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Featuring the modified hypernetted-chain (MHNC) scheme as a variational fitting procedure, we

demonstrate that the accuracy of the variational perturbation theory (VPT) and of the method based

on additivity of equations of state is determined by the excess entropy dependence of the bridge-

function parameters [i.e., g(s) when the Percus-Yevick hard-sphere bridge functions are employed).
It is found that g(s) is nearly universal for all soft (i.e., "physicaj") potentials while it is distinctly

different for the hard spheres, providing a graphical display of the "jump" in pair-potential space
(with respect to accuracy of VPT) from "hard" to "soft" behavior. The universality of g(s) pro-

vides a local criterion for the MHNC scheme that should be useful for inverting structure-factor

data in order to obtain the potential. An alternative local MHNC criterion due to Lado is rederived

and extended, and it is also analyzed in light of the plot of g(s ).

I. INTRODUCTION

Bp,„,«(x,13,p) =W[gp,„„,(x,P,p)] . (3)

If the evaluation of W[g] could be managed, then starting
from 8 =0 (the HNC approximation), Eqs. (1)—(3) would
provide a formal iteration scheme by which the exact pair
function could be obtained. It has been argued and
demonstrated that 8~,„,«(x) should have roughly the
same functional form for all potentials' ("universality of
the bridge functions" ). In fact, setting

8(x)=BpY(x;g), (4)

where Bpv(x;g) is obtained from the Percus-Yevick (PY)
equation for hard spheres, (HS), and requiring thermo-

The modified hypernetted-chain (MHNC) scheme was
originally proposed as a method for parametrizing com-
puter simulation data in terms of fitting bridge functions. '

It is based on the MHNC equations for the pair (radial)
distribution function g (x),

c (x)=h (x)—ln[g (x)e+'"~~ ']+8(x)
and the Ornstein-Zernike (OZ) relation for the direct
correlation function c (x),

c(k) =h(k)/[1 —h(k)], (2)

where h (x)—:g(x) —1, h(k) is the Fourier transform, P(r)
is the pair potential, p is the number density, P= (k~ T)
is the inverse temperature, and we use the reduced length
x =rp'~ B(x)=.8(x,(p;)) is a fitting or an approximat-
ing bridge function, with free parameters (p; ), that serves
as input in Eq. (1).

The exact bridge function, 8&,„,«(x,P,p), is a function-
al of the exact pair function, g~,„,«(x,P,p), given by the
sum of all elementary graphs with h (r) bonds that have at
least triply connected field points, and can be formally
written as

dynamic consistency between the equation of state ob-
tained separately from the virial theorem and from the
compressibility, excellent agreement with the computer
simulation results has been obtained for a wide variety of
quite disparate potentials. ' ' For easy reference below,
we denote by UPY that particular MHNC scheme which
employs the PY bridge functions (4) as a universal input
with the "virial-compressibility" consistency criterion.
The practical importance of the UPY fit stems from the
fact that by way of construction it constitutes a well-
defined and very accurate approximation scheme for all
kinds of simple classical fluids.

As a framework for understanding basic properties of
simple classical fluids in terms of the pair potential, the
MHNC scheme is meant to make progress, systematically,
in several intimately related (and finally converging) direc-
tions:

(i) Fitting computer data via bridge functions in order
to study the nature of relation (3) and in order to obtain
information on the correct "closure" for the integral equa-
tion (diagramatic) approach to simple classical fluids. A
related problem is the extrapolation of the pair function
beyond the "simulation range. "

(ii) A priori calculations of the pair structure and ther-
modynamic properties for given pair potentials.

(iii) Obtaining the pair potential (or effective pair poten-
tial) from the given pair function (or from the experimen-
tal structure factor data). The UPY scheme answers to
some extent the first two of the above aims, and the
present work intends to make further progress along these
lines. As a fitting procedure the UPY scheme puts em-
phasis on satisfying the compressibility sum rule. %'e
must keep in mind, though, that a systematic fitting pro-
cedure must include parameters that measure deviations
from the data to be fitted, and that eventually corrections
to "universality" may be sought with trial bridge func-
tions of the type
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8(x;(p;))=BpY(x;g)+8' '(x;(g;))

with the number of parameters exceeding the number of
thermodynamic consistency conditions that may be im-
posed. Regarding the third aim above, namely, the possi-
bility of inverting experimental structure-factor data in or-
der to extract potentials, the UPY scheme us it stands can-
not be applied in view of the nonlocal condition that it im-
poses in order to determine the free parameter of the
bridge function. By nonloca/ we mean that we must solve
the MHNC equation self-consistently for an entire iso-
chore even if we are interested in only a single thermo-
dynamic state.

In order to be useful for inverting the pair function data
(or experimental structure-factor data) to obtain the poten-
tial, the MHNC criteria that determine the free parame-
ters of the bridge function should be local and involve the
pair structure and the assumed bridge function, but should
not explicitly involve the pair potential. In principle (and
as will become clearer later on), such a criterion can be
constructed only on the basis of some perturbation ap-
proximation. In order that the MHNC fitting procedure
will enable us to make systematic progress in all three
directions above, we have to study its characteristics with
regard to various perturbation theories. A fully developed
MHNC scheme should be accompanied by an appropriate
perturbation theory of comparable accuracy.

In particular, we shall demonstrate that the variational
first-order thermodynamic perturbation theory (VPT) is
an appropriate perturbation theory to supplement the
UPY scheme when applied to soft (i.e., "physical" ) poten-
tials.

Thermodynamic perturbation methods should be
studied in their own right since, although somewhat less
accurate than the UPY scheme, they are considerably
simpler to apply and will be preferable for many practical
equation-of-state calculations. Perturbation theory finds
its widest range of applicability in the variational form
based on the Gibbs-Bogoliubov inequality, with the sys-
tem of hard spheres as the virtually unanimous choice for
the reference system. In recent work, a large body of
computer simulation data for simple classical fluids was
analyzed in light of various types of applications of per-
tuibatlon tjlcoiy. It was Icalizcd thRt a single onc-
parameter pair function could be employed in the VPT
description of the equation of state for a wide range of soft
potentials, and that by moving over from the hard spheres
to a yet-to-be specified soft reference, a substantial im-
provement in accuracy is achieved. Just by assuming the
existence of such a universal one-parameter description, a
new method for equation of state calculations was derived;
it is based on the idea of "additivity, " with the excess en-
tropy RQd thc density scivlng Rs thc indcpcIldcIlt variables.
This potentially powerful method requires a more careful
assessment before large scale applicati. ons are attempted.

The analysis in the present work shows how the MHNC
scheme provides a natural parametric description for the
pair structure and the equation of state. %c determine
conditions for the bridge functions from which follow a
universal one-parameter description of the equation of
state and additivity of equations of state. Moreover, we

shall demonstrate that, to the extent that the "soft" VPT
is accurate, the UPY consistency condition may be re-
placed by a locaI condition thus realizing the basic aims of
the MHNC scheme as listed above.

This paper is organized as follows: In Sec. II the
MHNC scheme is featured as a variational fitting pro-
cedure and it is shown that any local MHNC condition is
equivalent to an approximate local evaluation of the ex-
cess entropy. Variational perturbation theory (VPT)
within the MHNC scheme is considered in Sec. III, where
it is also investigated under what conditions it may serve
as a local MHNC condition. In Sec. IV we display UPY
results in the form g(s), i.e., the excess-entropy depen-
dence of the bridge parameter, and interpret the picture in
light of the VPT results. A modified VPT (MVPT) 1s

proposed in Sec. V, as an interpretation of the plot g(s),
which provides an explanation for the higher accuracy ob-
tained by employing (in the VPT) the PY-hard-sphere re-
sults instead of the "exact" hard-sphere computer data. A
local MHNC criterion, originally due to I.ado, ' is
rederived and extended in Sec. VI, so that it may be useful
for fitting simulation data to obtain the bridge function,
and for inverting structure factor data in order to obtain
potentials. A brief summary of the results and some of
their implications are presented in Sec. VIII. The Appen-
dix is devoted to estimating the relative position, in the
plot g(s), of the lines representing the hard-sphere poten-
tial and the PY approximation for the same potential.

A complete MHNC scheme result for a given pair po-
tential P(r) is characterized by a bridge function
8(x;(p; ) ) with parameters (p; ) and specific conditions
(denoted by a superscript c, e.g., c =UPY) that determine
the value of each parameter as a function of temperature
and density, p';&(I3,p). A solution to Eqs. (1) and (2) for
prescribed values for the parameters (p;) will be denoted
by g~(x;P,p, (p;)). For a complete MHNC scheme result,
if the functions p,'~(P,p) are single valued functions of P,
they may be used to eliminate the explicit P dependence of
g, and for each isochore the values of p and the p,'~(I3,p)
completely specify the pair function

In this sense, any MHNC scheme result for a given bridge
function but with different P or e defines a different
parametric set of pair functions g~(x;p, (p; ) ).

For inverse power potentials P„=r " the density and
temperature combine into a single independent variable
y„=P "p, and for these potentials the parametric sets of
pair functions are g„'(x;(p;))corresponding to [p';

& (y„)].
In particular, the UPY scheme defines a one-parameter set
of functions g„(x;g)for each inverse power potential.
If the bridge function employed is the exact bridge func-
tion for some general potential, P(r;e, o, (k;)), typically
containing the energy and distance scales ~ and o, as well
as other parameters (A,;), then the set (p;) of the MHNC
scheme may consist of any subset of [P*,p*, (A,;)], where
P =Pe and p~ =pa' ar'e the reduced quantities. Such
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bridge functions are denoted by 8~,„,«(x;(iM;)). For ex-

ample, B~,„,«(x;y„) may be employed in a MHNC

scheme for a potential P to yield the set g~(x;p,y„),or for
another inverse power potential P to yield a set

g~ (x;y„)which represents another one-parameter set
m

different from g~,„,«(x;y„).
Central to the development of the present work is the

MHNC excess free energy as obtained via the "energy"
equation of state. At any value of p, starting from the ex-
pression for the potential energy per particle,

U/N = —,
' f d x g (x)P(x /p'i ) (6)

and integrating the relation

U/N =a/ap(pF'/N)

while using Eqs. (1) and (2), the excess entropy per particle
via the energy equation of state, S /Nkz, is obtained
from the relation

PF /N: f—=U/N+s,
where s = S—/Nkii & 0 is given by"

s = ——,
' f dx[ —,'h (x)+h(x) —g(x)lng(x)]

——,
' f Iln[1+h(k)] —h(k)J

(2II)

——,
' f dxg(x)B(x)+ —,

' f dx f dp'g(x)

We use the short notations

g(x) =g~(x;p, (p;)), &(x)=&(x;(p;)),
~P

dP=aP+~ aP ap,

Specifically, in fuller notation, the last (and nonlocal) term
in Eq. (8) reads as follows:

P
s nonlocal & d ~x d Pi (x )

d

ap;', p(p', p) a&(x; (p; ) )= —,
' f dx f dP'g~(x;p, [p,'~(P', p)]) g a a@i.

u~,
' '(p, (p;))—= —,

' f dxg~', (x;p, (p;))$2(x/p'"),

fy, (p p (p ))=pup, (p, (p;))+s~, (p, (p;)) .

We define

u p'(p, p) =u p~'(p, [p,',y(p, p)]),
sp(p, p) =s~(p, [p;'p(p, p)]),
f~'(P,p)=f~'(P,p, [p;',~(P,p)]) .

(JM;) =[P';~(P',p)]

where we also defined s =s"'+s"'"'" (loc is local and nonloc is nonlocal). As for the pair function, for each isochore
the function s given by (8) is completely specified by p and the iM,'~(p;p), i.e., s =s~(p, [p,'~(p, p)]), and, similarly to the
pair functions, this relation defines a parametric set of functions s~(p, (p;) ).

Ci Cl
Using the parametric sets of functions g~ (x;p, (p;)),s~ (p, (p;)) as obtained by a particular MHNC scheme for some

general potential P&, we define the following energy and free energy parametric expressions (functionals) for any general
potential P2, by

pu ~p'(p, p) = =pup~'(p, [p,', y(p, p)])+ y
.P ..P

By definition [Eqs. (6)—(9)] we also have

df p~'(P, p)
dP

afp~'(P, p, (p;))
aimi

- ~» (P, )=[I ',. &(P,P)]
(12)

so that the MHNC equation of state has the form of a
variational fitting procedure (as discussed in Ref. 8):

fq'(P p) =fy~'(P p, [p;,q(P p)]) (13)

with the parameters p';~(p, p) satisfying the variation
equations,

afp, c

(P,p, (p;))=O, i =1,2, . . . . (14)
Bpg

Going backwards it becomes clear that any MHNC
scheme for a given potential is fully determined by speci-
fying the bridge function 8(x;(p;)) and the entropy func-
tion s(p, (p;)). In other words, the set of conditions c
leading to p';~(p, p) is equivalent to specifying the func-
tions s~(p, (iu;)). If the function s~(p, (p;)) is specified,
the calculation of the pair structure and, of course, of the
p,'&(p,p), may be carried out as follows: For any p start
from P~O and solve Eqs. (1) and (2) for each P, varying
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the parameters (p; ) of 8 until the expression (8) satisfies

s (p,p) =~~(p, (p; ))

with g(x) at these p,p being evaluated with the same set

tp; I. Such a procedure to obtain p,'~(p, p) [and thus to
obtain g~(x;p, [p,'~(p, p)])] is manifestly nonlocal, in the
general case, in view of the last term in Eq. (8).

Any attempt to fit a given pair function from simula-
tions by a MHNC scheme with conditions specified by
s~(p, (p;)) calls for some approximation that enables a lo-
cal evaluation of the excess entropy. In the final analysis,
a determination or an approximation of the excess entropy
just from a given pair function of a given potential may be
carried out only by comparison with another pair function
for which the excess entropy is known.

III. VARIATIONAL PERTURBATION THEORY
(VPT) WITHIN THE MHNC SCHEME:

CHARACTERISTICS OF THE VPT CLASSES

Suppose that the structure and equation of state for a
pair potential Po are fitted to a high accuracy by a MHNC

scheme that employs 8(x;(p;)) and sp'(p, (p;)), and sup-

pose we also know g~', (x;p, (p;)). Consider the free-

energy functions f~' (p,p, (p;)) as defined in Eqs. (10)
J

and (11), for various potentials P;, and impose the varia-
tional conditions

&o 'o

(Pp, (p;))=0, i =1,2, . . .
p

(15)

which determine the parameters as functions of p and p
for each pJ. p;~ '(p, p). This defines the VPT result for

PJ using the MHNC result co for $0 as the reference. In
the special case when

co
g,,(x;p, (p;)) =g&, ,„„,(x;(p;)),

so that

co
sy, (p, (p;)) =sy, ...,.t(p; ),

it represents the exact VPT results for the potentials P~.

using $0 as the reference potential. The equations of state
are given by the excess free energy

fy,
' '(P p}= ,'P I d. xgp', (x;p—,[p;,j', '(P,p)J).

XP, (x gp'")

By the definitions above we may characterize the result by

fy,''(P, p, (p;))=fp''(P, ,p, (p; ))

+p[u y' ' (p (p ) )—u p', '(p (p ) )]

(18)

with the variational conditions

df J J

0=

g g~o' 0
J P c 'mt o, co+P [u&" '(p, (p;))—u&" '(p, (p, ))] . (19)

In the special case when the solution to Eqs. (15) (which is
assumed to be known} also satisfies

u~' '(p, (p;)}=up' '(p, (p;))

the result is then

(20)

p p(p, p)=u;p, '(p, p),

and the VPT and c&-MHNC results are identical:

fp,''(P, p)=fp' '(P,p) . . (21)

Since the (co,go)-MHNC result is assumed to be available,
then, in such a special case as above, the given functions

o~o
p;~ '(p, p) provide a local criterion for the c~-MHNC

scheme. The local conditions may also be applied via (20};
namely, at any given P,p vary the parameters (p;) until

X gy X~ ~p, pI.

—g~'(x;p, (p;))]P,(x/p' ')=0. (22)

All MHNC scheme results for potentials P that employ
the same 8(x;(p;)), and that obey (17) and (20), are said

to belong to the same (8,s~')-VPT class generated by the

potential Po. The main class property is that the VPT re-
sult for any PJ. of the class provides a local criterion via
Eq. (20) and fully determines the equation of state by (21).

Two special types of generating potentials should be
especially noted: (1) $0 is an inverse power potential, and
(2) $0 is the potential for which the employed bridge func-
tions is the exact one, i.e.,

+so, (p [p,j', '(»p)j). (16)
8(x;(p;))=8~,,,...&(x;(p;)) .

where, in view of (14), this also holds for PJ =$0, where

&o o o
p;, ~, (p,p) —=p;,~,(p,p) .

Consider now the MHNC scheme CJ for some potential

PJ using the above 8(x;(p;)) and the conditions

In both of the above cases there is no explicit density
~o ~o

dependence in g~ or s~, and the VPT functional for any

potential P takes the form

f~' '(Pp, (p;))= ,'P f dxg~', (x;(p;))—P(xlp' ')

(p, (p;))=s~', (p, (p; )) . .

+sp'(p;) .

In view of the variational property

(23)
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&o,cp

=0,

we find that the pressure for any potential of the class is
cp

given by the virial expression with g~ .

PP dfy—1=
p . dp

Combining Eqs. (30) and (32) we obtain the equation of
state P'"(P,p). If the potentials P),P2 and a linear com-
bination of the two, a)P)+a2$2 all belong to the same
VPT-class, as above, then by definition

p, cp p, co
u + p (p, s, Ip; j')=a)up, (p, s, I)M; j')

+a2u ~' '(p, s, Ip; j ') . (33)

0' 0

Bp

0' 0

P(p) ~
()p ()p.

Using Eqs. (26)—(32) we see that, as long as the

)Lt;~ (p,s), i =2,3, . . . are independent of P, the equation
of state with p and s as the independent variables is given
in terms of these for P) and P2 by a linear combination:

&o 'o

Bp p

= ——f dx gp', (x;(p;)), P', i3 . (24)

0' 0

=0,
Bs

or, in other notation,

0' 0

=0, i=23, . . .
~P;

ut' '(p, s, t p; j')

up' '(p, s, I)M;j')=0, i =2,3, . . . .
Ps

(29)

Equations (29) determine the )u, ;~ '(p, s) for i =2, 3, . . .
that, when inserted in (28), yield

13=13~(p,s, [p;~ '(p, s)])=13~(p,s) . — (30)

The pressure is obtained from

up' '(p, s, [p; j')
Bp s, I pt. I'

Introduce the variable s by the equation

s =sp', (p, ()M;))

and use this equation to replace one of the parameters p;,
for example p&, by s. Denote the set Ip; ~i =2,3, . . . j by

Pp, cp
Ip; j'. The free-energy functional f~ takes the form

fp (P p, s, jp; j')

= —,'13 f dxg~'(x;p, s, I )ju')P( /xp'i )+s

—=Pu p' '(p, s, Ip; j ')+s (26)

while the variational conditions (15) take the form

P ~ + & (p, s) =a)P~ (p, s)+a2P~, (p, s) .

&o'oIn the general case we cannot expect the )M;~ (p, s) to be
independent of P, so that the class property of "additivity
of equations of state" [Eqs. (34) and (35)] may be associat-
ed with VPT classes for one pavamete-r bridge functions.

We have described above several strong class properties
of VPT classes. Yet, in the strict formal sense, a VPT
class generated by a potential $0 with MHNC conditions

given by s~'(p, Itu; j ) may consist of only the potential $0
itself. We may enlarge, however, the number of members
(i.e., potentials) in the class by allowing the following ap-
proximation [instead of (17)]:

Is/(p Ii j)—sy'(p, IS;j) I
&

I

~s

with the number and types of potentials in the class de-
pending on p0 and M ~. Indeed, the main point to be
demonstrated in Sec. IV is that with

i
M

i
being the sta-

tistical error of present day simulation results, a large
body of "physical" potentials are in the same VPT class,
appropriate to soft potentials, which may be generated by
any member of the class, while the hard spheres are dis-
tinctly different in this sense. Bearing in mind the class
properties described above, the results of Sec. IV provide
the needed local conditions mentioned in the introduction.

IV. UPY RESULTS AND VPT CLASSES

As already stated in the Introduction, the UPY approxi-
mation provides a very accurate description of the pair
structure and thermodynamic properties for a wide class
of simple potentials by employing a universal one-
parameter bridge function Bpv(x;ri). The UPY results
are within the statistical error of the simulations. Follow-
ing the discussion of the preceding section, we would like
to find out whether the excess-entropy dependence of the
UPY parameter for different potentials, namely, g~(p, s),
does indeed divide the space of potentials into VPT
classes. Present day computer simulation accuracy is gen-
erally characterized by

Py(p, s, Ipi j ) 1—
P

so that the excess pressure is given by

P'"=Pp(p, s, [p; ~ '(p, s)'])=Pf(p, s) .

(31)

(32)

i &n& i/rt&&2% . (37)

Analysis of various applications of perturbation theory as
well as direct VPT calculations' for various potentials
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cIQploy1ng different rcfcI'cncc potcnt1als, demonstrated
that a single one-parameter set of pair functions, go(x;s),
may provide by (26) an extremely accurate equation of
state for a wide class of relatively soft potentials. In fact,
for dense fluids one may employ the pair functions

g„,„„,(x;s) of the inverse power potentials with results
that are nearly independent of n (12. Thus, from the
equation-of-state point of view, the set of pair functions
for the soft potentials g~(x;p, s) is nearly independent of p
and P and may be represented by a single "effective" pair
function, for example, g1(x;s). We emphasize that the
hald spheres and siImlarly harsh potcntlRls arc not 1nclud-
ed in that VPT class. Qur calculations do indicate that all
soft inverse power potentials (n (12) as well as Lennard-
Jones states outside the two-phase (liquid-gas) region, be-

long to the same VPT class that may be generated by each
member of the class. Conclusions similar to those for the
Lennard-Jones potential are reached for the exp —6 poten-
tial Ae " Br .—This variety of potentials found to be
in the same VPT class provide a strong indication that,
except for a possible two-phase region, the additivity
method as demonstrated for the Lennard-Jones system '8,9

is of general validity.
In Fig. l we plot the results of UPY calculations, ' '

1i~(s) for the following potentials: r ' (Coulomb), r
r ' (soft spheres), r " (hard spheres), and r '2 —r
(Lennard Jones). We see clearly on this plot the universal-

ity of 1i~(s) for soft potentials and the "jump" in potential
space from the soft line 1)„f,(s) to the hard-sphere line

„(s)in complete agreement with the picture above

regarding the VPT classes. The functions ri~(s) do indeed
divide the space of potentials into VPT classes.

It is a remarkable property of simple classical fluids
that the equation of state and the pair structure for such a
variety of potentials finally condenses into a universal line:

B~(x;p,s) =B~,(x,p,s), (40)

where $0 is a reference soft potential, yields essentially the
VPT equation of state with $0 as reference; when em-
ployed in the MHNC scheme as a, local criterion it also
yields a very accurate pair function that satisfies to a good
accuracy the compressibility sum rule.

This result also offers a better understanding of the
difference between the application of the MHNC scheme
and the RHNC method originally proposed by Lado. " In
RHNC one would separate p(r) =$0(r)+$1(r) and the (as-
sumed known) bridge function of the reference system will
be employed in Eqs. (l) and (2) at the same I3,p:

By, RHNc(x '»p) =By,(x 'P p)

which differs from (40) in complete analogy to the differ-
ence between ordinary first-order perturbation theory and
variational (i.e., optimized) first-order perturbation theory.

Another interesting feature that follows directly from
Fig. I is the "bridge" freezing criterion

ff«zllls(
) 0 (42)

which holds for both the hard spheres and the soft poten-
tials. For hard spheres sf,«„„s-5while for soft potentials
sr„„;„s-4.It is very interesting that the criterion (42)
does apply over 25% changes in excess entropy at freez-
1ng.

corresponding to a universal bridge function

B~{x;p,s) -=B'av(x; ri„f,{s)) .

We may summarize these findings by the statement that
the RpproxiIQation

0.5 0.3

,
0.2

0.l 0.l

FIG. 1. Percus-Yevick bridge function parameters g as a
function of the excess entropy s as obtained by the UPY scheme
for different potentials. The scale on the right, gHs, is defined
by Eq. (45) such that scs(gHs) reproduces the hne q(s) for hard
spheres. For the meaning of the different lines see the text.

From the analysis of preceding sections it should be
clear that the energy functional

u~' (p, ri)= —, f dxg& (x;p, 1l)p(x/p'~1)

is rather insensitive to Po, with the insensitivity being
measured by the differences in the corresponding func-
tions 1)~ (s). Let p be a soft potential and let po be any po-

tential. Consider a modified-VPT (MVPT) approximation
w1tll tile f1ee-eIlelgy fllIlctlo11al

0,UPY ~0, UPYfy, MvpT =Pup (p~ri)+sMvpT(ri) ~ (43)

where instead of s~ (1l) we may now use any entropy
function sMvpT(1i). If our interpretation of the lines 1i~(s)
is correct, we then expect, in general, that the MVPT ap-
proximation gives better results the closer s~ (1)) is to
s ~ ( ) and, independently, the closer s Mvp T (ri ) is
to s~ (1)). The following results clearly favor this inter-

p tt'
The "canonical" VPT calculations in the literature'

employ Eq. (43), using the PY pair functions, gpv(x;1))
and the Carnahan-Starling (CS) expression for the entropy
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4 —3
scs(rl) = (44)

(1—g)
Note that throughout this paper g is the parameter name
for the UPY bridge parameter. As shown in the Appen-
dix,

UPY UPY
gPY(x, '9) =g PY ~ (x 9), scs('9) —s PY»('9) ~

so that the canonical VPT calculations above essentially
represent VPT calculations with a "PY" reference system.
These results generally improve upon VPT calculations
that employ scs(g) with gHs(x;g), namely, the hard
spheres of packing fraction g=(II/6)pd as the reference.
This result is in agreement with our MVPT interpretation
of the hierarchy

g orat(s) & pcs(s) & g „(s).

locally only to within the VPT accuracy for P using $0 as
reference, which is a high accuracy if both are soft poten-
tials. In view of (24) and since in most cases both ttt(r)
and rP'(r) are in the same VPT class, we expect the
virial-energy consistency to be obeyed for MHNC calcula-
tions with the VPT local criterion.

It is possible, however, to obtain local MHNC criteria,
by imposing the virial-energy consistency, that allow a lo-
cal evaluation of the entropy function without further ap-
proximations.

Consider again the general MHNC free-energy func-
tional [Eqs. (6)—(9)]. The variation of f due to general
variations of the structural properties g and B is given by

5f= —,
' f dx[P(x/p'~ ) —h(x)+lng(x)]5g(x)

5h (k) ——, f d x B(x)5g (x )

Note that the UPY results for hard sphere as obtained by
Tsai4 yield

„(s)=[0.982 913—0.022 71gcs+0.02449gicsi ]3 .
'Pcs(s)

(45)

——,
' f d x g (x )5B(x )

+ —,
' f dP' f dx 5g(x), +g5 (48)

Moreover, one finds that, in practice, using gPY(x;g) in
(43) together with the "virial" expression for the entropy,

s„;„,i(g)=6 —1 +21n(1 —r))
1

1—T1
(46)

one improves' ' upon the results using scs(g) in agree-
ment with

]soft(s) & Qvirial(s) & PCS(

Finally, Ross has fitted the Monte Carlo data for the
r ' potential by a VPT functional that employs gpY(x, 7/)
together with

Using Eq. (2) and Parcival's theorem, the second term in
(48) becomes

——,
' f dxc(x)5g(x),

so that in view of Eq. (1) the sum of the first three terms
in (48) vanishes, to yield

5f = —,
' f dx f dP' 5g, +g, —g5B . (49)

dB d5B

Integrating by parts the second term in the square
parentheses in (49) we obtain

5f= —, f dx f dP' 5g, 5B—(50)
SRoss(v1) =scs(9)— +'9 +

2 2

and, using (47) and gPY(x, ri) in (43), he also obtained ex-
cellent results for other soft potentials. Again, in agree-
ment with our MVPT interpretation of Fig. 1, we see that
SRoss(g) fits s„rt(ri) to within the simulation accuracy.
In view of the Appendix we may thus interpret the
bootstraping approach of Ross as the optimized MVPT
with the "PY"potential as reference.

VI. A LOCAL MHNC CRITERION BASED
ON "VIRIAL-ENERGY" CONSISTENCY

So far we considered rather general characteristics of
the MHNC scheme, and discussed in particular the UPY
results. The UPY criterion (i.e., virial-compressibility
consistency) is nonlocal, but the demonstrated relation be-
tween the universality of g(s) and the VPT classes enables
us to use a local criterion once the UPY results for one
soft potential are available. The VPT local criterion,
namely, Eq. (22), is based on comparison of "energy" in-
tegrals. By this method the entropy functional is obtained

+ 5f dB
5B p~ dp

Using (50) we finally get

(51)

+5I', E,

(52)

where the first term on the right-hand side of (52) is the

The pressure as obtained from f by the usual thermo-
dynamic relation,

r

I3P
1

df
p '.dp ..

which is the MHNC energy equation of state, reads [from
(7)]

r

df 5f dP 5f dg
P =P +

dp p 5$ p ~ dp 5g p~~ dp
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virial expression for the pressure, and 6P, E represents the
deviations from the virial-energy consistency, given by

T

f~dp f d dg dB dB dg (53)
dp dP'

The exact bridge function is a functional of the exact pair
function [Eq. (3)] so that

dg 58 dg 58 dg dB
dP' 5g dP' 5g dP' dP'

and the integrands in the expressions for pf and 5P„E
vanish identically:

(5f)g, exact 0 ) (5 v, E)f,exact

Ultimately, if we push the MHNC parametrization effort
to such an extent that we are close to the exact result, then
we expect that relation (3) will be closely obeyed in the
sense

8«{S })—=~[g(xV»{~ })] (56)

and one possible way to take this relation into considera-
tion is by imposing 5f =0, 5P, E ——0 for variations in g
and 8 caused by changes in the values of the fitting pa-
rameters {p,;} in B. Expression (49) with 8( x{p;j) and
with g replaced by any functional of 8, G[8 (x, {p; })],
vanishes identically [e.g. , (55)]. Thus, we may rewrite the
variation of f due to variations in the lM;, 5f(„),in the

form

5f(„,) = —,
' f dp'5 f dx(g —G)

——,
' f dx(g —G)58 .

The corresponding result for (5P„E)(z )
reads:

)'

(5P ), = —' dP'
v, E (lx)) 2 ll p

5f{V; j
+p

p p

dB(x;{p;})
fp, ) dp

(58)

If G is a functional of 8, with no explicit density depen-
dence, then the general criterion for (57) and (58) to vanish
1S

f dx(gp(x;Pp, {p;})—G[8(x;{ltt;j)])58(x;{p;})=0

(59)

or equivalently

dx gpx;, p, p;

t)8 (x;{p; })—G [8(x;{p;})]) =0,
Bpj

j=1,2, 3, . . . . (60)

In particular, 6 may be any MHNC scheme result for an
inverse power potential, G =g„'(x,{lM; }), or the exact pair
function corresponding to the given bridge function,

G =g~,„„t(X,{I,}),
whereB=8~ exa«(x){p;j).

Since no exact 2D or 3D bridge function is available at
present for any potential, a special role is played in this
context by the UPY results for the inverse power poten-
tials and the "PY" system (as defined in the Appendix):

t38pY(x;rj)f [g~(x;P p, rj) g~—, (x;rI)] dx=0. (61)

f dp
BY/ f d ( )

l f"d )f d~ UPY BB x'
'g xgn (x;g, )0

that is,

nonlocal
( ) UPY(

)
UPY, local(

Sy

In other words, once we use (61) to obtain q~(p, p), we
may obtain the excess entropy for this type of MHNC
scheme by a local calculation. For a many-parameter
bridge function the analogues of (61) and (62) are

aB(x;{~,j)f dx[gp(x, P,p, {p;j)—g„'(x;{p;j)] =0,
~P;

i =1,2, 3, . . . (63)

s~'"' (p {IJ j ) =s„'({p; } ) —s„"""({p; j ) .

When fitting a given pair function obtained by a simula-
tion, g~ „(x,p,p), this same function provides a self-
consistent choice for a bias function, and the local condi-
tion (61) takes the form

Jl ——f dx[gp(x;P, p, {ltt; })—g~ „(x;P,p)]

t)8 (X; {lM; }) =0, i =1,2, . . . .
t)lmi

(65)

Equation (65) may also be derived from the following con-
siderations. Applying the Gibbs-Bogoliubov inequality to

Obviously, the more similar P is to P„rthe better will be
the results obtained by the conditions (61), since then

g~ (x, r)) provides a better choice of a "bias" function.

The criterion (61) may be applied in fitting simulation
data and (in a perturbative context) as a local criterion in
the MHNC scheme.

For example, if the UPY result for a given inverse
power potential is available, g„(x,g), then when em-
ploying BPY(x,g) for a potential p we use (61) with

gq, (X,g) =g UPY(x, g) .

Note, however, that in view of (61) the last (and local)
term in (8) [given in (9)] takes the form

, ag, dBPY(x'rj)
—,
' f dp', f dxg~(x;p, rj)
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X[8(x;p; p(P, p)) B(—x;p p(/3, p))] . (66)

Taking the view that g~ „.is well represented by
8 (x, {p; j ) we expect our fit to give, at its worst, only
slightly displaced values of the "correct" fitting parame-

ters. Thus, we replace g&' in (66) by g&„,while the
difference in the bridge functions is expanded to first or-
der:

C2
C2 C) BB

B(x;{p;~j)—8(x;{p;~j)=g 5p; . (67)
Bp

The criterion (65) just minimizes the right-hand side of
(66) for these first-order variations in the p;.

The criterion (61) has been originally derived by Lado'
in a purely perturbative context, which in our notations
proceeds as follows. Assume that a reference system is
known exactly, that is, for $0 we have both

g~, ,„„t(x;{p;j)and 8&, ,„„t(x,{p;j), and thus also

S~, ,„„t({p; j ). Assume next that

Bpo, exact(x~ {Pi j ) p&, exact(x~ {Pij )

(i.e., universality of the bridge functions ), and thus em-
ploy 8~,„,«(x {p; j ) in a MHNC scheme for the potential

Consider the MHNC free-energy functional (7) [using
(6) and (8)], and make the second approximation so that
the last (nonlocal) term in (8) may be replaced by the cor-
responding term for $0, i.e.,

nonlocal nonlocal
(68)

[which should be compared with (64)]. Minimizing the
functional with respect to the p s, taking into account
(68), Lado obtains Eq. (68) with g~,„„t(x,{p;j ) replacing
our gy f(x, {P;j ).

Lado considered only exact bridge functions, and did
not mention at all the application of (61) in the fitting
context (namely, for inverting structure factor data to ob-
tain potentials). Indeed, his application of the method to
the Coulomb potential is made using gf v (x,q ) and
Bpv(x, r1) which should be properly interpreted in the con-
text of our derivation of Eq. (61). Lado's results for the
Coulomb potential, using essentially the UPY result for
the "PY" potential as reference, represents a special type
of a variational perturbation theory, and the expected ac-
curacy of the results for other systems may be inferred
from our Fig. 1 and Sec. V. In view of the accurate re-
sults that Lado obtained with the "PY" reference, we may
expect the corresponding results with g„(x,g), n (12,
to yield essentially the exact UPY result for any soft (i.e.,
"realistic" ) potential.

two MHNC solutions for a given potential, the following
approximate inequality is obtained:

0 & f d x[g~'(x;p, p ~(P,p) )

—g&'(x;p, p ~(P,p))]

VII. SUMMARY AND IMPLICATIONS
OF THE PRESENT WORK

Featuring the MHNC scheme as a variational fitting
procedure we considered the characteristics of the VPT
classes. We observed that to within the accuracy of
present day simulation studies, all soft (i.e., "physical" )
potentials and, in particular, the relatively soft inverse
power potentials are in the same class, a picture that
agrees with the universality of the line g(s) as found for
the UPY MHNC results. "Additivity of equations of
state" and accurate local evaluation of the excess entropies
[i.e., local evaluation of g in view of the universality of
ri(s)] then follow as class properties. An alternative local
condition for the MHNC scheme, originally due to
Lado, ' has been rederived and extended and, when con-
sidered in view of the MVPT and Fig. 1, is expected to
provide an accurate local MHNC condition especially if
UPY results for a soft potential are employed as reference.
The jump in potential space from "hard" to "soft"
behavior is graphically demonstrated by the lines

„(s)and g„ft(s)in Fig. l.
The existence of accurate local MHNC conditions as

described above enables us to solve the "inverse" problem
(namely, of obtaining the pair potential from the given
pair function) with the same accuracy as obtained for the
"direct" problem (namely, of obtaining the pair structure
from the given pair potential), both under the assumption
of universality of the bridge functions. In principle, the
procedure is as follows: Let g,„zt(r)be the pair function at
given P,p for the (yet unknown) pair potential P,„~t(r). (i)
Use Eqs. (1) and (2) to obtain the sum

NHNc(x) 0 pt(x)+Bpv(x lo)

where now go becomes the required quantity. (ii) Calcu-
late the moments

(x —')= —,
' f g,„„(x)x-'dx,

and for each I use the known equation of state for the cor-
responding inverse power potential to solve for s the equa-
tions

f [g,„pt(x)—g, (x,s)]x -'d x =O .

(iii) Choose the maximum value for s thus obtained,
s =s corresponding to l =m. It is expected that s will be
nearly independent of 1. (iv) At this stage there are two
possibilities of comparable accuracy to obtain go. (a) Use
the line gacft(s) of Fig. 1 to calculate go ——riacft(s~). (b)
Use the UPY representation for the potential r and
find go as the solution to the equation

BBpv(x;ri)
ge„pg x —g~ x;YJ dx=0 . 69

ave

The practical application of these procedures which en-
counters the usual difficulty of having g,„~t(r)(in the case
of simulation study) or s,„~t(k)(in the case of experimen-
tal structure factor data) only over a limited region in r or
in k, thus involving the problem of the tail r &r,„or
k &km», and the small k region, will be discussed else-
where.
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In analogy to the MVPT approach of Sec. V one may
wish to use the analytic PY hard-sphere results and in-
stead of (62) make the approximation

BBpv(x, I/')
sy

+
(p, I/)= T~ f df/ f dxgpv(x I/ )

(70)

where the function b, (I/) is analogous to the Ross correc-
tion. The variational condition now becomes

Mpv(x; I/}
[g/, (x;P,P, /l) —g (x;I/)] d x+5(I/)

I/

where h(I/) is universal for the soft potentials and a choice
that fits well the UPY results is give~ by
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APPENDIX A: MHNC INTERPRETATION
OF THE PERCUS-VEVICK APPROXIMATION

FOR HARB SPHERES

The MHNC equations [Eq. (1) and (2)] for the pair po-
tential P{r) are equivalent to the HNC equations for an ef-
fective potential

P(r)+ —8(x, Ip; J ),
where 8 is the bridge function. The PY equation for hard
spheres is equivalent to the HNC equation for the poten-
tial

~b'V(I/} =I/
J COmP ~ I Viria]

(72)

1
PHS(»+ —&pv(» k»

where

(73)
with a small jump from the soft [Eq. (72)] to the hard-
sphere (HS) behavior, given by

~Upv(I/) =I/Hs Pp I3I' po .
CS ~ ) vinaI

Use of the Verlet-Weis' and Henderson-Grundke"
parametrizations for the hard-sphere structure functions
with a MHNC criterion

(74)

BBHS(x;I/)
I gy(x '13 P n) gHs{x 'I/)]-

df/

is essentially equivalent to the use of {71)with 4 given by
(74). It thus improves'9 upon results' based on (71) with
b, =0, by "going" part of the way along (71) and (72).
Systematic UPY calculations for a reasonably wide
"basis" set of pair potentials, needed for constructing
equations of state for real materials, will provide the basic
set of data needed in order to take full advantage of the
Glcthods discussed ln th1s paper~ and, at thc saQ1c tlHlc, by
comparing the functions I/~(s), direct assessment of their
accuracy will be further possible.

Finally, ldcas RIld forIllallsIIls employed llcrc may bc
generalized to mixtures, e.g., in the spirit of the MVPT
one expects to obtain improved results for mixtures by
employing the PY pair functions with the corresponding
virial excess entropy, sp~ „;„,~, to first order the cntx'opy
functional may be further coxrected via

[see (A8) and (A9)]. The details of the analysis leading to
this result will be given separately. In the context of the

1nvcI'sc problcIQ above 1t leads to a siIDplc alternative to
(69), namely,

BBpv (x;I/)
I lgss r(x}—gpv{x~I/}] dx+~Upv(I/}=0 ~CXP

{/iHS(x)+ —Bpv{x,I/(g) ),

I/„(g)f/=(0. 982913—0.02271/+0. 02449/ }' .

Regarding the solution to the PY equation for hard
spheres as the exact UPY. result for some potential (denot-
ed the "PY"potential) upv(r) with a corresponding bridge
function 8@v{x,I/-pv (g')), we have the following equa-
tion:

1 - = 1
upv(r)+ Bpv(x;I/pv(g))—=uHS(r)+ —Bpv(x;g), (Al)

where l/pv(g) is the bridge parameter for the PY potential.
Denoting

b (x;g) =Bpv(x;g) —Bpv(x; I/pv(g) ) (A2)

we see that the PY potential is explicitly a density and
temperature-dependent potential:

upv(x;g) = UHS(x)+ —b(x;g') .1

is the packing fraction for hard spheres of diameters d at
density p. The solution to that equation is gpv(x, g), usu-

ally considered as a good approx1IIlation to thc exact
hard-sphere pair function gHS,„„,(x,g). The UPY ap-
pl'ox1111atloll for tllc hard-sphere po'tclltlal ls obtalllcd by
the solution of the HNC equation for the potential

'"=SPV",virisi+Saoss('9} SPV,virisl{ /) ~

by adjusting to SR„,(q) in the one-component lirnlt. The
mixture problem will bc considered separately.

The PY excess free energy is given by

fpv=spv+ 2 f gpv(x~4)b(x~0)dx ~ (A4)
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where sPY is the excess entropy.
Using the Gibbs-Bogoliubov inequality we have pp pp

PY ~ vmal

0 & spY sHS(N)

(—, f [gHs(x;g) —gpY(x;g)jb(x;g)dx . (A5)

Specifying the density, i.e., the parameter g in b (x,g), the
pressure of the PY potential is given by the virial

——, f gpY(x;g)x ' d x .1 Bb (x;g)
(A6)

But the compressibility as obtained from the PY approxi-
mation for hard spheres via c(r) corresponds to the case
where the potential b( xg) is density independent. The
UPY consistency thus takes the form

, comp

~B PP

comp
f gpY(x ~g)x dx1 Bb (x;g)

X

PP B PP+
virial & i virial

p t)gpY x~k) tabb(x;g)
d

Bg Bx (A7)

where

pp

and

pp

virial

1+2/+3)'
(1—g)'

(A8)
SHS(g) =SCS(g)

4g —3g
(1—g)'

we obtain from (A5) the following:

2 gPY + ~ ~ + ~ +Scomp SCS

) —, f gHs( xg)b( xg) dx .

(A12)

(A13)

pp

PY

pp

PY

where (pPlp)PY is the expression (A6). This approxima-
tion yields

~'

pp pp

so that

comp

(A10)

Representing the hard-sphere entropy by the Carnahan-
Starling expression,

comp

Instead of exactly solving Eq. (17) we note that to a good
approximation the right-hand side of (17) is equal to

PY(k)=scs(k) . (A14)

Thus, the VPT calculation employing gPY(x, g) and
scs(g), which is usually considered as representing an ap-
proximate VPT calculation with the hard spheres as refer-
ence, is in fact much closer to representing a "PY" poten-
tial as reference. In view of this, the reason for employings„;„,l(g) instead of scs(g) in order to imProve the VPT re-
sults cannot be explained by consistency considerations, '
but may be interpreted by the MVPT (Sec. V), namely, by
the finding that

soft(9) SPY('rI) &S„-('g) .

Estimates of SPY(g) based on (A13) agree with those based
on (A7) and yield

4—SPY(g) &(g—g„(g).
From (A13) and (A4) we also have
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