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We present a stochastic theory of the renormalization-group transformations of the time-

dependent Ginzburg-Landau model, describing a system which exhibits the characteristics of a
second-order phase transition. We eliminate a certain range of the Fourier components of the rnag-

netic spin variables via a projection-operator method. This effectively changes the scale of the sys-

tem and transforms the coupling constants. The procedure is shown to be equivalent to the integra-
tion over short-wavelength modes as in the renorrnalization-group transformation performed by
Wilson and Kogut. This equivalence shows that the projection-operator method is a valid pro-
cedure for scaling critical systems, and in particular it indicates that the treatment of fluctuations is

systematic. We suggest that such a method should also provide a straightforward approach to the
dynamic renormalization group.

I. INTRODUCTION

In this third paper on adiabatic elimination we wish to
extend the range of problems considered to those associat-
ed with the renormalization-group theory of critical phe-
nomena. In our second paper' (to be referred to as II) we
treated reaction-diffusion and hydrodynamic-like systems,
and showed that adiabatic elimination in the latter was
equivalent to Graham's method of multiple scales. How-
ever, in this hydrodynamic-like system, it was essential to
introduce a factor which made the added noise small in
the adiabatic limit.

Here we will attempt to remove that restriction, by
methods which are closely related to the blocking process
in the theory of the renormalization group. We will con-
sider the simplest model available, the time-dependent
Ginzburg-Landau model for a ferromagnetic system.

In Sec. II we construct a Fokker-Planck equation for
the system, in the framework of the cell model, in which
the system is divided into (2n +1) cells, each of volume
l (Ref. 4). In Sec. III we derive the renormalization-
group (RG) transformations of Wilson and Kogut by
eliminating the short-wavelength components of the mag-
netic spin. Such an elimination maps the original system,
defined in terms of a lattice of (2n + 1) cells with spacing
l, to a coarser-grained system defined on a lattice of
(2N + 1)" cells, with lattice spacing bl, where
b =(2n+1)/(2N+1), and n &N. This is essentially the
same procedure as in II. However, in this case we show
that it is possible to derive a limit in which the blocking
ratio b is large and the coefficient u of the nonlinearity is
small. This latter condition is normally required in
renormalization-group theory.

In Sec. IV we summarize and compare our' work with
conventional renormalization-group theory. Appendix A
contains a description of the Ornstein-Uhlenbeck process-

es in terms of creation and destruction operators, which
form a useful calculational tool, and Appendix B contains
the details of the calculations needed to derive the block-
ing transformations. We also note that in all the follow-

ing discussions, the paper of Ref. 5 will be referred to as I.

II. MODEL

We develop a stochastic theory of a system which ex-
hibits the properties of a second-order phase transition,
via an essentially phenomenological approach. One of the
most commonly studied examples of a system which
displays such critical behavior is the ferromagnet; for
which the free energy is given by the Ginzburg-Landau
functional,

EIm(x );TI =F(O, T)

+ dx 2rm x +4um x

+ 2 [Vm(x )]2I/I o, (2.1)

m(x )=—
Bm(x )

(2.2)

To take account of statistical fluctuations in the system,
we add a stochastic fluctuating term in an ad hoc manner
and thus obtain the time-dependent Ginzburg-Landau
(TDGL) equation,

where m (x ) is the order parameter of the ferromagnetic
system, i.e., the magnetic spin component, and T is the
temperature. r, u represent coupling constants which are
proportional to T; in particular, r ~ T —T„where T, is
the critical temperature. d is the dimension.

Fallowing the phenomenological method of Haken, we
obtain an equation of motion for the variable m (x)
through
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m(x )= —r[m (x )]—u [m (x)] +V2[m (x)]

+~r,g(x, t), (2.3)

To this end we define the eigenfunctions and eigen-
values of D, through the equation

j k

where g'(x, t) is a Gaussian stochastic term, having the
properties

(g(x, t)) =0,
(g(x, t}g(x ', t')) =5(x —x ')5(t t'—) .

QD-. -f-(q ) = —&(q )f-. (q ),
k

where

f (q )=(2n+1) "~ exp(ik ql),

(2.6a)

(2.6b)

Dm-+ g , (rm, +um, )
J

I o 5'
2l~, Bm ' (2.4}

I o represents the size of the thermal fluctuations in the
system, which for the moment is just an arbitrary con-
stant.

We note that Eq. (2.3) is comprised of two distinct
parts: deterministic terms and a fluctuating term. We as-
sume that this combination accurately describes the sta-
tistical behavior of the system. This phenomenological
description is equivalent to the method of Wilson and Ko-
gut which includes statistical fluctuations into the system
via a functional-integral approach.

In order to perform the RG transformation, we wish to
eliminate short-wavelength spin components, using an
adiabatic elimination method. Our model of the system,
Eq. (2.3), is of the form of a stochastic differential equa-
tion and such an elimination procedure is not well defined
for these equations.

However, the projection-operator method formulated in
I and II is defined for Fokker-Planck equations; thus, we
define the equivalent Fokker-Planck equation to Eq. (2.3)
in the framework of the cell model, in which we divide the
system into (2n+1) cells, each of volume l", and find

2I's
q=Iq, I, k=Ik, I; q, =

(2n+1)l'

r = n, n+——1, . . . , n, k;= n—, . . . , n (26c)

and

A,(q ) = g(4/1 )sin (lq;/2) . (2.6d)

We note the orthogonality relations

g f*, (q )f-. (q ') =5 (2.6e)

g f"-. (q )f-. (q )=5-. -. .
j i, j

q

(2.6f)

m, =gf (q)m(q),
J j

q

m(q )= g f'-, (q )m-. .
(2.7)

We thus transform Eq. (2.4) to q space by expanding

variables as

where p is the probability distribution of the system, i.e.,
p =p (m, , . . . , m, , t); m; represents the spin of cell

J

i (j is d dimensional).
In order to obtain a similar equation after projection, it

is essential to consider the nonlinear term m-. to be a
J

shorthand notation for the band limited fun-ction [m . ]
as defined in II, Sec. III.

The first term on the right-hand side of Eq. (2.4) de-

scribes the effects of spatial variation, i.e., which is
equivalent to the term V m in Eq. (2.3). In such a discre-
tized model, D -takes the form.

j k

D-,. -„= g —2(5k„,,„+i+5k„,j, i
—25k„,j,)

r=1
(2.5)

A. Transformation to Fourier space

Our aim is to eliminate the short-wavelength spin com-
ponents. Equivalently, we may eliminate high-q modes in
reciprocal Fourier (q) space; in practice we find the latter
to be more convenient and thus will formulate the pro-
cedure in q space.

As we wish to eliminate the high-q modes, we make the
following identification:

m(q )= g m(Q)+ g m(q ),

Q eA'(N) q QA(N)

where

(2.8a)

QE~(N)= I N, N+1, . . . , N—I . —
2n+1 l

(2.8b)

Bp
at

=(L, +L,+L, )p,

where

(2.9)

Thus by eliminating the m(q ) we will obtain a Fokker-
Planck equation for the m(Q) alone and will have
equivalently changed the scale of our system. The effects
of such a scale change will be apparent in the presence of
correction terms to the coupling constants. These
transformed coupling constants then define the RG
transformation.

So, using Eq. (2.7), with the identification of (2.8), we
transform the Fokker-Planck equation (2.4) to q space,
and use relations (2.6) to find that Eq. (2.4) gives
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LI = g [&(q )+r] m(q )+——1 Io az

Bm(q ) 2 ~' -, am(q )am( —q)
'

III(QI)III (Qz)III (Ql)& - - - +3 m(q, )m(Q, )m{Q )52n+ I) - Bm(q ) q & I+ O I+ & 3 Bm ( q )

(2.10a)

m(ql)m{qz)m(QI)& - - +
8m{q ) q q I+ q I+ ~

& Bm ( q )

(2.10b)

1 I"0 8g [g(Q )+r] III(Q )+
Bm(Q )

2 l - gIII (Q )Bm( —Q )

I

II y m(Q )m(Q )In(Q&)$~ ~ ~ ~ +3 m(QI)m(Q2™
(211+I) - - 8 (Q)-+) m ~ ~ +~ +' am(Q) Q, Q)+92+q)

rn(QI)m(ql)m(qz)&- - - - +
Bm(Q)

-+ Q, q t+ q I+ q 3

(2.10c)

In the plecedlng equations, g rellresents a sum
fq*QI

over all the q, Q appearing in the terms, where q E%(N)
and QeA'(N).

We have defined the Fokker-Planck equation as in Eqs.
(2.9}and (2.10) in order to perform the projection-operator
method of adiabatic elimination, as will become apparent
in Sec. III.

III. ELIMINATION OF q MODES:
PROJECTION-OPERATOR METHOD

The details of the projection-operator elimination pro-
cedure have been described in I and II and we refer the
reader to the work of Gardiner for a thorough discussion
of the method. In essence, the method consists of con-
structing a projection operator in terms of the stationary
distribution function (P, }of the variables to be eliminated.
Such an operator projects variables into a subspace in
which all variables are expressed as a product of the sta-
tionary distribution P„and an arbitrary function of the
remaining variables. This new subspace thus represents a
reduced system in which the effect of the eliminated vari-
ables is seen in correction terms to coupling constants.

We note the following:

LiP =PL, i
——0 (3.3)

IIt =(1 P)P, —
we find

(3.6b)

(3.7)

PJ,P=0.
Indeed, »nce by (2.10b) Lz contains only terms which be-
gin with &/Bm ( q ), it is clear that integrating these always
gives boundary terms, which vanish, so that we have the
stronger result,

(3.5)

The relations (3.3) and (3.4) are essential requirements
of the elimination procedure as shown in I.

The method follows by applying P to the Fokker-
Planck equation (2.9). Defining

(3.6a)

A. Exact projection equations using Laplace transforms

» (q, Q )=p, Ju(q, Q)dm{ q ),
where P, satisfies

L iss=O.

{3.1)

(3.2)

Consider now the Fokkcr-Planck equation (2.9) and as-
sociated definitions (2.10). We note that the operator LI
conccAls ollly thc m ( q ), I.c., tllc varlablcs wc wish 'to

eliminate. Thus we construct a projection operator J' in
terms of the stationary distribution function of LI, and
define it through its action on an arbitrary function
u(q, Q),

(1—P)—P = Ia =L—
I Ic+(1—P)LzIU +Lzu

Bt Bt

+(1—P)LI(U+~), (3.8)

where we have used the relations (3.3), (3.4), and (3 5).
Central to this method is the idea of projecting out in-

formation about m (q ) from the probability distribution

of the system P(m(q ),m(Q ),I), i.e., we wish to obtain an
equation of motion (a Fokker-Planck equation) for the re-

duced probability distribution P(m(Q )). Clearly, this fol-
lows by constructing an equation of motion for v ( =PP),
by solvlllg Eqs. (3.7) and (3.8) sllnultallcollsly.

Such a solution follows most easily through use of La-
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place transforms, and has been explained in papers I and
II, i.e., defining the Laplace transforms L(u(t)}=u(s)

e "u (t) Eqs. (3.7) and (3.8) become, respectively,
p

su (s) —u (0)=PL 3LU(s) +PL 3u (s),
sw (s) = [L i+ (1—P}(L2+L3)]N(s)

+ [L2+(1—P)L3]u (s),

(3.9)

(3.10)

where u(0) means u at t =0; and we have set the initial
condition m =0 at t =0.

Solving (3.9) and (3.10) for u (s) we find

su (s) —u (0)=PL3[s L i ——(1—P)(L2+L3)]

u PF[s L—i G ] '[H+(1 —P)F]v(s)+P(G+uF)u(s),

which is approximately equal to (3.11).
C. Asymptotic expansion for large b

(3.17)

We now want to show that for b =(2n+ I)/(2N+I)
sufficiently large and l sufficiently small, we may approxi-
mate [s Li——G] '

by [s Li—] '. The essence of the
argument is quite simple: L j is much larger than G.

For the eigenvalues of I.
&

are

A(q )=r+q =l ~+r (3.18)

and the eigenvlaues of G are

X [L2+(1—P)L3]v (s)+PL3u (s) . (3.11)

B. Perturbation expansion for small u

We note that we can write L3, as defined in (2.10c), in

the form

A(g)=r+Q =(bl) +r .

Now we must constrain l so that

and b must satisfy

(3.19)

(3.20a)

L3 ——G +uI', (3.12a) (3.20b)

where F is the coefficient of u in (2.10c} and G is the
remainder which commutes with L &.

Further, L2, as defined in (2.10b), is also proportional to
u and can be written

L2 ——uH . (3.12b)

We first note that PL3u (s) contains nonvanishing terms

of zero and first order in u, that Lzu (s} is O(u), and that

(1 P)L3u(s)=—(1 P)(G+uF—)Pp . (3.13)

Furthermore, by definition it is clear that G commutes
with L ] and hence with P, so

(1—P)L3u(s)=u(1 P)Fu(s)=O—(u) . (3.14}

Thus, to get a perturbation expansion in u, we may
neglect all terms of order u in [ ]

' in (3.11). We thus
reduce to

pL3[s L
&

(1 p)G] '[uH +u (1—p)F]u (s)

+PL 3u (s), (3.15)

which is approximately equal to Eq. (3.11).
We note that (1 P) commutes —with G and L i, and so

may be omitted in [ ] '. Now everything in

[s Li —G] ' com—mutes with Li and P so we can re-

place PL3 by PL3(1 P), and—
PL3(1 P) =P(G+uF)—(1 P)= uPF(1 P) —(3.16)—

so that to second order in u

The first of these requirements is essentially that the
time constant of the process generated by the term rm(q )

is much less than the typical time for a diffusive jump
from one lattice point to another. This requirement can
obviously be physically made. It then follows that large b

implies all the eigenvalues of G are of order b times
those of L i, and we can neglect G.

We may also neglect the term s, providing s((l
which effectively defines a coarse-grained time scale r-1
at which the equation is valid.

Hence we reduce (3.11) to

Bt
=P(G+uF)u uPFL

&

—[H+(1 P)F]v . —(3.21)

IV. EXPLICIT PROJECTED FOKKER-PLANCK
EQUATION

Equation (3.21) represents the Fokker-Planck equation
for the transformed system in which the short-wavelength

spin components have been eliminated.
However, in order to obtain explicit expressions for the

transformed coupling constants (and thus define the RG
transformation) we need to evaluate Eq. (3.21) and invert

from Fourier space to coordinate space.
The details of this procedure can be found in Appendix

8; and we obtain a new Fokker-Planck equation describ-

ing the rescaled system [i.e., see Eq. (815)],

Bp
B}t

P

J, K

8
D m

gm J, K K
J

+g Bm-J J

3uI pcr+ —18u I pai—
8(fl +r)

18u I ~
64

1 m~+ u—
(II +r)

9u I p

8(Q +r)

Ip g2 9 2

(bl)d ~
g

—2 2+ uP4+ 2 3(m ) +2u (2n+1) l a3(m ) .p
J J

(4.1)
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fx(Q ) =(2%+1) ~ exp(iK. QL)

see (2.8b).
%C also note the inversion relations,

Pl + + Pl

III (Q )= g f "-, (Q )m-, ,
J

(4.3)

m =b m- .—d/2
J J

The scaling (4.4) ensures that both m and m,J 3

describe the magnetization per unit volume, in a manner
SIIIlllar to that 111 II, Eq. (4.5}.

The constants al, a2, a&, aq, and c are defined in Ap-
pendix 8, 1.c.,

In expression (4.1), P is the probability distribution
function for the j m j; where m represents the macro-

scopic magnetization of cell L
These new J cells describe a coarser-grained lattice than

that of the original system [Eq. (2.4)]. That is, our origi-
nal system was described in terms of a lattice of (2n +1}
cells, whereas Eq. (4.1) describes a system of (2%+1)
cells each of volume (bl)" where X ~ n. We have thus ef-
fectively blocked the system and the blocking ratio, b is
(2n +1)/(2%+1).

The operator D in Eq. (4.1) represents the diffusionJ, K
operator in the new coarser-grained system [cf. Eq. (2.5)].
We define the eigenvalues and eigenfunctions of D J„K
through the equation

g D- -f- (Q )= —&(Q )f-(Q ), (4.2a)

equation (2.4). Central to the method was the assumption
that the nonlinear coupling constant, u, is small.

The coarse-graining procedure has given rise to
transformed couphng constants.

We note that the procedure has also generated a fifth-
order drift term —not present in the original system.
However, as discussed in Appendix 8 this term has a coef-
ficient which is negligible in comparison to other system
parameters; thus we do not expect this term to have a no-
ticeable effect on the system's behavior.

Equation (4.1) shows that all correction terms (apart
from the fifth-order term) contain the factor I 0, which
represents the size of molecular fluctuations in the system.
This indicates the importance of including finite fluctua-
tions into our model of the system, i.e., the correction
terms will only produce a significant contribution when
fluctuations of order unity are considered.

We also see how the fluctuations couple through the
nonlinearities of the system to give rise to correction
terms.

All corrections to the noise term are of order II and
will thus be very small 1n comparison to the leading term,
which is of order unity.

Finally, we should note that all the correction coeffi-
cients in (4.1) are evaluated only approximately. This is
merely because the integrations are rather complicated-
the rclcvant exact cxplcsslons alc glvcn latcl.

V. COMPARISON %ITH RG RESULTS

We now compare the results of our transformation with
that of the RG transformation derived by Wilson and Ko-
gut for the same model. Noting that the assumption of u
small was essential to our method we will keep only terms
to leading order in u in Eq. (4.1). Thus we neglect terms
of order u in the linear drift and all corrections to the
noise term, which are of order u2. We also omit the
fifth-order drift term, as we expect it to be negligible.

In this regime, Eq. (4.1) becomes

DI K ~K+ g (I'III-+ulrn', )
8

BIII~ ' I}III 7 I

a -O(l "(1—b "))

is a finite constant,

O((8—2d( 1 g 8—21))

is also a finite constant,

3(bl)

a3 ——a2 — g A '(q)
q (bl)

(4.5a)

(4.5b)
whcrc

(4.5c)

a'
(b~) - Bm '

J J

(5.2a)

is a parameter' which is negligible in comparison to others,
and

c=4J,d'q. (4.5d)

Thc constant c is def1ncd 1n a manner similar to the
constant c appearing in the S model of %'ilson and Ko-
gut.

Eqllatloll (4.1) I'cpl'cscllts csscll'tlally a coal'sc-glalncd
version of the system described by the Fokker-Planck

is a finite constant.
The equations corresponding to (5.2) in which no ap-

proximations are made in the integrals are, in the limit of
large b,
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3ulo g
& d qr'=r+ (2m) I"b '

&(q )+r

u =u ——,u I o(2m)
dq

nb [g(q )+r]~

(5.3a)

(5.3b)

equations of motion in a most straightforward manner
and should produce the dynamic renormalization-group
transformations in a much simpler fashion than previous-
ly.
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The free-energy functional corresponding to this

Fokker-Planck equation is of exactly the same form as
Eq. (2.1). The extra factor of b multiplying I o exactly
compensates for the increased cell size needed to convert a
sum to an integral. The upper q cutoff, however, is expli-
citly Qb ' as opposed to Q in the unblocked system.

Hence, Eqs. (5.2) are equivalent to the renormalization-
group blocking equations of Wilson and Kogut; i.e., apart
from factors of 4 multiplying (5.2a) and 2 multiplying
(5.2b), which are introduced by Wilson and Kogut to en-
sure the rescaled Hamiltonian for the transformed system
looks the same as the original one, they are the same as
Eq. (4.26) of Ref. 3.

The fact that our derivation is valid only for large
blocking ratio b is in concordance with the work of Bruce,
Droz, and Aharony, who have carried out the kind of
blocking usually used in renormalization-group theory, in
which variables are explicitly integrated out from the sta-
tionary distribution function, and have shown that many
terms, which should be included when the blocking ratio
is finite, can be ignored in the large-b limit. From our
point of view, it is hard to see how one could justify any
thing other than large b, though finite b is commonly used
in such calculations. What we do suggest is that the adia-
batic elimination technique provides a logical, justifiable,
and essentially straightforward method of carrying out
blocking. The method is also one which fits into a broad
general framework, and thus unifies a range of phenome-
na whose understanding involves some kind of coarse-
graining. Finally, the convergence of the method is under
control.

VI. DISCUSSION AND CONCLUSIONS

In this paper we have shown the following main points.
(i) A simple formulation in terms of projectors can

achieve the renormalization-group blocking equations, and
can enable a quite precise limit to be given in which these
equations are valid. This is the limit of small nonlinearity
and large blocking ratio b.

(ii) Coarse-graining of the time-dependent Landau-
Ginsburg model is achieved in a way which could have
application to other systems, in a way similar to the
derivation of the amplitude equations in hydrodynamics.

(iii) The blocking in renormalization-group theory is
shown to be essentially the same kind of process used in
derivation of the fluctuating amplitude equation in hydro-
dynamics and the treatment of diffusion homogenization
in reaction-diffusion systems.

(iv) Since the blocking is carried out directly on a
Fokker-Planck equation, dynamical data such as time
correlation functions can also be, in principle, evaluated.
We have not gone into this in detail.

Finally, we note that previous methods employed to ob-
tain dynamic renormalization-group transformations on
equations of motion have involved complicated perturba-
tive analyses. Our method, however, may be applied to
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APPENDIX A: ORNSTEIN-UHLENBECK
PROCESSES IN TERMS OF OPERATORS

The operator L~ of Eq. (2.10a) can be simplified by
writing

I' I /2I —d/2

m(q )= y(q )
[~( )+r]"2

in terms of which

L, , =gw(q) B 1 B'

By(q ) 2 B ( )By( — )

y(q )+—

where

A(q )=A(q )+r .

We introduce operators A ( q ),A ( q ) by

y(q)= A (q )+A( —q )

2

(A3)

By(q )

and A (q),A (q) obey boson commutation relations

[A ( q ),A ( q ')] =5 (A5)

and all other commutators vanish. We can then further
simplify the expression (A2) for L

~ to

L& ———QA(q )A (q )A(q ) . (A6)
q

We can similarly define operators A(Q), A (Q), and in
terms of which we can write the first part of L3 [Eq.
(2.10c)]. The creation and destruction operators
A (q ),A(q ) generate eigenfunctions of L& and p, in ex-
actly the same way as happens in the quantum-mechanical
harmonic oscillator, for from (A6), it follows that p, satis-
ies

A(q )p, =O, (A7)

and this is simply a definition of the vacuum state
~
0)

for these operators. Hence

~ [A ( q )A ( q ')A ( q ")A t(q '")]

=p, Jdy( q )A( q )A ( q ')A ( q ")A ( q '")p,

=p, (0 iA (q )At(q ')A(q")At(q "')
i
0) . (A8)

Terms like this arise in the evaluation of Eq. (3.21), and
this technique will be used extensively in Appendix B.
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Equation (3.21) implies

Bu(t) =PL3v (t) PL—3L ( [Lz+{1—P)L3]u (t) .

First let us rehst the terms of Lz and L3 as follows:

Id/2I —I/2

g A'"(- )v ~'( -—)(I.'"+L'"+L."'+I."')=uH
(2n +1)"

[see Eq. (3.12b)] where

Lz" ——m (Q))m(Qz)m(Q3)5
q, g I+ Q 2+ Q 3

'

Lz ' ——— I u l "~ A 'i (q ')[2 (q ')+2 ( —q ')]m (Q&)m (Qz)5

Lz ' ———,
' I ul [A(q~)A(qz)] '~ [At(q&)+3{—q&)][At(qz)+2 {—qz)]m (Q~)5

3/2 —M/2

I A(q i)A{qz)A{q3) j '"[~'(q i)+~ ( —q ~)jl~'(qz)+~ {—qz)][~'(q3)+~ {—q3)]5--

L3{Q)= g A&(Q) m(Q)+ —
z m(Q&)m(Qz)m(Q3)5- - +

5m(Q) (2n+1)' am(Q ) Bm (Q )Bm ( —Q )

2" +1 {~ q» Bm(Q)

~ m(Q~)m(Qz)A ~~z(q )[~t(q )+~(—q')]5--
2 QI+g2+q' '

~3 = —,I'el m(Qg)[A(qg)A(qz)] ' [A t(q, )+A( —q, )][A t(q, )+A ( —q, ) ]5
Q, Q)+qj+q2 '

I 3/2

[A(qg)A(qz)A(q3)] '~'[& t(qg)+A ( —qg)][A t(qz)+A ( —qz)][A t(q, )+A( —q, )]52 2 Q~ q I+ q2+ q3

and we note that [see Eq. (3.12a)j

P= X & [m(Qi)m(Qz)m(Q3)5- - - - +~3"+~3"+~3"],(2n+1) 5m(Q) ~ ~ j+&2+~3

where we have also used the relation (A4) defined in Appendix A. We now consider each of the contributions to expres-
sion (3.21).

(1) PL3u (t) is the first contribution we will discuss. Note

u(t) =Pp =p,p(m(Q ))

PL3v(t) =p, JL3dy(q )p,p

where ( ) denotes the average over the stationary distribution of

they�

(q).
Consider the first expression on the right-hand side of Eq. (83), p, {W3)p. We note from Eq. (2.10a) that they(q)

comprise an Ornstein-Uhlenbeck process. As all odd motnents of such a process are zero, the only contribution to the
first term will arise from W3 ', i.e.,
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(~ )
Q y (~(z))

(2n +1)" 5m(Q

3u I ol a
m(Q )[A(q&)A(qz)] '~ ([A (q()+3 ( —q))][A t(qz)+A ( —qz)])5--

2 2n+1 ~ (jm(Q) Q, Q, +q, +q,
q QI

([A (q))+A( —q()][A (qz)+A( —qz)]) =(0~ [& (q()+&( —q()][A (qz)+A( —qz)
~

0)

=6—q& q2

we find

uI l(~(z) ) m(Q()5- - g A '(q ) .
2n +1 Bm(Q )(Q)

Q Q( (84)

We may also set

g A '(q ) =- J,A '(q )d"q,

where A=2m. /I,

(85)

of the operator D J, K

gD-, -f-, (Q)= —&(Q)f-(Q),
J

(89)

A(q )=A,(q )+r=q +r
for small q. An integral similar to (85) was evaluated by
Wilson and Kogut, and they set

0 ddq g 1 0
(2~) "f, - —,c=4f d q .

&b 'q +r 4 0. +r Ob

(86)

(Note Wilson and Kogut set the upper cutoff of the in-
tegral equal to 1; we set the upper cutoff equal to Q.)

Thus, using (86) and (85), Eq. (84) becomes

(W3 ') = —,
' uI'o g —m(Q))5

gm(Q) ~ ~) 4(Q +r)

The expression (87), however, is still expressed in Q space,
and to compare this transformed expression with the orig-
inal Fokker-Planck equation (2.4) we need to invert (87)
to an equivalent coordinate or J space.

Rather than invert to the original j space via transfor-
mations (2.7), we introduce a new coarser-grained J space,
in terms of the Q modes. (Such a transformation has been
previously discussed by the authors. ' )

where the A,(Q ) are as defined in (2.6d). The eigenfunc-
tions are orthogonal as in Eqs. (2.6e) and (2.6f).

We invert (87) using the relations

m-= m

Q

m(Q ) = g f-(Q )m- .

(810)

Using (810) in (87) we find

8(Q +r) - Bm--
(811)

2%+1m- =m
2n +1 (812)

where b =(2n+1)/(2N+1) is the blocking ratio. Thus,
using 8(12) in (811),we find

PW3U(t)=p, (&3 ')p

Also, to ensure the variable mJ describes the macroscopic
magnetization per J cell in the same fashion as m~ de-
scribes magnetization per j cell in the original system, we
set the scaling'

Transformation to coarser-grained space

We now define the eigenfunctions, '

3p uI oc

&(0'+ ), 5-
J

(813)

f-(Q)=(2N+1) ~ exp(i J.QL),

where

Q, eA(N),
A(N) = [ N, . . . , N Im/(2n + 1)l, —

J;C [ N, . . . ,NI—

(88)
Consider now the second expression on the right-hand side
of Eq. (83),

p, «, (Q))P.

Equation (82) shows that we need only invert this above
expression to J space, as it involves only Q modes. Using
Eqs. (88), (89), and (810) we find
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PL, (q)U(I) =&,«3(@&P
8

=Pg g D~ ~III~+&g IH~
-+ 3iII ~ ' ~ 3III~JK. J J I

3 ~0 8+up I-, + d g 2 P,
J I J I

where we have used the scaling relation (812).
(2) Finally, we evaluate the second expression of Eq.

(3.21)
—P[~3+L3(Q )]L I

' {L2+{1—P)[~3+L3(Q )]I U(I)

Noting that

—PL3(q )L I
' IL2+{1—P)[~3+L3(g )]ID(I)=0,

i.e., P commutes with both L3(Q) and L I
' and gives zero

when applied to the L2 and (1 P)—terms and

(1—P)L3(Q )U (I)=L3(g )(1 P)P—P

=0 (P =P) .

Wc fllld tllat, tllc cxprcssloII dlscusscd III (2) II11pllcs

—PW3LI '[L,+(1—P)W3]U(r) .

As previously discussed, expression {2) involves expecta-
tIon values of b~son op«at«s. As all odd moments are
zero wc find the only nonzero contributions arising from
(2) a«discussed in the following.

Thc lIneal drift terms arc as follows:

Id/2I —1 /2

(i) — g Wp'L, ' A'/ {q ')3/2At{ —q')L2 'U(t)
(2n +1) - gin(q ) (2n +1)d

(Q, qI

1 d
/21 —I /2

2 2(ii) „g W'3"L I
' A'/2(q )V 22t( —q )Lz"U(t) - —18@,u 1 ~i g—

aI= +[A(qI)+A(q2)+A(qI+q2)] '[A(qi)A(q2)] '-0(~

Cubic drift terms

The cubic drift terms are as follows:

Id/21 —]./2

(iii) P
d g M~3"LI '

d
A'/2(q )v 2/(t( —q )L2 'u(r)=0.

(2II +1) - i)irI(g ) (2n+1)"

g(d/2I —]./2

(iv) P g W' 'L ' A'/ (q )3/2At~ —q )L2"U(t)=0.
(2n +1)" - gm(g ) (2n +1)

Terms (III) and (Iv) are both zero as the expectatIon, values generated give risc to 5 fllIlctlolls of tlIc type ~

are clearly not allowed.
The only contribution to the cubic drift term is

Q oQI d/2I —1/2

(v) P
(2n+1) d

~(2)L —IAI/2(~ )v/~t( )L(2) (I)
{o q) Bm(Q)

u 9gIO
2d d + ~(QI)[A(ql»(q2)1 '"&- - ~(g', )m(g,')AI/2(q )A-'"(q )(2n+1) 21d g~(q)II~q q I

PPl 9)+q)+q2

X ([A (qI)+A( —qI)][At(q2)+A( —q2))L, '
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Evaluating the expectation value, (v) becomes

2
Q ps~0 a

m(Q))m(Q ) )m(Qz)5- - -, -, [(2n +1)l] g 2A '(q ')[A(q ')+A(q '+Q', +Q2)]—2(2n +1)" - gm(Q )IQI
Q Q)+Q )+Q2 q'

Noting that Q ) +Q2 && q' - A(q '+Q &+Q2) =A(q '), we see that

[(2n+1)l] "+2A '(q')[A(q')+A(q'+Q')+Q2)] '=[(2n+1)l] ~+A (q ) ~(2') df, d"q .
nb (

(q +p)

Again, following Wilson and Kogut, ' we set

(2m), d q
1 d C 1

nb —) (~2+r) 4 (~ +r)
0

where c =4 d q and inverting to J space, we find that (v) becomes
Qb

9p, u I ()c

8(&'+ )' ()J J

Fifth-order drift term

The fifth-order drift term is given as follows:

Q j. p
2~—1/2

(vi) P c Id~2 p ~(3"L) 'A'~ (q )v2A ( —q )L2 U(r)= —3p, u (2n+1) t a2+ m Jp,
(2n + 1)

( q )
Bm(Q ) am-,

%here

3Q d
a =[(2n+1)l] g A '(q )=(2~) f

—+
nb (q 2+@)q~Q

i.e., the sum over the q is extremely restricted in this case and for large b we expect the sum a2 to be verY small in com-
parison to other te~s. Finally we obtain the noise terms from expression (2)

Noise terms

The noise terms are given in the following:

2

(vjj) p g ~'3"L) '(1 P) P—'3 'U(r)=0 .
(2n +1) Bm(Q ) Bm(Q')

2

viii) —p g ~(3 'L
(
—'(1 P) ~'3"U (&)=0 .

(2n+1) (o )
Bm(Q) ()m(Q)

These terms are zero for the same reason as given for terms (iii) and (iv)

2

(2n +1)" - ()m(Q )

8 (]) 9
2

~3 U (r) =- 2p, u I 0(2n + 1 )+ b a3 g 2 mJp
Bm(Q') Boz J

[(2 + 1)/]
—1+3 O A 2(q ), i.e. a is negligible in comparison to other parameters [see (»)]

Q

2u y () ~(2)L —1

(2n+1)",-, -„am(Q )

(2) Ps Oc () —2 ~9u 2

gm(Q ~) 161 b (Q +r) ()m
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where

c =4,d'q .

2
t) t) t)

where

a4 [( n + 1)l] g [+(ql)+(qz)&(qi+ qz)] [+(ql)+~(qz)+«qi+ qz)]

0{l—zd+s(1 bs —zd))

Combining all these results, we find expression (3.21) becomes

t) U t)p
=lzs

~
=Ps '

J, K

3Q I pc 18Q I pcr+ —18u I"~&— m-
8(Q +r) 64(Q +r)

9u 1 pc
z z m 3u —(2n+1) l azm

2 9Q c+ d g —,'+u 1 oa4+ 3m-+ —', u (2n+1) l a3m- p,
(bl) -, Bm-', 16(Q +r)

(B15)

where D- is the difference operator in the coarse-grained J space, defined by

gD-, -f-, (g)= —&(Q)f-(Q)
J
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