v2)4 )( r ),t)C )( r 2, t)(ntPz —P )a2),
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tions implicit method. 9

The nuclei, to 8 very good approximation, are treated
classically. Thc classical equations of motion include forces
duc to thc intcrnUclcar repulsions and thc field dUc to thc
instantaneous electronic density.

t0-

The initial conditions consist of the target H2 molecule at
8 particular internuclear separation and a vibrational velocity
corresponding to oQc of thc clgcnfunctions of thc previously
determined diatomic potential. The initial electronic state is
the static Hartree-Pock solution on the finite difference grid
for the H2 molecule at the chosen H2 bond distance. The
incident proton is at a large ("asymptotic" ) distance from
the molecule with an initial velocity in the direction. of the
diatomic axis. Thc electronic wave function cvolvcs onc
step in time according to the instantaneous nuclear posi-
tions. Then we evaluate the forces on the nuclei and pro-
pagate the classical equations of motion one time step. %e
iterate this procedure Until the nuclear trajectory reaches the
asymptotic region where the final state of the system is
determined. Thus wc obtain 8 conlplctcly self-consistent
time-evolving representation of the collision event. In 8 full
calculation, to determine the final-state distributions for a
given initial collision energy and vibrational level, we aver-
age over the vibrational phase as in a standard classical tra-
jectory calculation. '0

The results of these calculations are of two types. First,
from a full calculation we can obtain the usual final-state
distributions; the average charge-transfer and reaction
probabilities and the average vibrational energy in the
resulting diatomic. %C also obtain for each trajectory, as in

any time-dependent calculation, the time evolution of all the
various parameters that characterize thc colliding sys' tem.
We have the trajectory of the nuclei, the time evolution of
the electronic density, and the expectation values of any
other interesting operators such as the electronic energy,
momenta, etc. Here we show as examples three figures.
First, in Fig. 1 is shown the trajectory for the collision. As
can bc scen, this partlcUlar trajectory is rcactivc since it
moves from the region where Ri is small to the final state
where R2 is small. This system is known to be highly reac-
tive in the few-cV energy range~ so that the trajectory
shown here can be assumed to be typical. In Fig. 2 we
show the time evolution of the expectation value of th elec-
tronic Hamiltonian. Also shown at 8 number of points is
the static Hartree-Pock energy for the corresponding inter-
nuclear configuration. Finally, in Fig. 3 we show density
plots of our electronic wave function at various times during
the collision. By projecting this wave function at the final
time onto molecular eigenstates (which must include the
translation factors so that the atomic or molecular orbital
will follow the nuclei), we can obtain transition probabilities.

The major attraction of the TDHF method is that since
the wave function evolves in time partially in response to its
own changing charge density it does include some degree of
correlation and therefore is better than a static Hartree-Pock
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FIG. I. Trajectory for initial vibrational level v=2 and a relative
kinetic energy of 3 eV. Time is in atomic units.

(SHF) wave function. Also, since the electronic wave func-
tion responds dynamically to the nuclear motions, non-
adiabatic effects are included implicitly. This is especially
in1portant for many-electron systems where accurate applica-
tion of the standard perturbed stationary state method is
not well defined. In essence, our translation factors and
switching functions are built in; the electrons are free to
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FIG. 2. Time-dependent expectation value of molecular potential
energy. Circles denote static Hartree-Fock energies for the relevant
internuclear geometries.
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flow where thc equations drive them and are not restricted
to the space of a preselected basis set. The most significant
limitation of the method is the restriction to a single con-
figuration. It is well known that a single configuration SHF
wave function cannot properly describe the electronic state
of two open-shell fragments for large interfragment separa-

FIG. 3. Density contours near beginning, middle, and end of col-
lision. Contours separated by &10. The x's denote the positions
of the protons.

tions, whereas at smaller internuclear separations the SHF
wave function becomes much more accurate, particularly for
strongly bound (covalent) molecular states. The TDHF
wave function, having more flexibility than the static solu-
tion, is cxpcctcd to bc cvcn morc accurate for all «ntc«nu-
clear separations, so we expect that our TDHF wave func-
tion provides a good representation of the electronic state in
this system. This flexibility is illustrated by the fact that the
time-dependent expectation value of the electronic Hamil-
tonian can lie below the SHF ground-state energy indicating
the presence of correlation and, at other times during the
collision, lie above it, which indicates the presence of the
excited-state components (see Fig. 2). Thus our method
uses an approximate wave function whose very simple form
makes it easy to include nonadiabatic effects in a straight-
forward manner. This is not the case for the standard ex-
pansion in terms of adiabatic molecular states.

The calculations we have reported here illustrated the
feasibility of this method. The subtleties involved in ex-
tracting reaction and charge-exchange probabilities from a
full calculation, including several trajectories to average over
the initial vibrational phase, are beyond the scope of this
Brief Report. %C only indicate that since the TDHF equa-
tions are nonlinear, we do not have a linear superposition of
asymptotic states. Thus although our wave function has

components of the excited electronic states, obtaining state-
to-state transition probabilities is more difficult than in a
traditional quantum-mechanical calculation. An understand-
ing of these problems and the generation of more complete
results will be subjects of future work.

Vida Maruhn-Rezmani, Norbert Grun, and Werner Sheid, Phys.
Rev. Lett. 43, 512 (1979); K, R. Sandhya Devi and S, E. Koo-
nin, ibid. 47, 27 (1981); K. C, Kulander, K. R. Sandhya Devi,
and S. E. Koonin, Phys. Rev. A 25, 2968 (1982); C. Botcher,
Phys. Rev. I.ett. 48, 85 (1982); Norbert Grun, A, M. Mulhaus,
and Werner Scheid, J. Phys. 8 15, 4043 (1982).

2K. T. R. Davies, V. Maruhn-Rezwani, S. E. Koonin, and J. Negele,
Phys. Rev, Lett. 41, 632 (1978); H. Flocard, S. E. Koonin, and
M. S. Weiss, Phys. Rev. C 17, 1682 (1978); K, R. Sandhya Devi,
M. R. Strayer, and J. M. Irvine, J. Phys. C 4, L97 (1978).

3C. Bottcher, J. Phys. 8 15, L463 (1982).
"E. A. McCullough and R. E. Wyatt, J. Chem. Phys. 54, 3578

(1971); L. W. Ford, D. J. Diestler, and A. F. Wagner, ibid. 63,
2019 (1975); K. C. Kulander, ibid. 69, 5064 (1978).

5M. Bacal and G. W. Hamilton, Phys, Rev. Lett. 42, 1538 (1979).
C. %. Bauschlichter, Jr., S. V. O' Neil, R. K. Preston, H. F. Schafer

III, and C. F. Bender, J. Chem. Phys, 59, 1286 (1973).
7J, C. Tully and R. K. Preston, J. Chem. Phys. 55, 562 (1971);

Y. %. Lin, T. F, George, and K. Morokuma, Chem. Phys. Lett.
22, S47 (1973); J. Phys. 8 8, 265 (1975).

8Zvi H. Top and Michael Baer, Chem. Phys. 25, 1 (1977).
9R. S. Varga, Matrix Iterati ve 3rIalysis (Prentice-Hall, Engehvood

Cliffs, NJ, 1962), p. 209.
«M. Faubel and J. P. Toennies, Adv. At. Mol. Phys. 13, 229

(1977).
««M. S. %'. Massey and R. A. Smith, Proc. R. Soc. London Ser. A

142, 142 (1933),
«2D, R. Bates and R. McCarroll, Proc. R. Soc. I.ondon Ser. A 245,

175 (1958); W. R. Thorson and J. B. Delos, Phys. Rev. A 18,
117, 135 (1978),

«V. Taulbjerg, J, Vaaben, and B. Fastrup, Phys. Rev. A 12, 2325
(197S).


