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Decay of the direct correlation function in linear lattice systems
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The direct correlation function of the one-dimensional lattice-gas (Ising) model with nearest-
neighbor and next-nearest-neighbor interactions is calculated exactly. It is shown that, depending
on the strengths and signs of the coupling constants, the direct correlation function can either have
a finite range equal to that of the interactions, or decay exponentially in a monotonic or oscillatory
fashion. At the critical point, which occurs at zero temperature, the direct correlation function is
found in all cases to have exactly the range of the interactions, while its values become unbounded;
this is in contrast to earlier nonrigorous results. The second moment of the direct correlation func-
tion is found to diverge at the critical point, in the neighborhood of which it becomes proportional
to the correlation length of the density (spin) fluctuations, confirming a prediction of scaling theory
in one dimension.

I. INTRODUCTION

The direct correlation function, introduced by Ornstein
and Zernike' in 1914 in their study of the scattering of
light by fluids near their critical point plays a central role
in the statistical mechanics of both uniform " and
nonuniform ' ' classical systems.

The motivation for introducing the direct correlation
function was to describe the long-ranged density fluctua-
tions of a near-critical fluid in terms of correlations
which, like the molecular interactions themselves, would
remain short ranged in the critical region.

Ornstein and Zernike originally assumed that at the
critical point of a three-dimensional fluid the Fourier
transform of the direct correlation function is analytic at
the origin, which amounts to assuming that in real space,
the direct correlation function is a bounded function
which is either of finite range or decays exponentially.

That such a property of the direct correlation function
cannot hold in general was established by the exact results
for the pair correlation function of the two-dimensional
lattice-gas (Ising) model with nearest-neighbor interac-
tions, which imply that at the critical point, the Fourier
transform of the direct correlation function is not analytic
at the origin, although the precise nature of the asymptot-
ic decay in real space of the direct correlation function of
that model is not known.

In a series of studies of one-dimensional lattice or con-
tinuum models with nearest-neighbor interactions,
Percus has shown that the direct correlation function has
always exactly the range of the interactions. Similar exact
results hold for the spherical model and the ideal Bose gas
in any number of dimensions ' and, as is well known, for
the one-dimensional fluid of hard rods. ' Their validity
has recently been extended by Percus to Baxter's model of
sticky hard rods.

In this paper we study the decay properties of the direct
correlation function of a somewhat more complex linear
system, the one-dimensional lattice-gas (Ising) model with
both nearest- and next-nearest-neighbor interactions.

In Sec. II, we present the results of the calculation of

the pair correlation function of the model. In Sec. III, the
expression of the pair correlation function obtained in Sec.
II is used to calculate the direct correlation function. The
decay properties of the direct correlation function are
determined in Sec. IV in terms of the nearest- and next-
nearest-neighbor interactions and of the temperature. In
Sec. V, we analyze the critical behavior of the direct corre-
lation function and that of its second moment. Section VI
concludes this paper with a summary and a discussion of
the results.

II. PAIR CORRELATION FUNCTION

with periodic boundary conditions sk+z=—sk for all k.
The corresponding pair correlation function is

—U~( Is) )/k~ T
sosne

b'av( n )= (sI
—Uii(fs))/k~ T

(s)

n&0

It is straightforward, although lengthy, to calculate, us-

ing the transfer-matrix method, the exact expression of
the pair correlation function of the one-dimensional
lattice-gas (Ising) model with nearest- and next-nearest-
neighbor interactions. Since this calculation had already
been carried out by Stephenson, "we shall not present our
detailed calculations but only quote the final result.

In the Ising transcription of the lattice gas we have
spins +1 located at the lattice sites. %e shall denote by J~
and J2 the interaction energies between a pair of nearest-
neighbor spins and a pair of next-nearest-neighbor spins,
respectively, and by h(

~

n
~

) the pair correlation function
between spins 1ocated at sites an integer distance

~
n

i
[n EZ, the set of all (positive and negative) integers,

including 0] apart.
The interaction energy Uiv for a configuration Is J of N

spins s~, . . . , s& is

N N

Ux( Is I ) J1 g sisi+1+ J2 g sisi+2
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At the thermodynamic limit we find

h(q)=h(0)+ g e'e"(ae ' +13e ' ),
nFZ
@+0

(3.4)

h(
~

II
~

)= lim hN(
~

II
~

)

=ae ' +Pe ', )n )@0

~I ———ln(p+ /A, ),
aI ———ln(p /A, ),
a = —,

' (1+e),

(2.1)

where the term h(0) =h (
~

0
~

)=h (n =0) has been separat-
ed froIn tllc slllll.

h(
)

II
~

) is related to the distribution function g(
~

n
~

)

by h(
~

n
~

) =g(
~

n
~

)—1, and g(n) is proportional to the
probability of finding the spin at site n in a given state
given that the spin at the origin is in that same state. But
in tI]Ie Ising model tao spins cannot lie on the same lattice
site, so that g(0) =g(

~
0

~
)
—=g(n =0)=0 and therefore

h (0)=g(0)—1=—1.
The sums in (3.4) are readily carried out with the result

Kj

h(q) = —1+2a —2e cosg + I

where, in terms of the dimensionless coupling constants

g )=J)/kIITand /2= J2/kII—T,

A, =e '[cosh/&+(sinh g, +e ')'~ ],
p+ ——e '[sinhg I+(cosh2g I

—e ') '~ ], (2.3)

K2
e cosq —1

2K2 K2—28 cosQ'+ 1

where we have used h(0) =—1.'

Inserting (3.5) into (3.3) gives

{3.5)

(3.6)

sinh(2/~ )

2 [(sinh g I+e ')(cosh g I
—e ')]'

The direct correlation function c(
~

n
~

) is defined in

terms of the pair correlation function h(
~
n

~
) by the

relation

h{ III
I
)=«

I
&

I )+ 2 g h{ In —II'I )« I&'I )

Relation (3.1) is the discrete version of the more fami-
lIar QrnsteIn-Zermke relation appropnate to spatj. aHy unI-

form continuous systems

h{
I

&
I )=«

I
&

I )+a I h{
I

& —&'l )«
I
&'I )«'

with

a I ———e ' ' —(1+2p)e ' —(1+2a)e

—1 —2(a+P),

b I ——2(1+a)e ' '+2(1+p)e

+2( 1+a+2P)e '+2( 1+P+2a)e ',
el ———4(1+a+p)e '

aI ——e ' '+ (1—2p)e '+ ( 1 —2a)e '—1,
bl 2(a —1)e ' ——'+2{13 1)e-

+2(a+2P —1)e '~2(2a+P —1)e ',
cl ——4( 1 —a —P)e '

(3.7)

where
~

r
~

denotes the distance between two particles
separated bg the vector I' and p is the average density. The
factor —, appearing in the right-hand side of (3.1) is the

density p of the lattice gas in the absence of an external
field, in which a particle is present or absent in a given
cell with an equal probability of —,. Defining the discrete
Fourier transforms

h(q) = g h(
~

n
~

)e''I"

These expressions can be rewritten by using the fact
that a =1—P, which follows from (2.2). We find

a I
———e ' ' —(1+2p)e ' —(3—2p)e '—3,

b I ——2(2—p)e ' '+2( 1+p)e

+2(2+0)e '+2(3 —P)e ',

c(q)= g c( [
n

J

)e'~",

(3.2) '+(1—2P)(e ' —e ') —1,
bl = 2pe ' '+2(p 1—)e—(3.8)

relation (3.1) becomes

c(q)=- 2h (q)

2+h(q)
Using expression (2.1) for h (

~

n
~

) gives for h (q)

(3.3)

+2Pe '+2(1 —P)e ',

so that (3.6) reduces to
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a~+b~cosq+c~cos qc(q)=2
Q2+ b2cosq

(3 9) I, [PP++(1 P—)P ] =I +I [PP +(1 P—)P+] (4.3)

with a i, bi, ci, a2, and b2 given by (3.8).
We remark that in (3.9) the numerator cannot be a mul-

tiple of the denominator because this would turn c(q) into
the form a'i +b i cosq, and would imply

x (x 2 1)1/2[ x 2(x 2 1)+y( 1 y )

Using the expressions for A, , p+, and p given by (2.2)
and (2.3}, we find that (4.3} can be rewritten, after some
algebra, as

Q ) +6) cosq
h(q) =2

2 —a
&
—b'I cosq

—(x —y )
'~ ][x + (x —1+y ) '~2] =0, (4.4)

where we have introduced

which is incompatible with (3.5) when +i and g2 are
nonzero.

x =—cosh/ i (4.5)

IV. ASYMPTOTIC DECAY

It is apparent from expression (3.9) for c(q) that the de-
cay properties of the direct correlation function c(

~

n
~

}
for

~

n
~

~ oo will be determined by the nature of the root
of the equation

a2+b2cosq =0, (4.1)

a2

C) C)
a ) + +b]cosq+ cos2q

2 2
(4.2)

viewed as a function of the complex variable q, c(q) is
then an entire function and comparison of (4.2) with (3.2)
shows that c(

)
n

)
) =0 for

(
n

( & 2. Because c(
(

n
(

) can-
not vanish for

~

n
~

& 2 when T is finite (see remark at the
end of Sec. III), it then follows that c(

~
n

~
) has exactly

the range of the interactions.
If, on the other hand, there are no real values of the

coupling constants Ji, J2 and of the temperature T such
that b2 ——b2(Ji, J2, T) vanishes, then c(q), viewed as a
function of the complex variable q, has a pole given by the
root of (4.1) and c(

~

n
~

) will no longer vanish identically
for ~n~ &2.

The remainder of this section is devoted to the discus-
sion of these two cases bz ——0 and b2&0.

A. Cajse b2(J»J»T)=0

In order to discuss the equation b2 ——0 in terms of the
couplings Ji and J2 and of the temperature T, we first
rewrite b2 as given in (3.8) by using the expressions for Ki

and Kz as given in (2.2). The equation b2 ——0 then becomes

A,
2

1 1P, +(P——1), +P +(1—P)
p+p p p+ p+ p

which can be reexpressed as

where a2 and b2 are defined in (3.8). According to (3.8),
a2 and b2 are functions of Ki, Kz, and p, and these are all,
in turn, because of (2.2) and (2.3), functions of Ji, J2, and
T. We will find it more convenient to view a2 and b2 as
functions of Ji, J2, and T rather than as functions of «i,
K2, and p.

If there are values of the couplings Ji and J2 and of the
temperature T which are real and are such that the term
b2 ——b2(Ji, Jq, T) vanishes, then (3.9) will become

c(q)= (ai+b, cosq+c, cos q)=2 2

that is, to

x'(x —2) =y(y —2) .

The only solution of (4.6) is

2x =y,

(4.6)

(4.7)

since the equations x =y —2 and x —2=y are incompa-
tib1e.

With (4.5), result (4.7) reads
—2gcosh/, =e

or, equivalently,

cosh(Ji IkII T)=e (4.8)

For a given finite nonzero value of the temperature T, this
equation will admit a solution Ji in terms of J2 (or vice
versa), provided that Ji and J2 satisfy 0& J2 & ——,

'
~
Ji ~.

Alternatively, and perhaps more naturally, Eq. (4.8) can
be viewed as an equation for T, given Ji and J2.

It remains to determine the behavior of the other terms
a i, bi, b2, and aq of c(q) [see (4.2)] when condition (4.8) is
met.

We first note that when (4.8) holds, we have, according
to (2.3),

Slnhg i
P+ =P—=

(

and it follows, using (2.2), that

[cosh(2/ i )]'

«i ——K2=«=ln cosh/ i+
sinhg i

With (4.9), we then find from (3.8) that

(4.9)

a i =a i (Ki =Ic2 =K)= —e "—4e "—3,
b i

=bi�

(Ki ——«2 ——«) =2e "(3e "+5),
c i —=ci(Ki =Ic2=lc) = —8e 2a

(4.10)

so that the numerator of c(q) is well behaved when (4.8)
holds.

y=e

Observing that x ~0, and discarding the solution x =1
which corresponds to g i ——0, i.e., to T=+ ac, we see that
Eq. (4.4) is equivalent to

[x (x —1)+y(1—y)]'~ —(x —y)'~2=0,
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Concerning the term az =az(a., =az ——~), we must
evaluate [see (3.8)]

az ——lim [e ' '+(1—2P)(e ' —e ') —1]

=e4"—1+ lim [(1—2P)(e ' —e ')] .

As ir i —+sz, cosh/ i
—e ~0, so tlia't p~ oo [see

(2.3)] and e ' —e '~0, and, consequently, a z appears in-

determinate. But we have, using (2.2) and (2.3),

(coshzg, —e '~')'"

+2 cosh/, [cosh(2/i)]'~ I .

We have therefore found that when the couplings
J1, J2, and the temperature T are related to each other by
Eq. (4.8), the Fourier transform c(q) assumes the form

C1 C1
c(q)=, a i + +b i cosq+ cos(2q)

Q2 2
(4.12)

with a i, b i, c i, and a z given by (4.10) and (4.11).
Equations (4.10) and (4.11) show that all coefficients

appearing in (4.12) are nonzero so that, comparing (4.12)
with (3.2), we have shown that if condition (4.8) holds,
then

c(
i
n

i
)=0 for all

i
n

i )2

c( (n ))&0 for (n )
=0, 1, and 2. (4.13)

In oth«words, the range of c is exactly that of the in-
teractions, neither longer nor shorter.

It may also be noted from (4.10) and (4.11) that

C1c(0)= „ai+
Q 2

is always negative, whereas c(1) is always positive. These
properties of c(

~

n
~

) may be compared to the results ob-
tained by Percus" for the Ising model with nearest-
neighbor couplings only, where c(0) is always negative,
whereas c(1) is always positive, just as they are here.

When condition (4.8) holds, i.e., when, for given Ji and
Jz satisfying 0&Jz ~ ——,

'
~
Ji ~, the temperature T crosses

the value T' defined by

e —e -(cosh g, —e )
2K) 2@2 2 —~&2 1/2

so that az is actually a finite constant. A detailed calcula-
tion shows that

az ——[cothg i+(1+coth +i)'~ ] —1

coth g i—4, I 3cosh /i —1

(cosh' i)'i

cosh (Ji/AT )=e

(4.14)

Consequently, c(q) has a pole at q =q*; this pole is simple
provided that

~
az/bz

~

+1.
The nature of the asymptotic decay of the direct corre-

lation function c(
~

n
~

) is determined by the location of
the pole q' in the complex plane. It follows from the
Paley-Wiener theorem that if q* has a nonzero imaginary
part, c(

~

n
( ) will decay exponentially as

~

n
~

~. Three
cases may occur.

In the first case, if q is pure imaginary, c(
~

n
~

) will
have a monotonic exponential decay, the decay length of
which is equal to 1/

~

Imq*
~

.
In the second case, if q* has both a nonzero imaginary

and a nonzero real part, c(
~

n
~

) will also decay exponen-
tially as

~

n
~

~ oo, but the exponential tail will exhibit os-
cillations.

Finally, if q' is pure real, i.e., if c(q) has a pole in the
interval (0,2m), c(

~

n
~

) no longer decays exponentially
and special care is required in calculating the Fourier in-
verse of c(q), which is defined by

2m'

c(
~

n
~

) = J dq e ' c(eq)
2m'= f dqe'~"c(q), (4.15)

where we have used the fact that c(q) =c(—q).
Whether q is real or complex will depend on the

strengths and signs of the coupling constants J i,Jz as well
as on the value of the temperature T. When Ji, Jz, and T
are such that

cosh (Jilk&T) e' ~0, — (4.16)

examination of (2.2) and (2.3) shows that @i and p are real
and that v2 is complex with e ' real negative. It then fol-
lows from expressions (3.8) determining az and bz that
both az and bz are real when condition (4.16) holds.

Alternatively, viewing inequality (4.16) as a condition
for the couplings Ji and Jz to be fulfilled for all values of
the temperature T; we may replace it by the simpler con-

then the eigenvalues p+ and p, given by (2.3) change
from real to complex, or vice versa, depending on whether
the temperature is increasing or decreasing. Correspond-
ingly, the decay lengths s, ' and az

' also change from
real to complex, or vice versa, and the asymptotic
behavior of the pair correlation function h(

~

n
~

) changes
from a monotonic exponential decay to an oscillatory ex-
ponential decay. This temperature T* at which this
change in the nature of the decay of the pair correlation
function takes place was named a disorder point of the
first kind by Stephenson. " However, it must be stressed
that no singularities occur in the thermodynamic func-
tions or in the correlation lengths at T=T .

B. Case b2(J~, J2, T)&O

When hz&0, the function c(q), considered as a function
of the complex variable q, is no longer analytic in the
whole q plane. This is because when hz&0, the denomina-
tor of c(q), which is equal to az+bzcosq, vanishes when
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dition

Jq&0, for all Ji . (4.17)

When condition (4.17) holds, the pole q* given by (4.14)
is either pure real or pure imaginary. This is because
when (4.17) is satisfied, a2 and b2 are pure real, as we
have just seen, and the identity

The integrand in (4.21) is periodic of period 2m, so that
the contributions on the two vertical segments, which are
integrated upon in opposite directions, cancel each other.
As we let qo tend to infinity, the contribution to the in-
tegral from I 3 becomes vanishingly small because of the
factor

iqn i(Req+iImq)n

Im cosq* = —sin(Req*)sinh(Imq*) =0 (4.18)
e le Reqe qo

implies that either Req* =0 or Imq =0.
We will now show that when condition (4.17) holds and

when T&0 (the case T=0 will be treated in detail in Sec.
V), then necessarily

a2
fcosq*

f

= &1.
b2

(4.19)

The proof of this property is based on a reductio ad absur
dum. Assume that inequality (4.19) is violated. Then the
identity

Re cosq' = —cos(Req*)cosh(Imq*), (4.20)

together with identity (4.18}, implies that Re cosq*
= —cos(Req'), i.e., that q* lies on the real axis in the in-
terval (0,2rr). Consider next (4.15) which reads, using
(3.9)

Since the integrand has no poles inside the closed contour
I, we have'

c(
f

n
f

) =2ni[ —,Res(q*)+ —,
' Res(2m —q*)] .

The residue at q', Res(q'), is

a~+b&cosq*+c~cos q'

b2sinq*

and since sin(2n —q*)= —sinq', we find

a
& +b ~

cosq'+ c
&
cos q'

c(
f
n

f
)=2mi

b2sinq*

X (clif 8 e
—lg If)

2~ Qi+&icosq+cicos q
2

c(fn f)= e'q"dq .
a2+ b2cosq

(4.21)

ai+bicosq +eicos q= —4m. sin(q'n), . (4.22)
b2sinq'

Since
f
a2/b2

f
& 1, the integrand has a pole at q* locat-

ed on the open interval of integration. Without any loss
of generality we shall assume that

f
a2/b2 f &1, so that q*

is a simple pole. We note that there is also a second sim-
ple pole at 2m —q*. The integral (4.21) must be evaluated
by taking its principal value according to Cauchy, which
may be done by indenting the contour of integration and
using the method of residues. We consider the following
closed contour of integration I in the complex q plane
which consists of the segment I

&

——(0, 2'), the vertical
segments I 2 and I 4 given by Req=O and Req=2m,
respectively, and the horizontal segment I 3 given by
Imq =qo ——const. This contour is pictured in Fig. 1.

Irnq

That the result (4.22) leads to a contradiction is most
easily seen by considering the Ornstein-Zernike relation
(3.1) which we rewrite as

(cfn f)=h(fn f) ——,
' g h(fn n'f)c—(fn'f). (423)

n'Ez

Clearly we have h(
f

n
f

) &M & ~, so that

fc(
f
n

f
)

f
& fh(

f
n

f
) f+ c(0) & a),

because c(0)=2h(0)/[2+h(0)] is finite for all nonzero
values of T. We can therefore take the limit

f
n

f
~ Do of

both sides of (4.23), to get

so that

2W -q 2''
Req

FIG. 1. Choice of contour of integration for evaluating the
principal part of the integral (4.21).

lim c( fn f)=0,
jnj~m

in contradiction to (4.22), as we wished to show. Conse-
quently the pole q* of c(q) cannot lie on the real axis, and
must have a nonzero imaginary part. From (4.18) and
(4.20) it then follows that q is pure imaginary and finally
we conclude, by taking a closed contour around q and
applying the residue theorem, that c(

f

n
f

) has a mono-
tonic exponential decay as

f
n

f

—+ oo.
Next we turn to the case where inequality (4.16) is re-
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versed, i.e., where

2
—4J2/k~ T

cosh (J&/keT) e— (0. (4.24)
e =—eq'K)

(4.25)

We shall again assume T&0, the case T=O being dealt
with in Sec. V. Note that for condition (4.24) to be satis-
fied for all values of T, we must have 0& Jz & ——,

'
~
J&

~

.
When condition (4.24) holds, examination of Eqs. (2.2)

and (2.3) reveals that ~~ and ~z are no longer pure real but
are now complex conjugate. We write accordingly

with p the modulus of p+ in (2.3).
To determine the nature of the asymptotic decay of

c(
~

n
~

), we need to know the complex character of the ra-
tio —az/bz with az and bz complex. We first determine
the imaginary part of az—lbz Us.ing (4.25), we have

Q2

b2

X44+, (e"~—e "~)(1—2P) —1

p p1

P 3
(e'+ e'—~)+P (e'~—e'—~) —e'~+ —e

p p p p

Multiplying numerator and denominator by the complex
conjugate of the latter and observing that ReP= —,, we
find that

A,
2—2 ImP sing& 1+

p
—1 cosy=0 .

p p
(4.28)

Im(az/bz) =0
if and only if

1+ ——2 ReP
p p

X4 —4 (ImP) sin(2y) —1 =0 .
p p

(4.26)

Im(p+ ) Imp+ Rep+
sin(2y) = — =2

p p
and using

sinh(2/, )1

(sinh g &+e ')'~ ( —cosh +,+e ')'~z

(4.27)

which follows from (2.2) and (2.3), we find, after some
algebra, that

Clearly the first factor is nonzero and since 2ReP= 1 and
&/p & 1 (when T&0) [see (2.3)], so is the second. Noting
that

Since, on the one hand, ImP&0 [see (4.27)] and on the
other hand 0&q&&(n/2) and (A, /p ) —1&0 when T&0,
both terms of the left-hand side of (4.28) are always nega-
tive and consequently (4.28) can never be satisfied. We
therefore conclude that Re(az/bz) can never vanish. To-
gether with the previous result that Im(az/bz) never van-
ishes either, this establishes that when condition (4.24)
holds, c(

~

n
~

) has an exponential decay which is always
oscillatory.

We conclude this section by discussing the limiting
behavior of c(

~

n
~

) as T ++ao. As—T~+ ao, examina-
tion of (2.2) and (2.3) shows that both ~& and ~z diverge, so
that both g~ and gz vanish, in accord with intuition. Con-
sequently, we have from (2.1) that as T~+ ao,
b(

~

n
~

)~0 for all
~

n
~

&0. The behavior of c(
~

n
~

) is
found from the Ornstein-Zernike relation (3.1) in which
we set

~

n
~
&0 and define n"=n n', to g—et

=0(c/n /)+ —,
' g h(fn" /)c(/n n" f)—

n" 6Z

=c(
)
n

( )+ —,
' h(0)c(

(
n

[ )

= —,'c( /n
/
),

Im(a z/bz ) =0

if and only if
4g

e =0,
i.e., gz ——+ oo. But this contradicts the assumption that
cosh g ~

—e '&0, and we conclude that Im(az/bz) can
never vanish whenever condition (4.24) holds and T is
nonzero.

Finally, we discuss the equation Re(az/bz)=0. From
the previous discussion of the equation Im(az/bz)=0, it
may be shown that

Re(az/bz) =0
if and only if

where we have made use of the identity h(0)= —1 (see
Sec. III).

The behavior of c(
~

n
~

) at the origin is obtained by set-
ting n =0 in (3.1) and making use again of h(0)—:—1.
We have

—1=c(0)+—, g h(
~

n'
~

)c(
~

n'
~

)
n'GZ

=c(0)——,
' c(0),

so that

c(0)=—2 .

Therefore as T~+ oo, we get

c(
/

n
f

) =0, all
/

n
f
&0,
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c(0)=—2 .

(4.29) Finally, we discuss in Sec. V C the critical behavior of the
second moment of e(

~

n
~

).

The range of the direct correlation function therefore
reduces to naught as the temperature increases without
limit, in accord with one's expectation. %hen only
nearest-neighbor interactions are present, precisely the
same exact result (4.29) holds. "

It may be noted that (4.29) is consistent with the earlier
result (4.13) derived in Sec. IV A; this is because condition
(4.8) is trivially satisfied in the limit as T~+ 00.

V. CRITICAL BEHAVIOR

A. Ferromagnetic ground state

We first examine the behavior of the denominator of
c(q) as given by (3.9). When Ji,Jz &0, all quantities, ex-
cept xz, are real; xz is complex because p is negative for
Jz & 0 [see (2.2) and (2.3)j.

As T~O, e vanishes while cosh/, and sinh+,
diverge. This suggests expanding aB quantities in the pa-—4g
rameter e '~&1. We find, to first order in e

Because the linear model we are considering has finite-
range forces, a phase transition from a disordered to an
ordcIcd state can OIlly occux' at T=0.

In the present model, which, for convenience, will now

bc discussed 1Il I11agnctic language, T=0 1s a critical po1nt
for all values of Ji and Jz except when Jz ————,

'
~
Ji ~, the

ground state being ferromagnetic in all cases except when

Jz & ——,
'

~
Ji ~, where the next-nearest-neighbor coupling

is strong enough to make the ground state antiferromag-
netic. "

As the critical point T, =0 is approached, the correla-
tion length increases and at T=O it ultimately diverges,
the pair correlation function Ii(

~
n

~
) assuming the simple

form h(
~
n

~
)=1 for all

~

n
~

& 0 when the ground state is

ferromagnetic, and Ii(
~

n
j
)=( —1) ~" t~ for even n and

Ii(
~

n
~
)=0 for odd n when the ground state is antifer-

romagnetic. But what happens to the direct correlation
function is far from being so obvious.

We shall determine the behavior of c(
~
n

~
) as T~O+

by examining the limiting behavior, as T~O+, of each
term of c(

~

n
~

) as given by (3.8) and (3.9), and distin-
guishing in Secs. V A and VB the cases where the ground
state is, respectively, ferromagnetic and antiferromagnetic.

l

e =1+2eic) —2g )
—4+p

and

—32 +8e

—2g )
—S/2 —6/) —Sg —6g —12@

62 ———8e + 16e —32e

from which it follows that

lim = lim ( ——,e4X)+4' )= —oo .
T 0+ ~2 T 0+

(5.2)

Next we turn to the numerator of c(q) and expand all—4~
terms in powers of e

from which we calculate az and bz as given by (3.8). We
obta1n

4g I 2+(—4g 2
—4g 2

—Sg 2
—2g )

—4+2 —4g )
—4g 2

—4g j
—Sg 2u I

——4e —4e +8e —4e —4e —8e —4e
—6g

&

—Sg 2
—Sg

&

—12/2
(5.3)

—32e —32e
—4g )—Sg~ —6g )

—12@~
—6g )

—Sg 2
—2g )

—4g 2
—4+2+ 16e +8e ' '—16e '+4,

e) ——8e + 16e
-4&2

Combining (5.3) and (5.2) gives, to leading order,

Finally, inserting results (5.1)—(5.4) into expression (3.9)
for c(q) gives the desired answer.

Rq) — 2( '+ ' '+1)
T~o+

b 1 2g)+4/2 2
4g=e —2e +2

a2

Comparison of (5.5) with (3.2) shows that the direct corre-
lation function c(

~

n
~

) is given by
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—2(e '+ ' —e '~i) for in i
=()

c(in i) = . e +22g )+4/ 2

e ' for ini=2
0 for all in i

)2.
(5.6)

As T~O+, c(0), c(1), and c(2) are all seen to diverge; but
while

c(0)
11Q1 ——2

0+ c(1)
c(1)

11IYl = + oo
T~o+ c 2

(5.g)

so that it follows from (3.3) that

c(q =0)=2, T=0 . (5.9)

As explained earlier in Sec. III, (5.9) is the special case
p= —,

' of the more general relation'

c(q=0) =p

which holds at the critical point of a fluid of density p.
Relation (5.9) provides a useful consistency check of the

expressions (5.1)—(5.3) we derived above. From (3.6) we
have

so that as T +0+, c—(0) and c(1) are both of the same
strength, while c(2) becomes negligible compared to either
of them.

It may also be noted that in the present case where

g],g 2 ~ 0, b ( i
n

i
)—:1 at T=0, and therefore

II(q=0)= g h(
i
n

i
)=+oo,

again reproducing (5.9), as it should.
Finally, it will be observed that the case g 1~0,gq & 0,

with i/2 i
&+]/2, which also yields a ferromagnetic

ground state at T=0, reduces to the case J~,J2 ~ 0, which
we have just dealt with. The reason for this is that expres-
slolls of tllc forTI1 e /slnh +] ol' e /cosll g 1, 111

terms of which c(q) was expanded, behave, as T~O+, as-4'-&E(
—,e ' ' and therefore vanish as T~O+ provided
that —4g, —2g] &0, i.e., thar, —g, =

i g, i &(g ]/2).
And this last condition is precisely that which guarantees
the ferromagnetic character of the ground state.

B. Antiferromagnetic ground state

—=1+Te + 88
p

2EI —4 l/2IImp=-, e (5.11)

f (22) and (2
shows that the appropriate small parameter in terms of
which c(q) is to be expanded near T=O is of the form
sinh g]/e ' or cosh g 1/e ': Both of these behave

as —,e ' ' when T—+0+, and e ' ' vanishes,
as T~O+ whcncv«2g] —4l gal &0 lc p«clseiy
when

i g 2 i )g ] /2.
In order to determine the behavior of c(q) as T~O+,

we shall first need (see Sec. IV) the expansions of A, /]M,

IInp, e +, alld e + 111 tcrlIls of tllc s111811 pal'alnctcI'

(e ' ' ), the notations being those introduced in
(4.25).

We find

c(q=0) =2
a2~b2

and from (5.1)—(5.3) we find that as T~O+,
2g )

—4/2a) ~b) ~e) -4e

(5.1()) and

+i( e ——,e

~&-6l~2I+8

a, ~S,-4e'~' "~',

so that (5.10) becomes, at T=0,

in agreement with (5.9).
Alternatively, we can use result (5.6) in conjunction

with the relation

I.et us first discuss the denominator of c(q). Using
(4.25) and (3.8), we may rewrite a2 and bz as

aI ———
+ 2i(1 —2p) — sin(2]p) —1,

p p

c(q =0)=c(0)+2c(1)~2c(2),
which follows directly from definition (3.2), to get

c(q=O)= —2e ' ' —2~2e

r e

e~~ —e
p p

For a2 we then obtain, using (5.11),

2 ~I—2l~2lQ2= 8

while the first term of —,bl becomes

(5.12)
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4e
zg) —4lg2I . 3 g, —zl~ I—i(1+—,e ),

the second

3 xg —21r21)

the third

4e
2E)—4

I E2 I i (1+——,e )

and the fourth

1 /1-2lg21 '1 1 rl-21Ã21)

When the ground state is ferromagnetic, the correlation is
governed by J], while it is governed by Jz when the
ground state is antiferromagnetic. Indeed, in the latter
case, there is no correlation between nearest-neighbor par-
ticles (spins) at T=0, so that results (5.17) and (5.7) may
be considered to be similar, the opposite signs reflecting
the opposite nature of the correlation between pairs of
nearest-correlated particles (spins) at T=0.

It will finally be noted that although in the present case
T=0 is a critical point, the relation c(q =0)= —, does not
hold, in contrast to the situation prevailing in the previous
case [cf. (5.9)]. Indeed, we find here that

so that

2E) —4IE2I
bz ——e (5.13)

lim c(q=O)=2 lim
T~O+ T~O

aI+b)+c]
Qz

Combining (5.12) and (5.13) we get

lim = lim 2e
—g(+zip I =+ OO

T~O+ ~2 T~O+
(5.14)

2 1 ( 8 I/&I E&)

T~O+

gg —2lg2I g )
—2 IE2I 2~& —4l&2I

a& ——2e (1—e —e ),
4 S)—21&21(2+ Si —2 IE21) (5.15)

Consequently, as T~O+, the pole of c(q) moves arbitrari-
ly far from the real axis, signaling, just as in the ferromag-
netic case dealt with in Sec. V A [see (5.2)], a strictly finite
range of c(

f
n

f
) in direct space.

The detailed behavior of c(
f

n
f

) is determined by
analyzing the terms a~, b~, and c~. It is found that, as

0+,

The reason for this result is simply that at T=O, we no

longer have h (q =0)=+ oo, as we did when /~ & 2
f g 2 f,

but rather

h(q=O)= g &(
f

n
f

}
n&Z

1+2
n EZy IOI

which oscillates finitely. '

and

c&
———8(1+e

Because

C. Second moment of the direct correlation function

The second moment A of the direct correlation function
is defined by

2
lim

T O+ &2

A= —,
' Qc(fnf)fnf',

nGZ
(5.18)

[see (5.14)], expression (3.9) for c(q) reduces to (4.2) and
results (5.12}, (5.13},and (5.15), when combined with defi-
nition (3.2}, imply that

—4e ' ' for fn

c(fn f) = . +4+2e r&-2 l~2l for
T~O+ 2 lz2 I

—g)—2e for
f

n

0 for
f
n

f
)2.

f

=0

fn f=l

(5.16)

As T~O+, c(1) tends to the constant +4, while c(0) and
c(2) both diverge negatively at the same rate:

llm
c(0)

z 0+ c(2)
(5.17)

Result (5.17) may be compared to (5.7), its analog for the
case of a ferromagnetic ground state. Results (5.7) and
(5.17) may be understood intuitively as follows. As
T~O+, the nature of the ground state is determined by
the strongest of the two coupling constants J~ and J2.

=c(1)+4c(2), (5.19)

with c(1) and c(2) given by (5.6) or (5.16), depending on
whether the phase transition occurring at T=O is of the
ferromagnetic or antiferromagnetic type.

When the ground state is ferromagnetic, we find, insert-
ing (5.6) into (5.19),

Af, ,——e
zg )+4/ 2 as T~O + (5.20)

which is the discrete, one-dimensional version of the ex-

pression of the second moment of the direct correlation
function,

f c(
f
r

f
)

f

r
f

d~r,

appropriate to a spatially uniform d-dimensional fluid.
To determine the critical behavior of 3, direct use will

be made of the fact, established in Secs. VA and V B, that
as the critical point is approached, the direct correlation
function acquires exactly the range of the interactions.
Consequently, Eq. (5.18) becomes, as T~O+,

A = —,
' [Oc(0)+2c(1)+gc(2)]



29 DECAY OF THE DIRECT CORRELATION FUNCTION IN. . . 2863

while when the ground state is antiferromagnetic, we get,
combining (5.16) and (5.19),

(5.21)

with g the correlation length of the spontaneous density
(spin) fluctuations in the system, g the critical exponent
measuring the departure from mean-field behavior of the
asymptotic decay of the pair correlation function at the
critical point, and c a nonuniversal constant which de-
pends on the details of the system.

The behavior of the correlation length g as the critical
point is approached is readily extracted from the above re-
sults. We shall denote the correlation length g by gfe o

(g,„„re o) when the system undergoes a ferromagnetic (an-
tiferromagnetic) phase transition at T=0.

As we saw at the beginning of this section, the diver-
gence of gr„„at T=O is induced by the eigenvalue ratio
A, /p+ approaching unity as T—+0 . From definition (2.2)
we get

. —1

(ferro
~+ ferro

and from the result (e )f, ,-1+2e,which was
K) —2g, —4g 2

derived earlier in Sec. V A, we find

2X)+4'—++ oo as T~O + (5.23)

As regards ga„„r«„, it follows from definition (2.2) and
results (4.25) and (5.11) that as T~O+,

21~21-r&
28 ~+ (X) (5.24)

Combining (5.20) with (5.23) and (5.21) with (5.24),
respectively, we get the desired relations:

and

1~ ferro TSferro (5.25)

~ antiferro = 4gantiferro . (5.26)

We thus confirm the scaling prediction (5.22) with g = 1.
And we note that g=1 is the exact value of the critical
exponent g in one-dimensional systems with short-range
forces as follows trivially from the mere definition of rl
and the fact that at T=O, hf, o(

~

n
~

) =1 for all n and
hantiferro(

~

it
) ) =0 for

~

n
~

odd and h tjferro( ~

n
~

)

=(—1) ~" ~~ for
~

n
)

even.
It may be mentioned that the scaling prediction (5.22)

has also recently been confirmed, in another context, for
the simpler model of a lattice gas with interactions re-
stricted to nearest neighbors. ' For that model it was
found that (5.22) holds with the nonuniversal constant c
equal to 2.

Finally, we shall use results (5.20) and (5.21) to test the
scaling prediction that as the critical point of a d-
dimensional system is approached, one should have'

(5.22)

VI. SUMMARY AND DISCUSSION

Vfe have presented an exact calculation of the direct
correlation function of the one-dimensional lattice-gas (Is-
ing) model with both nearest-neighbor and next-nearest-
neighbor interactions, with special emphasis on its asymp-
totic decay and its behavior near and at the critical point,
which occurs at zero temperature.

Depending on the value of the temperature and on the
strengths and signs of the coupling constants, it has been
found that the direct correlation function can either van-
ish exponentially at infinity, with an asymptotic decay
which is either monotonic or oscillatory, or can have a
strictly finite range which is exactly equal to that of the
interactions. Moreover, we have seen that whenever the
asymptotic decay of the direct correlation function is
monotonic or oscillatory, so is that of the pair correlation
function. '

A remarkable exception to this similarity between the
asymptotic decay of the direct and the pair correlation
functions occurs when the nearest-neighbor and next-
nearest-neighbor couplings, denoted J& and J2, respective-
ly, satisfy the condition 0&J2& ——,

'
~
Ji ~. In that case,

there is a unique value T* of the temperature T at which
the direct correlation function no longer decays exponen-
tially at infinity, but has a strictly finite range exactly
equal to that of the interactions. For all T~T*, the
direct correlation function has a monotonic exponential
decay while for all T & T*, its exponential decay is oscilla-
tory. The same qualitative change in the nature of the
asymptotic decay characterizes the pair correlation func-
tion with the fundamental difference that when T=T*, it
still decays exponentially, " unlike the direct correlation
function. The transition in the character of the asymptot-
ic decay which takes place at T' is therefore more pro-
nounced for the direct correlation function than for the
pair correlation function.

At the critical point, which occurs at T=O, the direct
correlation function always has a finite range which is
identical to that of the interactions. This exact result is in
full agreement with one of the central ideas of the
Ornstein-Zernike theory of critical fluctuations, in which
it is assumed that the direct correlation function remains
of finite range at the critical point.

However, while the range of the direct correlation func-
tion reduces to that of the interactions as the critical point
is approached, at the same time the values assumed by the
direct correlation function become unbounded.

That is to say, at the critical point, particles (spins)
which do not interact directly through the interaction cou-
plings are also no longer "directly" correlated, while those
particles (spins) which do interact directly become infi-
nitely strongly "directly" correlated. In contrast to its
strictly finite range at the critical point, the unbounded-
ness of the direct correlation function at the critical point
does contradict another central assumption of the
Ornstein-Zernike theory according to which, at the critical
point, the direct correlation function admits a Fourier
transform which is analytic, and therefore bounded, at the
origin.

The second moment of the direct correlation function
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has been shown to become increasingly large as the critical
point is approached, ultimately diverging at the critical
point itself. Moreover, the second moment of the direct
correlation function has been found to diverge proportion-
ally to the correlation length of the spontaneous density
(spin) fluctuations, confirming a prediction of scaling
theory in one dimension.

That the second moment of the direct correlation func-
tion of a system exhibiting nonclassical critical behavior
diverges at the critical point had been proposed by
Green. ' "But in the present model this divergence does
not occur by Green's mechanism, according to which the
divergence of the second moment of the direct correlation
function is due to the slow asymptotic decay of that func-
tion, predicted' '"' to be inversely proportional to the dis-
tance squared in one dimension. As the present exact re-
sults demonstrate, the divergence of the second moment of
the direct correlation function is not induced by the
change of the asymptotic decay of that function from an
exponential to a power-law-like form, but rather by the
values of the direct correlation function itself which be-
come unbounded at the critical point, while at the same
time the range of the direct correlation function becomes
equal to that of the interactions. It should be observed
that such lack of boundedness of the direct correlation
function is not a priori prevented by the definition of this
function: The direct correlation function lacks the obvi-
ous physical interpretation of the usual pair correlation
function and is, in particular, not restricted to remain fi-
nite, since it is not, unlike the pair correlation function,
defined as a probability.

Clearly, the exact results obtained here cannot ade-
quately describe all the details of the behavior of more
realistic systems. First, in real systems, the oscillations in
the tail of the pair correlation function are induced by the
hard core of the molecules. But in the present model, the
oscillations in the tails of the pair and direct correlation
functions are not produced by the hard core, which is here
trivially imposed by the lattice rather than by the particles
themselves, ' but by the differing signs of the coupling
constants. Evidently, in lattice systems an extended core
is necessary to imitate the hard core of a real particle.
Second, it should also be recalled that the interactions in

real systems often decay like power laws at infinity, so
that the monotonic or oscillatory exponential asymptotic
decay discussed above will not be seen in these systems in
the truly asymptotic regime. '

It appears reasonable to assume that the results found
here should remain valid in more general linear lattice sys-
tems with finite-range interactions and, on the basis of
universality, one may also conjecture that the critical
behavior found here may also be that of linear continuous
systems with finite-range interactions. It would also be
interesting, following the studies of Percus, to see
whether or not the results found here are affected by the
presence of an external field.

Further rigorous work on models exhibiting nonclassi-
cal values of the critical exponents will be required to
know whether the properties of the direct correlation
function described above are restricted to one-dimensional
systems or whether they do have a more general validity.

It may be mentioned that for Ornstein-Zernike systems,
in which the direct correlation function c(n) is related to
the intermolecular potential 4(n) by

c(n)- — 4(n)1

AT
for all values of the temperature, Stell has shown ' that
for one or two dimensions of space and for 4(n) restricted
to nearest-neighbor molecules, c necessarily becomes un-
bounded at the critical point which must then occur at
zero absolute temperature.
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