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Connection between the hydrogen atom and the harmonic oscillator: The zero-energy case
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The connection between the three-dimensional hydrogen atom and a four-dimensional harmonic oscilla-
tor obtained in previous works, from a hybridization of the infinitesimal Pauli approach to the hydrogen
system with the Schwinger approach to spherical and hyperbolical angular momenta, is worked out in the
case of the zero-energy point of the hydrogen atom. This leads to the equivalence of the three-
dimensional hydrogen problem with a four-dimensional free-particle problem involving a constraint condi-
tion. For completeness, the latter result is also derived by using the Kustaanheimo-Stiefel transformation
introduced in celestial mechanics. Finally, it is shown how the Lie algebra of SO(4,2) quite naturally arises
for the whole spectrum (discrete plus continuum plus zero-energy point) of the three-dimensional hydro-

gen atom from the introduction of the constraint condition into the Lie algebra of Sp(8, IR) associated with

the four-dimensional harmonic oscillator.

I. INTRODUCTION

Since the landmark works on the O(4, 2) dynamical sym-
metry of the nonrelativistic hydrogen atom, ' a large amount
of papers has been devoted to the quantum-mechanical
Coulomb problem (cf., for example, Refs. 2-15 and refer-
ences therein). In particular, the link between the three-
dimensional hydrogen atom and the four-dimensional iso-
tropic harmonic oscillator has been investigated more or less
independently by several people in recent years. ' In
this regard, a word on the pioneer (though little-known)
work by Ikeda and Miyachi4 is in order. These authors use
the following (well-known) Cartesian coordinates of R4
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2 2
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2 2
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and from the Schrodinger equation for the four-dimensional
isotropic harmonic oscillator expressed in the coordinates
(r, 8, P, P), they derive the one for the three-dimensional
hydrogen atom by imposing an auxiliary condition. Similar
derivations of results equivalent to the just mentioned result
have been recently achieved by Chen' " and Iwai. ' On
the other hand, the connection between the three-
dimensional hydrogen atom and a four-dimensional isotrop-
ic harmonic oscillator with a constraint has been elegantly
derived by Boiteux on the basis of the so-called
Kustaanheimo-Stiefel (KS) transformation introduced (as a
by-product of the theory of spinors) for regularizing the
three-dimensional Kepler problem of classical mechanics. '

Indeed, the original and apparently distant derivations by
Boiteux' and Ikeda and Miyachi4 are closely related in view

of the fact that Eq. (1) leads to

Xf" + Xz2 —X$ —X4' = r cos0

2(X)X3—XzX4) = r sint) cosP

2(X)X4+ X2X3) = r sin& sing

which are nothing but a rewriting (up to an S4 permutation)
of the defining relations for the KS transformation [cf. Eq.
(2) below].

Most of the papers on the connection between the IR' hy-
drogen atom and the R4 harmonic oscillator are concerned
with the cases E ( 0 (discrete spectrum) and E & 0 (con-
tinuous spectrum) of the hydrogen atom spectrum. The
case E=O (zero-energy point) has received little attention
although, on one hand, the zero-energy Coulomb problem
turns out to be of interest in atomic scatterings of the
three-body Coulomb systems and, on the other hand, the
related zero-energy Kepler problem may find applications in
astrophysics (cf. Ref. 8). The zero-energy case has been
briefly touched upon by Barut, Schneider, and Wilson in
their investigation of "lightlike states" solutions for a wave
equation set up in the framework of the quantum theory of
infinite component SO(4,2) fields. In fact, it appears from
Ref. 9 that a three-dimensional Kepler motion with zero to-
tal energy and a free motion in four space are connected via
the KS transformation. Furthermore, it has been noted by
Chen" that the application to the three-dimensional hydro-
gen atom problem of a transformation of the type of Eq. (1)
produces, in the case E = 0, an equation that leads to Bessel
functions. Finally, the topological equivalence between the
hydrogenic system with E =0 and the free-particle system
has been established by Chen' from a transformation of
the type of Eq. (1).

It is one of the aims of this paper to fully explore the case
E = 0. This work constitutes the third part (cf. Refs. 14 and
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15 for the first and second parts) of a series devoted to the
hydrogen-oscillator connection and its implication regarding
the SO(4,2) dynamical symmetry of the three-dimensional
hydrogen atom. The guideline followed in Ref. 14 for
E ( 0 and Ref. 15 for E ) 0 lies on a hybridization of the
infinitesimal method developed by Pauli (cf. Ref. 2) for the
IR hydrogen atom with the boson calculus used by
Schwinger for the R3 angular momentum theory. This line
of thought is applied in Sec. III of the present paper to the
case E=O. For the sake of completeness and comparison,
the hydrogen-oscillator connection in the case E= 0 is also
treated in Sec. II by using the KS transformation. Finally,
Sec. IV concerns the other aim of this work. It is shown in
Sec. IV how the hydrogen-oscillator connection allows one
to easily introduce the group SO(4, 2) for the whole spec-
trum (E & 0, E & 0, and E=O) of the three-dimensional
hydrogen atom.

II. APPROACH VIA THE KS TRANSFORMATION

The KS transformation (xi. i = 1, 2, 3) (u: n = 1, 2,
3, 4) corresponds to the R4 IR 3 surjection defined by'6

x] = u] —u2 —uy + u42 2 2 2

x2=2(utu2 u3u4), x3=2( u[ 3u +u2u4)
(2)

As a preliminary result, it is a simple matter of straightfor-
ward but cumbersome calculation to use Eq. (2) for
transforming the R Laplace operator according to

/2, „=(1/4r) 5„—(1/4r') X',
where
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The operator X turns out to be the infinitesimal operator of
a subgroup U(1) of a group O(4) that proves to be related
to a group Sp(8, IR), cf. Sec. IV. [It should be realized that
the term —(I/4r2)X in Eq. (3) has been overlooked in
certain works dealing with the KS transformation. ]

%e are now in a position to transform the Schrodinger
equation

[ —(t2/2p, )6„—Ze'/r]Q = Ef
of a three-dimensional hydrogenlike atom with reduced
mass p, and nucleus charge Ze. Equation (3) makes it pos-
sible to turn Eq. (4) into the R4 partial differential equation:

R4 Schrodinger equation

4 g2 4
—4E g u2 $=4Ze2$

2p a-i ~ua a 1

(6)

accompanied by the constraint relation (indeed a superselec-
tion rule, cf. Refs. 5-7)

8 8 6
u4 u3 + u2 —u) /=08

Qu4

(I/2p) (pi'+ p2 +p$+ p4 )4 = 4Ze'0

supplemented by the auxiliary condition:

( u4p 1 u3p2+ u2 p3 —u lp4) Q = 0

(7)

(8)

where p stands for (h/i)9/Bu with +=1,2, 3, 4.
For the purpose of preparing an easy comparison of the

preceding result with the corresponding one in Sec. III, we
now introduce the canonical transformation (u,p: o.
= 1, 2, 3, 4) (Q,P: n = 1, 2, 3, 4) defined by

pl = ~~(P Q3+ P2) i u1 (+~2) ( Q2+ P3/P)

p2= J2(pg)+P4), u2= (4 J2)(Q4 —P)/p)

p3= —%2(pg4+ Pt), u3= (—„' J2) ( —Qi+P4/p)

p4= ~~(P Q2+ P3) u4= ( ~2) (Q2 P2/P )

where p is an arbitrary parameter we take in the form
p= p, ~. This transformation enables us to rewrite Eqs. (7)
and (8) as

[ (1/2p, ) (P(+P$+P$+P$ ) + (pco2/2) (Qf'+Q$+ Q32+ Qg2 )

+ ~(P)Q4+ P2Q3+ P3Q2+ P4gt) ]p =2Ze'Q

(9)

and

Equation (6) may be tackled for E & 0, E & 0, and E = 0.
In the case E & 0, Eq. (6) identifies to the Schrodinger
equation of a four-dimensional isotropic harmonic oscillator
~ith attractive potential and this case has received a great deal
of attention. ' ' Less attention has been focused on the
case where E & 0 in Eq. (6) for which Eq. (6) can be re-
garded as the Schrodinger equation of a four-dimensional
isotropic harmonic oscillator with repulsive potential. ' The
case when E = 0 in Eq. (6) seems to have attracted little at-
tention. 9

In the case E= 0, Eq. (6) reads

g2 4 g2& =4Ze2y .
2p a-]. ~ua

As a net result, the Schrodinger equation for a three-
dimensional hydrogenlike atom with zero energy is
equivalent to the Schrodinger equation for a four-
dimensional free particle with energy 4Ze2'.

[ —(h'2/2p, )6„+(k2/2p. r )X —4Ze2]P = 4rEQ (5)
[ (1/2p, ) (Pf + P22 —P$ —P42 )

By adopting the line of reasoning of Boiteux, we take
XP = 0 in order to ensure the wave function P be
univalued. Hence, Eq. (5) yields the system formed by the

+ (p,~ /2) ( Qt + Q$ —Q$ —Q4 ) ]P =0, (10)

respectively. Clearly, Eq. (9) involves a four-dimensional
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isotropic harmonic oscillator part and Eq. (10) shows that
this oscillator splits into a pair of coupled two-dimensional
isotropic harmonic oscillators.

III. APPROACH VIA THE BOSON CALCULUS

admits as a solution

~ 4 4 ~ ~ f f ~

ra~ a4 —Ia~a4+ Ia2a3 —Ia2a3+ a~ a~

+ a3a3+ a3a3+ a4a4+ 2= 2Ze /to(2

and

(17)

L M=M L=O

M3 (Ze3)3= 0

(12)

(13)

where L—= (Li~t L3,L3) and M—= (M(,M3, M3) denote the an-

gular momentum operator and the Laplace-Runge-Lenz-
Pauli operator corresponding to the three-dimensional hy-
drogenlike atom considered in Sec. II. As is well known,
Eqs. (11) characterize the Lie algebra of E(3). The corner-
stone of the present approach is to find a boson realization
of Eqs. (11). Following our previous works, '4" we con-
struct the realization of L and M from the set
]a a(3, a ar(, a ai(. a, p= 1, 2, 3, 4] of the elements of the
Lie algebra of Sp(8,R). From Ref. 9, it is an affair of com-
bining a few relations to extract the following realization of
L and M=a(V:

Li=
&

(a a3a+ b o3b)t

L3=
3 (a (r3a —b a3b)t.

L3= —
3 (a a.ia —b oib)t.1

Ci = —T(a a3b —acr3b —.a o 3a+ b o3b)t.
C3 =

3
(a"(r3b + a(r3b+ a (73a+ b (r3b)t

(14)

C3= —
&

(ia b —iab+ a o.ia+ b aib)t.
where a, b, a, b, a, and b are defined from the row vec-
tOrS a=(ai, a3) and b=(a3, a4) While (Ti, (73, and o.

3

stand for the Pauli matrices. It may be checked that Eq.
(14) does satisfy the commutation relations (11). The reali-
zation afforded by Eq. (14) allows us to write Eqs. (12) and
(13) in the enveloping algebra of the Lie algebra of
Sp(8, R). As a matter of fact, by introducing (14) into (12)
and (13), we get

(a i ai+ a3 a3 a3 a3 —a4a4) (iai—a4 —iaia4+ (a3 a3 —(a3a3
~ f f ~

+ ai ai+ a3a3+ a3a3+ a4a4+ 2) =0 (15)

and

(iai a4 —iaia4+ ia3a3 —ia3a3+ ai a(+ a3a3

+ a3 a3+ a4 a4+ 2) —(2Ze /ta() =0, (16)

respectively. The system set up from Eqs. (15) and (16)

We now consider the Pauli equations (published in 1926)
in the situation where E=O. In the notation of Ref. 2, they
write

[Li, L„]=('teik(L(, [Mj, M(, ]=0

[Li, M(, ] =itejk(M(

a) a)+ a2a2 —a3a3 —a4a4= 0 (18)

IV. A NEW WAY TO INTRODUCE O(4, 2)

We note that the constraint condition [Eq. (18)], obtained
in the approach of Sec. III to the case E= 0, coincides with
the ones derived for the cases E (0 (cf. Ref. 14) and
E) 0 (cf. Ref. 15). It is appealing to examine the signifi-
cance of such a condition from a group-theoretical point of
view. As a result, it is straightforward to show that the in-
troduction of Eq. (18) into the Lie algebra of Sp(8, lR)

spanned by the 36 bilinears a a~, a a&, and a a& produces
a Lie algebra under constraint which is isomorphic to the Lie
algebra of SU(2,2), one of the covering groups of SO(4,2).
This clearly shows the relevance of O(4, 2) for the whole
spectrum (E ( 0, E ) 0, and E = 0) of the three-
dimensional hydrogen atom. [We note that the original
derivation of O(4, 2), or more precisely O(6,C), by Malkin
and Man'ko' is concerned with the discrete spectrum of the
hydrogen atom. ]

We do not give the details of the derivation of the Lie
algebra of SU(2, 2) from the one of Sp(8, iR) under con-
straint. It is sufficient to understand the concept of a Lie
algebra under constraint from the following trivial example.
Let us consider the Lie algebra of SO(4) symbolized by
Lx L=iL, L&& A=i A, and A& A=i L. The introduction of
the constraint A= L reduces the Lie algebra of SO(4) to the
one of SO(3) and we hence say that the Lie algebra of
SO(3) derives from the Lie algebra of SO(4) under con-
straint, From a mathematical viewpoint, the concept of a
Lie algebra under constraint corresponds to the notion of
quotient.

ACKNOWLEDGMENTS

One of the authors (M.K.) wishes to thank Professor
G. Arsac and Professor J. Braconnier for a comment on the
derivation of so(4, 2) from sp(8, R). The other author
(T.N.) gratefully acknowledges the Ministere de 1'Enseigne-
ment et de la Recherche Scientifique (Alger) and the Centre
International des Etudiants Stagiaires (Paris) for financial
support.

[Of course Eqs. (17) and (18) should be understood modulo
their action on a state vector i](.] Then, by passing from the
a and a to the Q and P (n = 1, 2, 3, 4) with the help of
the standard formulas

a = (p, (0/2t) Q +i (I/2t(((, cu)'( P

a = (p,o(/2t) Q —i (1/2tpa() i
, P

we finally obtain that Eqs. (17) and (18) acting on ir( be-
come identical to Eqs. (9) and (10), respectively.
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