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The growth of Rayleigh-Taylor instabilities in inertial-confinement-fusion targets can be reduced
if smooth density gradients are introduced at the interfaces. Keeping the total mass fixed, we con-
sider spreading a heavy shell either continuously or in a discrete number of subshells. We calculate
the rate for the fastest growing mode as a function of the fraction of mass spread and find the mini-
ma for the cases of 4, 6, and 8 subshells. The rates are reduced by 1.4—1.6. If all the mass is spread
continuously into an exponential profile, we find that the rates are reduced by approximately
V a~=2.5.

I. INTRODUCTION

Fluid instabilities are a well-known source of failure for
the implosion of inertial-confinement-fusion (ICF) targets.
Rayleigh-Taylor instabilities are particularly a problem in
designs calling for multiple shells when, sometime during
the history of implosion, one finds a shell of light material
(density pi-1 g/cm ) accelerating a shell of heavy materi-
al (density ps -20 g/cm ). While much work' has gone
in studying the stability of the outermost shell during ab-
lation (laser pulse shaping, ablative stabilization, '
thermal conduction, and, more recently, the effect of the
Kelvin-Helmholtz instability ), little work has been done
on the inner shells.

One possibility to reduce the growth of Rayleigh-
Taylor instabilities is to introduce an energy spread in the
driver. Effectively this approach spreads the region where
energy is absorbed and benefits from the stabilizing effect
of a density gradient. In this paper we explore the advan-
tages of density gradients directly by giving some struc-
ture to one or more of the shells (Fig. 1), a technique that
can be applied to both single-shell and multishell targets.

Classically small density perturbations at the interface
between two shells grow exponentially with time, e ~', with
the rate y given by

Ph

Pl Pl

r = Igk(pi —pt)/[pt +ptcoth(«o)]I '"
and the effect is negligible since, as we argue later,
ktp =277tp/A, -2m. In addition to this unstable mode for
finite thickness shells there is a stable oscillatory mode
with y =iv'gk.

Many other modes appear when the interface is given
some structure as in Fig. 1. There are infinitely many
modes if the structure is continuous, and n +2 modes if
the structure consists of n discrete subshells. In this paper
we describe the calculation of the growth rates and how to

Xclassical = lgk (ph pl ) /(pig +pt )]'1/2

where g is the acceleration (assumed constant) and
k =2m. /A, , A, is the wavelength of density perturbations.
Equation (1) is valid if A, is much less than the thickness
of each shell. Typically g-5X 10' to 5X 10' cm/s, and
Eq. (1) leads to an unacceptably large number of e
foldings. We expect smaller rates by smoothing the sharp
transition from pI to p~. This approach might be
described as reducing the Atwood number
(ps —pi)/(pts+pt) to a smaller "effective" Atwood num-
ber to reduce y.

Since heavy shells are usually thin one might worry
about the effect of finite thickness of pI, . For a shell of
thickness tp, Eq. (1) is replaced by

Pl P(

FIG. 1. Shell of high density pq and of original thickness to is
partially spread into (a) a continuous profile or (b) a discrete
number of subshells. The remaining shell of density pq has
thickness 5t.
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reduce the fastest growing mode by spreading a certain
fraction of the original mass„ i.e., pt, to, into a number of
subshells. Since the hydrodynamic efficiency in an implo-
sion depends on this mass, all our calculations take a fixed
(but otherwise arbitrary) amount of mass and spread it,
continuously or stepwise, into subshells.

In Sec. II we describe briefly the general formalism
used to obtain the growth rates. In Sec. III we apply that
formalism to a continuous density gradient [Fig. 1(a)] and
in Sec. IV we consider discrete density jumps [Fig. 1(b)].
Finally, 1n Scc. V wc glvc oui Icsults by plotting thc
fastest growth rate y

'" versus fraction of mass spread
into subshells (Fig. 4). In all our numerical examples
pt

——1 g/cm' and pt, ——20 g/cm', to = 1 for scale.

II. GENERAL FORMALISM

The growth rates are found by solving the differential
equation (D:—d/dy)

D(pDW)+ WDp kpW —=0,gk
(3)y'

where the density p(y) is assumed to vary only in the y
direction, with perturbations 5p=5p(y)e' +r', and W(y)
is the y-dependent part of the perturbed fluid velocity.
Equation (3) is obtained by linearizing the hydrodynamic
cquRtloIls Rss11111111g 5p ((p, Rnd Rssu111111g lilcoIIlpl'csslblc
fluids. Surface tension, viscosity, and heat transfer are
neglected in this equation, in which y /g must be viewed
as an eigenvalue and Wr(y) as the eigenfunction.

Integrating Eq. (3) across a thin interface we obtain

(4)

where b,(f)=f+ f with f+ eq—ual to the value of f
above (below) the boundary. W is continuous everywhere,
but, since wc are neglecting viscosity, d8'/dy need not be
continuous. Equation (4) is a condition to be satisfied by
W at the boundaries or interfaces (note that it contains the
eigenvalue y one is trying to determine).

The condition at a free boundary can be gotten from
Eq. (4) by setting p+ or p =0, and it reads
dW/dy+(gk /y ) W=0, where W and dW/dy are
evaluated at the free boundary. At a boundary where the
density, but not necessarily its derivative is continuous as
lI1 Fig 1(R), tl1.cil Eq. (4) 1111pllcs that dW/dy 18 cilso con-
t1nuous.

The condition at a fixed boundary reads W =0. If one
of the shells, e.g., pl, is very thick compared to the wave-
length I, of perturbations, then fF-e ~" ~ and vanishes
only at "infinity. " We have used this condition on W in
the region p=pt, though our codes can handle a finite
thickness low-density shell. The difference is negligible if
A, is less than the thickness of pt, a condition well satisfied
in our applications. Of course, the thickness of the heauy
shell to is finite and in fact is used as scale for length.

III. CONTINUOUS DENSITY PROFILE

If the mass p~to of the original heavy shell is spread
continuously as in Fig. 1(a), then in addition to the one

stable mode yl = —gk there will be an infinite number of
unstable modes which wc plocccd to calculate. In pract1cc
one is usually interested in the first two or three fastest
growing modes.

The calculation of the eigenmodes for continuous densi-
ty profiles is quite complicated because one must solve the
differential equation Eq. (3) for arbitrary k and y and
then find the admissible values of y by matching to the
proper boundary conditions. Only the cases p=const and
p=poe~ can be solved analytically with a reasonable
amount of effort, and in this section we consider the fol-
lowing density profile:

pl~ 3' &0

p)e, 0&/ & tp=
Pp =P(e, t &y & t+51
(j, t+6f &p ~

Fortunately, the exponential density profile not o»y
can be solved exactly but it turns out to be the best density
profile to reduce the fastest growing mode. One could
improve on the density profile given above by introducing
density jumps on the two sides of the exponential. The
jumps are wavelength dependent and vanish as X—+0. For
wavdengths several times the thickness of the shell (or
shorter) the effect of the jumps is less than a few percent,
which we neglected and instead chose a density profile
continuous at y =0 and at y =t. The thickness of the re-
manining heavy shell is 5t. Both t and 5t are arbitrary,
and a free boundary at y =t+5t is denoted by p=0 as
mentioned earlier.

In regions of constant density like y (0 and
t (y & t +5t, the differential equation (3) reduces to
(D —k ) W(y) =0, hence W-e+-"". In the region
0&y (t, substituting p=pte@' in Eq. (3) gives

r

%'hose gcncral solution 1s 8 =A»8 +228 whcrc 3»
and A2 are constants and q» 2 are solutions to the quadrat-
ic equation

q +qP —k 1 — =0.2 gp
y'.

The two roots satisfy q I+ql ———p. It will prove useful to
define the dimensionless quantities

e =kt,
d =Pt/2,
x =(qi —ql )t/2i,

in terms of which

2'
(9)

gk x'+d'+e'
For given k, t, and p the growth rates y/1/g are deter-
mined from Eq. (9) once we know x, which is found by re-
quiring that the eigenfunction(s) W satisfy the proper
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boundary conditions. Corresponding to Eq. (5) we have

Ae@, y&0
O'= A~e ' +A2e ', 0&y&t

B&e@+82e @, t (y & t+5t.

There are five boundary conditions: continuity of 8' at
y =0 requires

A =A)+A2,

kA =qIA i+q2A2
qgf q2i

q)A(e ' +q2A2e ' =k(B)e"' B—2e "') .

(13)

(14)

The last condition is a free boundary at y =t+5t. As
discussed in. Sec. II, the requirement is D8'
+(k g/y ) W=O, and therefore

k(t+5t)B 1
g —k(t +st)B () (15)

k

and aty =t
q2t

A, e"'+A, e =B,e +B,e- '. (12)

The five equations (11)—(15) are linear in the five un-
knowns C, A ~, A2, 8~, and B2. A nontrivial solution ex-
ists if and only if

Since p is continuoUs at y =0 and y =t, the jump condi-
tion, . Eq. (4) requires that DW be continuous also:

det(F) =0,
where F is the matrix

(16)

0

0
0

kt—e

—ke kt

q&t q2t
e e

q, ~

q~e q2e

(17)

ek(t+5t)
y'

—k(t+5t)
y2

0 0

Equation (16) reduces to

(q, —k)D (qi ) —(qi —k)D (q, ) =0, (18)
W=(A(+32)e P~ cos(xy/t)+ —(e+d)sin(xy/t)/2 1

where

D (q) =e it — 1+ 2 (k +q)ekg

y'.

+ 1
g (k )

k5t-k
(19)

(21)

the region 0 (y (t. In the region f &y & I;+$t
8'=B~e ++B2e ~ where

Bi ———(2 i+32)sinx exp[ —(e +d +2k5t)]
x +(e —d)

28X

(22)

and
Since qi+q2 ———p is "known, "Eq. (18) is an equation for
x -(qi —q2) which determines y through Eq. (9).

The stable mode is easily found: q, =k or q2 ——k both
solve Eq. (18) with y = —gk. The associated eigenfunc-
tion is 8'=construe@ in the whole region —oo (y
& t +5).

For the rest of the modes Eq. (18) can be written, using
Eq. (9) and after some algebra,

B2 ——(3 i+22)sinx x +(e+d)
exp(e —d) .

28X
(23)

The constant A =A ~+A2 is an undetermined overall con-
stant which might be used for normalization.

From E . (9) we conclude that y~0 as kt~O and
y/v g ~ P as kt ~ Oo, i.e., A. &&t. In this second, short-
wavelength limit the roots are located at x =m.,2', . . . ,
and W-e @'~2sin(xy/t) in the region 0&y &t. This lim-
it is identical with the case where the exponential density
profile is between two fixed boundaries. In Fig. 2, we
plot y '"/v g vs kto for the case where 50% of the mass
in the original heavy shell is spread (5t =to/2). y

'" is
the rate of the fastest growing mode.

In the same figure we show y *"/v g when all the mass
is spread, i.e., 5t =0. In this case Eq. (20) reduces to

(20)

This is a transcendental equation which has infinitely
many real roots x and one imaginary root for small
values' of kE. Of course, each root, when substituted in
Eq. (9), gives a distinct growth mode y. The faster grow-
ing modes are associated with the smaller roots x which
are found, in general, by numerical techniques.

The eigenfunctions are
X

tarvc =
d —8

(24)

28X
tanx =

x2+d2 e2 [x2+(e d)2] 2kst—
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FIG. 2. Rate y '"/(g/to)' for the fastest growing mode as
a function of kto when S0% and 100%%uo of the original shell is
spread into an exponential profile as in Fig. 1(a) {51=—,fo and

6t =0, respectively). The dashed curve is given by
(19kto/21)' . The continuous curves approach V P where
P=2(1 pl/ps) —and P= 1 pq/ps f—or 50% and 100% spread,
respectively [Eq. (31)]. We have set to = 1 for scale and

1
pi~pa = 20

while Eq. (21) remains the same (the eigenfunctions de-
pend on 5t only through x). The short-wavelength limit is
again given by y/Vg —+Vp and 8'cce ~"/~sin(xy/t).
Since all the mass is spread, p assumes its minimum value

p;„=—(1 pl/pI )—
to

which is equal to 0.95 if to ——1 and pr/p~ ———„.
(25)

IV. STRATIFIED DENSITY PROFILE

We would like to know how closely we can approximate
the optimal exponential profile with a series of layers.
Consider the case where a certain fraction of the original
mass is spread into a discrete number of subshells as in
Fig. 1(b). The formalism for calculating the normal
modes for a stratified density profile is reported else-
where" and we omit the details, giving only the results.
There will be n +2 mod. es where n is the number of sub-
shells. Gne of these modes is the stable mode 8 ~e@
with y = —gk as in the preceding section. The associated
growth rates y are found by solving the characteristic
equation

det M — I =0,gk
y' (26)

where M is a (n+2))&(n+2) tridiagonal matrix defined
by

p /S;(p;+i p;), l =J+1—
(27)

—p /S (p;, —p;), i =j—1

FIG. 3. Rate y '"/(g/10)' for the fastest growing mode as
a function of kto when 50% of the original shell is spread into
four and eight subshells as in Fig. 1(b) (5t= 2 to). The dashed

curve is V 19k/21. The continuous curves approach 0.54Vk
and 0.40V k for large kto. We have set to 1 for scal—e—and

P~/p& =
20 ~

In Eqs. (27) and (28) T; =tanh( ,'kt;) and S;—=sinh(kt;),
where t; is the thickness of layer i with density p;,
i =1,2, . . . , n+2.

For the profile shown in Fig. 1(b), p, =pl, t, = cc,
p„+2——p&, t„+2——5t, where 5t/to =1 minus the fraction of
mass spread. into p2, p3, . . . , p„+~. We chose the
thicknesses t; of the subsheHs all equal to a common value
t;=t,„»h,», i =2,3, . . . , n+1, and the subshell densities
p; such that the Atwood numbers were identical at aH
fluid interfaces. It is easy to show that such a profile
goes over to an exponential profile in the limit n~ac,
and that, for finite n, p;=p, (p„/p, )'-"/l" +",
i = 1,2, . . . , n +2. For example, with six subshells p=(1,
1.5, 2.4, 3.6, 5.5, 8.5, 13.0, 20) and the Atwood number at
each interface is 0.2 I.

In Fig. 3 we plot y '"/vg, the rate for the fastest
growing normal mode, as a function of ktc when half
(5t =to/2) of the original mass is spread into four or
eight subshells. Unlike the continuous case, the growth
rate for the very-short-wavelength perturbations continues
to increase at the rate y/Vg ~(kXA,„~)',where the
Atwood number is 0.29 and 0.16 for four and eight sub-
shells, respectively. Of course, y, i,»,„i/Vg = ( —,", k)'

V. RESULTS AND CONCLUSIONS

Having described our method of calculation, we now
turn to the results. In Fig. 4 we plot y '"/vg, the rate
for the fastest growing mode, as a function of the fraction
of the original mass pl, tc spread into 4, 6, 8, or ao (i.e.,
continuous) subshells. Clearly to minimize the fastest
growing mode it is best to spread all of the heavy material
if it can be done continuously, in which case the improve-
ment factor W,

otherwise M;J =0. The diagonal elements M;; are given by

max~—7 jssi 3/V (29)

Mi; ——[p; ( T~ + I /S; ) +i ~i + I ]/(p; +, —p; ) . (28)
is about 2.4. A simple discussion presented below shows
that M=V 2nSince in typica. l. situations there are 8—10
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FIG. 4. Rate y '"!Vg for the fastest growing modes as a
function of the fraction of original mass spread into 4, 6, 8, and
oo (i.e., continuous) subshells. The optimum design would
spread 3S%%u~, 40%, 45%, and 100%, respectively. The total
mass of the shell is kept fixed and X=5t =t0(1—I ) (I' is the
fraction spread). We have set ~o =1 for scale and pI/p

45% spread

(b)

0.55 t,

p =20

for A, =-tp in the original shell, the improvement factor is
' 1/22'

1+pI/p~

Spreading all of the mass in this manner increases the
thickness of the original shell by

»(pt /pi)

to 1 —pt/pt

which is about 3.

(33)

e-foldings of growth in double-shell implosions during the
shell collision, a reduction by a factoi of 2.4 in thc gI'owth
rate reduces the final amplitude by a factor of 100—350.
This would have very important consequences for target
fabrication requirements and for target performance.

In Fig. 4 conservation of mass was used to determine t:
For a given fraction f of original mass spread, clearly
5t =(1 f)to ——1 f. The—n we use—

PI to =Pp~l'+ P d3' (30)
subshells

For n subshells, the integral becomes t bs,s»hei,
". +z'p;,

which determines t =nt, „b,h, ll, . For the continuous ex-
ponential profile the integral becomes (pI, —pt)/P, and
th.cI'cfoI c

1 —pi/pl
tp —6t

which determines t = (1/P)»(ph /pt ).
As 5t —+0, the wavelength I, of the potentially

dangerous perturbations also shifts to zero. These pertur-
bations grow no faster than y '"/vg =v P, as discussed
in Sec. III. Since

' 1/2
2m(1 —pt/pt, )

1 classical g t (1+

0.3 t,

70% spread

0.3 t,

p = 1

FIG. 5. (a) Original shell with no mass spread; (b) 45% mass
spread into eight subshells; (c) 70% mass spread into eight sub-
shells. For A, =5t, spreading 45% is best, reducing y

'" by a fac-
tor of 1.6. At 70% mass spread, when all the thicknesses are the
same, the improvement factor is only 1.3. The density profile is
(1, 1.4, 1.9, 2.7, 3.8, 5.3, 7.4, 10.3, 14.3, 20) g/cm .

For the cases where a fraction of the heavy mass is
spread into a discrete number of subshells, we note that in
each case y

'" goes through a minimum. The existence of
these miniIa can bc understood in the foHowing way:
Spreading too little mass does not change y much from its
classical value, while spreading too much leaves such a
short 5t that the system becomes vulnerable to very-
short-wavelength perturbations which of course grow fast-
er when there are discrete density jumps. Somewhere in
between is the best profile: For n =4, 6, and 8 subshells
we find the best profiles if only 35%, 40%, and 45% of
the heavy mass is spread, with corresponding improve™
ment factors of 1.4, 1.5, and 1.6, respectively.

It is worthwhile to point out that the best profiles are
reached before the thickness of each subshell matches the
thickness 5t of the reInaining heavy shell. For example,
we shown in Fig. 5 the profiles when 45% or 70% of the
heavy mass is spread into eight subshells. The best profile
(45% spread) of course leaves 55% in the heavy shell,
hence Q =0.55tp. Wc find t b h li 0.2tp much thinner
than 5t At 70% sp.read [Fig. 5(c)] 5t=t,„b,h,»

——0.3to, but
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FIG. 6. Rate y
'" for the fastest growing modes as a function

of the fraction of original mass spread into 4, 8, and 00 subshells
with three distinct choices for k: A, = 2 5t, A, =5t, and X=2 5t.

y
'" is normalized to yo, the original rate when no mass is

spread.

of course by now y
'" is past its minimum.

As indicated in Fig. 4, we have set A, =6t in each calcu-
lation of y '", and therefore A. decreases with 5t as more
and more of the heavy mass is spread. The choice of
k=6t is motivated by the observation' that small pertur-
bations grow exponentially until their amplitude becomes

'

of order k, after which they staturate and nonlinear ef-
fects slow down the growth. To preserve the integrity of
the last shell one must guard against perturbations which
might grow to the thickness 5t of this shell, and hence the
mast dangerous wavelengths are given by A, -6t. Much
shorter wavelength perturbations saturate early on, while
much longer wavelenth perturbations grow too slowly.
The sensitivity of our results to this assumption is shown
in Fig. 6, where we plot y '"/yo for n =4, 8, and oo as-
suming, in each case, that A, = —,

'
5t, A, =5t, and A, =26t.

Here yo is the growth rate with zero mass spread. We
learn from Fig. 6 that changing A, by a factor of 2 in ei-
ther direction changes the location of the minima by
about 10%. Since the minima in Fig. 6 are rather broad,
we conclude that stabilizing a certain design against A, =6I
perturbations will also reduce the growth of perturbations
with X=25t or A, = —,

' 6t.
%e now discuss briefly the spatial structure of the

eigenmodes which controls how much of the perturbation
from one interface feeds through to other interfaces. In

general, longer-wavelength perturbations extend further
than short-wavelength perturbations, as discussed in Ref.
13. For the density profiles considered in this paper, the
most unstable eigenmodes peak near the low-density re-
gion. Continuous density profiles have continuous ei.gen-
functions whose spatial derivatives are also continuous,
unlike the step-density approximation whose eigenfunc-
tions but not their derivatives are continuous. However,
we find that the values of the eigenfunctions at the inter-
faces of the step-density profiles match closely the
continuous-density eigenmodes and exhibit similar at-
tenuation a.s one moves away from the peak.

In applications of these results to ICF implosion cap-
sules, the assumption of incompressibility enters primarily
in two ways. First, if y/k &v, (v, is the sound speed),
then compression of a given initial density profile
p(0) =p(t =0) causes the perturbation rl(t) to vary as

q(r)/q(o) = p e&'p(0)
(34)

p(r)

instead of simply rl(t)lrl(0)=e"', i.e., the perturbations
are compressed or expanded along with the density. To
see why y/k &v„note that the acceleration g =P/phR
where I' is the pressure and hR is the shell thickness;
hence g=v, /b, R, and y /k =ag/k =(a/k AR)v,
= (a/2')v, & v, , where a is the effective Atwood number
which is less than 1 and is —, if the growth rate is reduced
by a factor of 2..

Second, in the collision of two shells the material comes
to nearly constant pressure and temperature Since
P=[(Z+ I )/)A]pT, the density varies because (Z+ I)/3
is different for different materials at the 200—600 ev tem-
peratures which are typical during co11ision. To maintain
a density profile, then it is also necessary to have
(Z+ 1)/3 vary in approximately the same ratios as the in-
itial density. Fortunately, for normal density materials
this condition is reasonably well satisfied.

We expect that during sheH collision the transfer of per-
turbations from one side of a shell to the other is also
suppressed by density gradients. Since our method as-
sumes a constant acceleration, we cannot predict the effect
of an impulsive collision except note that the initial condi-
tions on the perturbations will be set by the collision, and
these perturbations will grow as the shells accelerate.

The following example illustrates how an im. provement
factor of 2 in the growth rate during the acceleration
phase can make a substantial difference. Assuming an as-
pect ratio R/AR of about 8 and no improvement factor
one finds that initial amplitudes grow by about ten e-
foldings:

qr, „,i ——g(0)e r',

(yr)'= gt'= R =100,
hR

hence gr,„,~ ——e' g(0). If we require final amplitudes to be
no larger than 10 pm, then initial surface finish must be
about 5 A. However, if we can achieve an improvement
factor of 2 then perturbations will grow only by five e-
foldings, in which case initial amplitudes of about 700 A
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can be tolerated.
Finally, we note that a useful comparison of our analyt-

ic results with those obtained from a full simulation is not
quite possible at this stage because our analytic work as-
sumes no heat transfer while numerical simulations have
concentrated on ablating surfaces in which heat transfer is
of course crucial. A number of simulations ' have report-
ed reduced growth rates, but it is not clear whether the
reduction is due to density gradients or to heat transfer, or

to both effects.
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