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We develop a stochastic theory of rapidly diffusing spatially distributed systems. Discussion is

within the framework of the cell model, in which the system is described in terms of a lattice of n

cells. Utilizing projector-operator techniques, we formalize the method of homogenization of such

systems. That is, by projecting out high-q Fourier modes in the adiabatic limit of large diffusion,

we map the system to one defined on a coarser-grained lattice. We thus demonstrate a "blocking"
procedure in the cell model. Finally we consider a simple hydrodynamic model and show that near
the point of convective instability projection-operation methods predict the same amplitude equa-

tions for the slow hydrodynamic modes as does the method of multiple scales.

I. INTRODUCTION

The description of spatially distributed fluctuating sys-
tems by means of stochastic partial-differential equations
is a deceptively simple way of representing extremely
complex behavior. It is usually considered reasonable to
divide the system into many small cells, and to model the
system by means of some linear transport operator, which
connects adjacent cells, to which is added the nonlinear
part of the system, which occurs locally. Such a descrip-
tion gives rise to a set of many coupled stochastic dif-
ferential equations, to which can be written a correspond-
ing many-variable Fokker-Planck equation. In this form
there are no difficulties of interpretation, a many variable
Fokker-Planck equation being a well-understood concept.

The problem which immediately arises is the influence
of the cell size, for the cell is an arbitrary construct, and
its size should not have any effect on measurable results.
It is tempting to let the cell size go to zero, but whenever
any degree of nonlinearity exists, this gives rise to infini-
ties, and the theory thus requires renormalization. It is
not entirely clear that this renormalization has any physi-
cal meaning, since in all physical systems the cell size can-
not be made as small as the size of a molecule; at that
stage noncontinuum effects—those of the very atomistic
nature of matter —become important.

Physically, one expects the transport operator to enforce
a degree of homogenization in the system: The cell size
should be chosen small enough so that one can guarantee
that the concentration (which we shall, for simplicity, call
the fluctuating variable) is the same across a number of
cells. The main function of Secs. II and III of this paper
is to formulate and prove the validity of this concept.

Section II shows that for D sufficiently large, any finite
system can be regarded as homogeneous; that we can con-
sider the whole system as one large cell. This result was
first noted by Kuramoto, ' and has already been shown

with complete rigor by Arnold in a slightly narrower
context —but it is included here for completeness.

Section III gives the more complete result: It shows
how to go from a small-cell description to a description in
terms of larger cells by eliminating the modes which are
rapidly damped to zero by the transport operator. It
shows that provided a certain combination of transport
operator, cell size, and local reaction rates is chosen suffi-
ciently large, the description is independent of cell size.
That is, the cells are indeed artificial constructs, having no
genuine influence on the observable properties of the sys-
tem being described.

The methods used in both of these sections are similar,
based on stochastic adiabatic elimination of the small-
wavelength modes, according to methods developed in
Ref. 3, referred to as I in this paper.

Finally, in Sec. IV we extend the same method to the
case where the eigenfunction of the transport operator
with eigenvalue zero corresponds to nonzero wavelength.
The most famous example of this occurs at the Benard in-
stability in hydrodynamics, which has been treated deter-
ministically by Newell and Whitehead and others, ' and
stochastically by Graham. ' The limit taken in this case
is not that of large transport operator; rather it is a limit
of closewpproach to an instability point, and there are, in
principle, substantial technical differences between the
deterministic treatment and the stochastic treatment.

Both Newell and Whitehead, and Graham, used multi-
ple space scales to derive their amplitude equations and
Graham's amplitude equation is a stochastic version of
that of Newell and Whitehead. We use the same tech-
nique in Secs. II and III to derive for a simple model the
same results as Graham, which turn out to be applicable
under the same conditions as he assumes. (The adiabatic
elimination technique corresponds to that used by Cross
deterministically. ) Thus we show the equivalence of sto-
chastic adiabatic elimination with the method of multiple
space scales.
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The fact that the stochastic result corresponds to a fluc-
tuating version of the deterministic result is the result of
an assumption that the fluctuations vanish as e j as e, the
deviation from the instability point, goes to zero. Strictly
speaking, this is an unjustified assumption —and it will be
attended to in paper III, which connects adiabatic elimina-
tion to the renormalization-group theory of critical phe-
nomena.

fj(q) ~ cos(qlj), (4)

A,(q) =4 sin
2

Clearly,

A,(q) & 0, q&0

where I is the cell length and q =rmlnl (r =0, 1, . . . , n).
Thus

II. COMPLETE HOMOGENIZATION
OF A FINITE-VOLUME SYSTEM:
REACTION-DIFFUSION MODEL

and

j(,(0)=0 .

We consider the following model system. We assume
d-dimensional space is divided into n cells of side length l.
Cells are labeled by indices (j,k) and xj represents the
number of molecules of a chemical X in the cell j.

The system is then described by the following Fokker-
Planck equation:"

k,j
Dkjxj

r

82
+ g a(xj)+.I

2
b'(xj) P .

~ Bxj.

The last two terms on the right-hand side of Eq. (1) con-
cern the chemical reaction process. The drift term a(xj)
describes the deterministic behavior of the chemical
system —its explicit form depends on the specific nature
of the reaction we are considering. The term b'(xj) de-
scribes noise in the system; that is, it concerns the stochas-
tic behavior of the system. The terms a(xj) and b'(xj) are
proportional to a rate constant, which we wi11 denote by ~,
characterizing the chemical reaction in question.

As it stands, this model can be considered as the
Fokker-Planck equation corresponding to a Poisson-
representation formulation of a chemical master equa-
tion. ' To correspond to the more usual chemical
Langevin equation, the second-derivative term should be
modified to take account of diffusion noise. ' '

Molecular diffusion, i.e., transfer between cells, is
described by the matrix Dkj in the first term of Eq. (1). In
the simplest case, we consider a one-dimensional system
and assume that only transfer between adjacent cells
occurs. Thus Dkj is a simPle difference oPerator,

Dkj
/p

'(5j»1++k j—1 2~» j )
D

(2)

where D is the diffusion constant. (Rapid diffusion im-
plies D is very large in comparison to other system param-
eters. )

As mentioned in the Sec. I, to facilitate homogenization
we must eliminate the large-q modes. We thus need to
transform Eq. (1) to q space. To this end we introduce the
eigenfunctions fk(q), such that

The fj(q) form a complete, orthogonal set,

gfj(q)fj(q') =&q q

and thus

xj ——g fj(q)x(q) .
q

To completely homogenize the system, we must adiabati-
cally eliminate all q modes except one, namely, x(0), i.e.,

x(0)=n ' g xj.
J

which is proportional to the total amount of chemical
present.

We adiabatically eliminate all other q modes by utiliz-
ing the projection-operator technique of paper I. This re-
quires a certain scaling of variables, and as will be later
apparent, elimination of q modes is most advantageously
carried out in terms of the scaled variables y(q), defined
by

y(q) =x(q)~D, q&0 .

Thus, Eqs. (8)—(11) imply

x ~j
xj + (12)

where x= g.xj total amount of chemical substance inj J
the system and

z, = g f, (q)y(q)
q (~0)

gfk(q)f, (q) =bk, j .

Relations (7) imply f» (0)= n ' . These properties
[(6)—(8)] are valid in any number of dimensions, and are
all that are required in the remainder of this section.

Equation (1) is thus transformed to q space via the ex-
pansion

x(q)= g fj(q)xj

QD» f (q) =—DA(q)fk(q) . .
J

(3) We use Eqs. (9) and (12) in Eq. (1) to write the Fokker-
Planck equation in q space as

For Dkj as defined in Eq. (2) and with reflecting boun-
daries at the end walls of the system, the eigenfunctions
have the form

B,P(x,y ) = [DL & +~DL2(D)+L3(D)]P(x,y ), (13)

where



29 ADIABATIC ELIMINATION IN STOCHASTIC SYSTEMS. II. . . . 2825

2

g ~(q) y(q)+ g g, f;(q)f, (q')b-
(~o) By q , , (~o~, y q y q'

q (&0)

(14)

L2(D) = g g fj(q) u —+ ' + g g f, (q)b —+
(~o~ By q

J n D Bx .
(+0~ By(q) J n D

2
+ g g B ( )B ( p) fj (q)fj(q )b2

yq yq n D

where

"b'(xj ) =b
n D

=b —+D '"b,-—,z, +O(D ')-
n n

and

B2
L (D)=g a —+ +,b —+

Bx n D Bx2 n D

I

in the global description of Eq. (18b).
At this point, we have the following comments.
(i) Our method of proof has relied on the fact that the

coefficient D was much larger than all other system pa-
rameters. This requires

DA, (1)»~, (19)

PL2P =PL2 ——0 .

Conditions (17) are all that is required to carry out the
elimination procedure as described in paper I.

Following such methods, we find in the limit of rapid
diffusion, D~ oo, Eq. (13) becomes

BP(x) = lim I[(L3(D)) PL2(D)L( L2(—D)]P(x)] .
—1

Bt D~~

(18a)

Here ( ) is an average over the stationary distribution
of L&. It is readily checked that, since L2 contains only
terms in which BIBy(q) stands to the left, PL2(D) van-
ishes, so that the resultant equation is

BP(x) = lim [(L3(D))P(x)]
Bt D

x 8
a —+- b

Bx n

x P
n

(18b)

The factor n results from summing over all n cells in the
system. Elimination of the inhomogeneous modes results

We have written the Fokker-Planck equation in the
form of Eq. (13) in order to use the elimination technique
discussed in paper I, for the powers of D written in (13)
give the leading order of each term as D +oo. Tha—t is, we
define the projection operator P,

Pf =P, J g dy f(x,y),
q (&0)

where P, is the solution to the stationary equation

L1Ps ——0

and f is an arbitrary function.
From Eqs. (14) and (15) we see

PL1 ——L1P=0
and

where z is the reaction rate for the chemical reaction we
are considering. As A,(1)-(n/nl), .Eq. (19) becomes

1/2
D

(20)

where L'=nl is the total length of the system.
The left-hand side of Eq. (20) represents the root-

mean-square distance traveled in the time scale of the re-
action. Thus, Eq. (20) shows that the elimination of q
modes is valid only if this distance is very much greater
than the length of the system —which is equivalent to re-
quiring that diffusion homogenize the system.

(ii) If the Eq. (1) is viewed as a Poisson-representation'
Fokker-Planck equation, corresponding to a multivariate
master equation, then Eq. (18b) is the Poisson-
representation Fokker-Planck equation corresponding to a
global master equation. We thus recover Arnold's result:
That in the the large diffusion limit the local master equa-
tion goes over into the global master equation.

III. COARSE-GRAINING OF SPACE IN THE
REACTION-DIFFUSION MODEL

fk(q) = exp(ikql ),1

v'2n +1 (21)

We consider now the same model as in Sec. II, but in
this case we adiabatically eliminate so as to retain a band
of small-q modes. The elimination of the larger-q modes
results in a loss of spatial resolution and this is equivalent
to a coarse-graining in space.

We start with almost the same Fokker-Planck equation
as before, Eq. (1), and assume the simplest form for the
diffusion operator D~k, Eq. (2). This time however, we
choose eigenfunctions appropriate to periodic boundary
conditions, i.e.,
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2rm r= —n, —n+1, . . . , n
(2n+ 1)l '

and this now corresponds to a system with (2n+1) cells
of length 1. Thus where we wrote n in Sec. II, we must
now write (2n+ 1).

In order to define the system functions a(x) and b(x) in
a way that is invariant under blocking, we define band
limited polynomials as linear combinations of quantities
which we shall write as [xj"],and which are defined by the
following procedure. First, we define

x(q) = g f~*(q)xj.

where

A,(q) =4 sin (ql/2)/I

The eigenfunctions have the orthogonality relations

g f1"(q)fj (q') =&q, q
J

gf,'(q)fk(q) = 6j,k

%e now Founer expand as

x(q)= g f*(q)x&,

(28)

(29)

(30)

and then we define

[xj"j=
Q

I II
,q, q, q, . . ~

(2n+1) '~ exp(ij Ql)

X q+q'+q"+, Q

&&x(q)x(q')x(q")

xj ——g f~(q)x(q) .

In this case however, instead of eliminating all modes
but one [Eq. (10)] as in Sec. II, we now wish to retain the
band of modes

x(Q), Q ER(N) =
t N, . . .—, NI m/[(2n+1)l] (31)

where

Q =q+q'+q" + +2Nrr/1 (26)

At first glance there appears to be no difference between
[xj"] and xj". There is a difference, however, which occurs
in the Kronecker delta, which is zero except when

Q =q+q'+q" +
whereas a similar expression for xJ' would contain a
Kronecker delta which was zero unless

X&&n .

We note that the diffusion term in Eq. (1) maps to q space

Dkjxj~ Dg A,(q—) x(q)
8

, k Bxk ' ', ax(q)

DQ 2, — x(q)
Bx (q)

for any integral N & r. We then assume that the drift and
diffusion constants are of the forin

Dg A(Q) — x(Q) .
QeA(N)

(32)

a(x;)=[x ],
b(xj)= [x,'],

(27)
As mentioned in Sec. II, the terms a(x) and b(x) are pro-
portional to the rate constant x. Thus the correct D
dependence of L3 requires N to be such that

and the method for any linear combination of these forms
follows by linearity.

There is a physical difference introduced here. The
simple monomial xJ' contains terms in which
q+q'+q" + add up to a value outside the range of
possible Q given in Eq. (22). In fact, the use of [xj"] is ap-
propriate where the lattice index j is regarded as a discret-
ization of a continuous index —a formulation in terms of a
continuous index would give a formula for xj' much like
that for [xj'], but the range of Q, q, q', q" would be infinite.
Discretization is imposed by band limiting of functions,
and this then yields [x;"] where x;" occured in the continu-
ous formulation. We then find that Eq. (2) becomes

XDkjfj(q) = D~(q)fk(q)—

Using Eq. (23) we find that Eq. (28) implies
]./2

N z l
(34)

Again we anticipate the form of L i, Li, and L3 required
for elimination of high-q modes and change variables to
y(q) defined by

x(q)=, q ER(N)y(q)
D

and y(q) is to be eliminated.
Following the same procedure as in Sec. II we find, in

the limit B—+ m, the reduced Fokker-Planck equation

I= ' g gf, (Q)
&

—
I g f, (Q')x(Q') " —g A, '(Q) x(Q)

Q
J

82+ g g fj"(Q)f,(Q') gfj(Q")x(Q") ',P,
QII

(35)
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where we have used the explicit form of a(x) and b(x) as
defined in Eq. (21), and A, '(Q) =A,(Q)D, hence the term in-

volving A, '(Q) is the same order as the other terms.
We now wish to transform Eq. (30) back to a Fokker-

Planck equation in coordinate space. The elimination of
the large-q modes has effectively mapped the system to a
new coarser-grained coordinate space. Consequently, the
system is now characterized by a lattice of N, rather than
n cells, where N «n and (N/'n)-O(D ' ).

We thus expect to be able to write our Fokker-Planck
equation in the new coordinate space in terms of the sys-
tem variables xz, where J refers to one of the N (larger)
cells. Hence we now consider a new basis, spanned by the
eigenvectors

Consider first the transport term of the drift;
transform this to J space via the eigenfunctions (37):

X ~
~'«»(Q) = g X f/(Q)~'(Q) +fk(Q)x«

g Bx
Q J BXJ k

DJ,«x«
J«BXJ

where Dq« ——g f/(Q)f «(Q)A, '(Q) . (38)
Q

The nonlinear part of the drift becomes

g g f,'(Q) g fi(Q')x(Q') "

fz(Q) = exp(iJQL ),
2N +1

[Q~R(N)] andL= 1 (36}
2%+1

and thus write

~ Q, gQ„
[x(Qi) x(Q„)(2n+1)]

(g) Bx (2n + 1 )(r + 1)/2 '

(39)

Inverting to J space [using (37)] gives
XJ= J X

Q

x(Q)= gf z(Q)xJ ~

J

(37) XJ XJ J J 1 J
(Q) (~}

Noting that the eigenfunctions fJ(Q) obey orthogonali-

ty relations similar to those of the fj(q) [Eqs. (29)] we use

Eqs. (37) to transform Eq. (35) to the coarser-grained
coordinate space (J space).

I

5 Q, gQ„
p=1

X
(2n+ 1)(r —i)/2

Using the explicit form of the eigenfunctions we find

(40)

a
xJ, x/ g exp iL JQQ& —g J&Q&

IJI J IQI p p,

1 1

(lxg ' " (2n + 1) (2N+ 1) +(xg ' ' ' x/ )

1

(2n + 1)(r—1)/2(2N+ 1 )(r+) )/2

Summing over the Q's gives
t,r —1)/2

8
[ r] 2N+1

BxJ 2n +1

&& g exp[iLQi(J Ji)]g—exp[iLQz(J —Jz)] g exp[iLQ„(J—J„)]. (41)
Qi Qg Q„

I

[Note that the range of the Q& is restricted by the delta
function in (40), to be such that their sum is in R(N). )

(42) Using an order of magnitude estimate, we show (see Ap-
pendix A)

Similarly, we find the diffusion becomes
2

g g f,'(Q)f,(Q'), g fj(Q")x(Q")

2N+ 1

2n +1

' s/2

i [xJ]
BXJ

We thus find the Fokker-Planck equation in J space,

D 2%+1
t

'~ 1/2
2n+1

XJ =X
2)V +1

where x is the concentration of the chemical substance.
Thus, to obtain an equation in terms of the concentration,
we scale the variables as

' 1/2

(45)
2n +1

which is proportional to the concentration of the chemical
substance, and Eq. (33) becomes

a a
D«zxJ+ g [x g]

s/2
2N+1 ()

2 J (46)
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where

DKJ Qf J(Q)fk(Q)~'(Q) .
Q

Clearly,

tern variables U,

U= e' Uo(ri, r2)+eUi(ri, r2)

+E ~ U2(r~, r2)+ .

where r ~ and r2 are two space scales, and
47

2 E 71
1/2

(48)

(49)

Thus, in the limit of rapid diffusion we have eliminated
the large-q modes, and thus have transformed to a system
defined on a coarser-grained lattice. The elimination pro-
cedure is thus equivalent to a blocking of the cells of the
original system.

Hence the Fokker-Planck equation (46) describes the
same system as does Eq. (1), but in a coarser-grained coor-
dinate system. Note the following.

(a) This so-called blocking leads to an effective reduc-
tion in the noise. That is, the diffusion coefficient is mul-
tiplied by a factor of Nln which, from Eq. (34), implies
the noise is now of order D

(b) The result of this section gives the basis for the ap-
plicability of the cell models of such continuum phenome-
na, for the reduced Fokker-Planck equation is valid when

nl
D &&v

(where a is again a characteristic reaction rate), i.e., when
diffusion homogenizes the distribution within one of the
coarse-grained cells, during the characteristic reaction
time. Thus although cells of arbitrarily small size may be
chosen, the elimination of high-q modes enables a coarser
description to be written in essentially the same form as
originally written.

(c) There is, however, a difference. The definition of
Dzz by (47) gives the same form as Djk only if
k(q) = —q . For any reasonable Dt j it turns out that A,(q)
has this form for small q: thus there is a degree of univer-
sality. The situations in which A,(q) is not approximately
—q for small q give rise to the phenomena of Sec. IV.

(d) If the system is originally described in terms of xj",
we find that the blocking procedure still gives the result
above, i.e., a description where xj"~[xz]. Thus, in block-
ing, a lattice system approaches a discretized continuum
system, a result which is obviously reasonable.

IV. APPLICATION TO HYDRODYNAMIC-LIKE
SYSTEMS

We now extend the methods of the previous sections to
the study of the kind of fluctuations which occur about
the critical point of the convective instability. Concerning
the deterministic motion of a fluid heated from below, it
is known that near the convective instability, description
of all relevant hydrodynarnical variables can be made in
terms of a slow mode. * This mode is characterized by a
slowly varying amplitude, the behavior of which yields in-
sight into the critical nature of the system.

An approach commonly adopted in such a determina-
tion is the method of multiple scales: ' ' ' That is, a per-
turbative solution to the hydrodynamic equations is
gained by assuming an asymptotic expansion in of the sys-

The perturbation parameter e represents the deviation
of the Rayleigh number R from its critical value R, .

A derivation of the slowly varying amplitude equation
using this method in the 8enard problem has been
presented by Newell and Whitehead and Segel. These
approaches have been confined to a deterministic theory.

Graham' derived an amplitude equation corresponding
to that of Newell and Whitehead, but included as well the
effects of fluctuations in his theory. However, in order to
formulate such a stochastic theory, Graham found it
necessary to introduce noise terms in an essentially ad hoc
fashion. That is, to reproduce the same deterministic am-
plitude equations of Newell and Whitehead, Graham in-
cludes noise terms only at a certain order in the perturba-
tion expansion. We discuss this point later with regard to
a simple model.

In the following subsections we will show the
equivalence between Graham's application of the method
of multiple scales and the adiabatic elimination procedure
discussed in the previous sections. That is, we derive the
stochastic amplitude equations via each method, using a
simple hydrodynamic-like model.

The model, first introduced by Pomeau and Manne-
ville, ' represents a simplistic first approximation to a hy-
drodynamical system. As such it does not describe a real-
istic fluid, but displays the basic structure apparent in
most hydrodynamic models.

We note that an equivalence between procedures is ex-
pected, as Cross has derived a deterministic amplitude
equation for the Benard problem by projecting out the
slow modes in a manner similar to the adiabatic elimina-
tion method.

A Method of multiple scales

B,U=[e (a„'+q,')']U U, (50)

where U(r, t ) is a real hydrodynamical variable satisfying

at boundaries. The parameter e is proportional to the de-
viation (R —R, ), where R, is the critical Rayleigh num-
ber.

Using this deterministic model, Cross et al. derive an
amplitude equation for the slowly varying mode, using the
method of multiple scales. They consider only stationary
solutions [i.e., set B,U=O in Eq. (50)] and assume solu-
tions of the form

1. Deterministic amp/itude equation

Consider the following one-dimensional deterministic
hydrodynamic model
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U=A(rz)e (51)

lP(}1lwhere A{rz) is the slowly varying amplitude and e ' ' is
the rapidly varying part of the variable. They separate
space scales by setting e (e)~zv, +ev, +e'~zvz+ ) . (58)

a similar time scaling was adopted by Graham. '

With the use of Eqs. (53) and (57), the left-hand side of
Eq. (55) becomes

The derivative a„acts only on the rapidly varying func-

tions e '. Expanding Uas

U-.~"U +.U +.3"U +
they solve Eq. (50) perturbatively and find the zeroth-
order amplitude equation

4q(y4()+AD —~AO
~

Ao ——0, (54)
0

where Uo Ao(rz)——e '. We now wish to derive a similar
amp11tudc cquatlon~ but using 8 stochastic appl oach-
thus it is necessary to introduce fluctuations into the sys-
tem.

2. SItochastie ampII'tude equation

%c introduce an arbitrary noise term into the system as
follows: Eq. (36) becomes

a, V =[e (a„'+q', )'—]V V'+eT(—r, t), (55)

where T(r, t) is a Gaussian stochastic term satisfying

(T(r, t)}=0,
(T(r, t)T(r', t)) =5(r —r')5(t —t') .

As yet we have not specified the value of a in Eq. (55),
which indicates the size of the noise.

There is no physical reason to attribute any e depen-
dence at all to the noise, for its magnitude is determined

solely by the temperature through the statistical mechani-
cal considerations outlined by Landau and Lifschitz. '

Nevertheless, Graham' has introduced such a depen-

dcncc, with Q = 4, slncc this allow's 8 conslstcnt cxpRnslon
to be carried out in his study of the Benard problem. He
has been criticized for this' but has defended this choice
on thc grounds that, physically, the noise and e are both
small, and such an equivalence can make sense. The logi-
cal thing to do in such a situation is to expand in two
small parameters: this would yield a perturbative expan-
sion about the deterministic expansion like that of Cross
et al. '

In this papcx" wc wish to compare an adlabatlc cllmlna-
tion method with Graham's method, and shall therefore
preserve the e dependence. When such an e dependence
ls not; assumed~ wc ax'c lead to the study of nonclassical
phenomena, which will be dealt with in another paper.

%e assume the same expansion and scaling as Cross
et al. , i.e., Eqs. (38) and (39). However, as we are now in-
terested in time-dependent solutions, we must also incor-
porate thc time scaling

(a„+q()) Ui+4a„a„(a„,+q())vo ——0,
and for O(e ~

)

a,v, =- —(a„' +q,')'v, —4a„a, (a,', +q,')v,

—(6a„',a„',+2q,'a„', +v,' —1)v,

+T(rz, ~) .

(61)

Equation (60) is solved by setting

Ui —— Ao(rz, r)e +c.c.1 ~q, ,

3
(63)

Substituting Eq. (63) in Eq. (61), we find Eq. (61) is solved

by setting

Ui —— A i(rz, r)e +c.c.= 1 Egos)

3

Equation (62) is solved by setting

Uz —— [Az(rz, r)e ' '+Bz(rz, r)e ' '+c.c.] .
3

(65)

3lgoP)Then, requiring that terms proportional to e ' ' sum to
zero, Eq. (62) becomes

a,(doe ' '+c.c. )

= e '[4q(y4() —~AO
~

30+20+ T(rz, z)]

+C.C.

where we have defined

(66)

T{r,v)= [T(r,~)e ' '+T'(r, ~)e ' '] . (67)
3

We see that in the deterministic limit (where the left-hand
side equals 0 and 7=0) Eq. (66) is identical to the ampli-
tude equation of Cross et al. , Eq. (54). » Sec. &&B we
show how adiabatic elimination of large-q modes corre-
sponds to the method of multiple scales, as described in
this subsection.

Equation (58) shows that we must include a noise term
into the system, at least to order e, in order to produce
the correct time dependence in the problem. Noting also
that the space and time scaling, Eqs. (52) and (57), will
scale the magnitude of the noise (see Appendix B), we find
the appropriate value of a is —,. Thus Eq. (41) becomes

a,V =[e (a„+q—)z]V V3+e—3'"T(r, t) .

Using Eqs. (52), (53), and (57) in Eq. (58) we find the
following to order e ~ . For O(e'~ ) we get

(a„,+q()) Uo ——0, (60)
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B. Adiabatic elimination in hydrodynamicaI systems

We use the same model as in the previous method, i.e.,
Eq. (59), and thus include the same noise term as required
for the perturbative analysis. We define a new variable u

by

which corresponds to the first-order term in the perturba-
tion expansion of Sec. IV A. Thus Eq. (44) becomes

B,u=e(u u'—) (B—„,+qo) u+e'~ T(r1,t) .

Dividing the system into n cells and setting t=rle as
before, Eq. (51) corresponds to the cell-model Fokker-
Planck equation

a
Dk, u, $—~(uk )

ar e „.Buk '', Buk

B2
+ ~

—1/2y p

To enable the chmination of all other modes we set

u(q) =y(q)e'~4, q ER .

Hence writing

uj = g fj(Q)u(Q)+c'~ tuj,
Q

tu;= g f,(q)y(q),
q+R

the Fokker-Planck equation (69) becomes

(77)

where uI, describes the system variable in the kth cell, Dkj.
is the difference operator describing the term (8, +qu) in

Eq. (68), and again we use the band-limited polynomial
orm

(79)

Pl'cvlollsly, wc used thc method of lllultlplc scales to
project out the fast hydrodynamic modes, and thus ob-
tained an equation of motion for the amplitude of the
slowly varying mode. We can achieve the same end by the
projector-operator technique to eliminate the fast (large-q)
modes and thus map the system to J {r2) space.

Once again we transform the Fokker-Planck equation
to q space by defining the eigenfunctions fk(q) of Dkj as
in Eq. (21). However, the eigenvalues now have the form

I.
~
———g A,(q) — y(q)

~y (q)

+ g X fk(q)fk(q')
&k q, q'(FR

L2=2X X Xfk q ~
f~(Q')

k qtszg ~y q

Lz=g g fk(q)

A,(q) =

t'

4 sin
2 —go

X~ g fk(Q)u(Q)+c'~ tuk

Q

We transform Eq. (69) to q space via the expansion

uj= gfk(q)u(q),

u(q) = g fJ*(q)u,

(72)

L z'= Q gfk(Q)
g

r

X&2 g fk(Q)u(Q), c'~"tuz
Q

As in Sec. III, %'e wish to eliIQinate 811 g modes except the
u(Q) where the Q satisfy

e 'A,(Q)-1 (73)

and so produce the correct form for 1.3
Equations (71) and (73) thus imply Q has the range

+q, + ( N, N+1, . . . , N)—, —(74)
277

{2n+1)l

+ g g fk(Q)
&

u g fk(Q')u(Q')
k Q

Bu g

+& ' 'g Qfk Q)fk(Q')~ ~, , (g4)
k g', g
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a g fk(Q)u(Q)+e' 'tug —g A, '(Q) u(Q)
g B

=a yf (Q)u(Q) +&' a2 yfk(Q)u(Q) e'

. Q Q

I,'(Q)—: =4q&Q /e .lt, (O)

We define the projection operator

P'f =P, f g dy(q) f(y),
q&R

(86)

(87)

+ y gfk(Q) ~ Xfk(Q)u(Q)
k Q

B2
+ e g g fk(Q)fk(Q')

~ (Q)g (Qi)
7 (88)

%c now w1sh to invert th1s cquat1on and 1cwritc it as a
Fokker-Planck equation in J space.

First, we note that Q has the range

+qu+ ( —X,—%+1, . . . , X)
(2n + l)l

where P, is the solution of L &P, =0.
Thus

(i) L)P'=0;
begin with derivatives of y(q),

P'I.,=I"1.2 =0;
(iii) [P',L3]=0;

and Eqs. (83) and (84) show that L z' is O(e '~
) to highest

order.
Conditions (i)—(iii) are all that is required to carry out

the elimination procedure, and in the limit e—+0 we find
the Fokker-Planck equation becomes

and thus we must consider both the positive and negative

regions of the range. Hence we define,

fk ( Q) =— exp [ikl(+qo+ Q )],
&2n +1

(89)

where Q ha, s the range

[2m/(2n+1)l]( —~, —~+ 1, . . . , ~)
We transform Eq. (62) to p2 space (J space) in

similar to that followed in Sec. III. The transpo~ pa~ of
the drift transforms as before [i.e., Fq. (33a)].

Consider now the remaining drift terms. With the use
«Eq. (63) and defining

u-+(Q) = gfk'(Q)uk

the cubic dri ft term becomes

k ~ k 2 k
(g) Bu

gP gg fk+(Q)fk(Q))fk(Q2)fk(Q3» (Q»u (Q2)u (Q3)
(g} Bu+(Q)

+ gg -fk (Q)fk(Qi)fk(Q2)fk(Q3»'«~»'«2»'«3)
(g» &u (Q)

(90)

where g P denotes the sum of all the different arrangements of the u (Q)& u (Q)& etc.
Consider the first term of Eq. (64). The sum over k will generate all possible arrangements of the (+,—) in the fol-

lowing:

g expIikl([ —qo —Q]+[+qo+Q)]+[ ' qo+Q2]+[+qo+Q3])I .

Because of the values the k and Q can assume, this expression vanishes unless the argument of the exponential itself van-

ishes. The range of the Q is very much smaller than that of qo. For sufficiently large qo the vanishing of the argument
is only possible for those arrangements of the (+,—) in which all the qo cancel out. This corresponds to the term

u+(Q~ )u+(Q2)u (Q3) .

Thus Eq. (90) becomes

u+(Q~ )u+(Qq)u (Q3)(2n+ 1) '5(Q, Q ~+ Q2+ Q3)
(g) Bu (Q)

+ u (Q&)u (Q&)u+(Q, )(2n+1)-'5(Q, Q, +Q, +Q, ) (91)
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UJ = J U

Q

v'-(Q)= gf J (Q)vJ
J

where

(92)

(93)

fj(Q) = exp[ JiL(+qp+ Q )]
2N+ 1

(94)

We thus invert Eq. (91) to J space, following a similar
procedure to that of Sec. III, to find that Eq. (62) becomes

~'

dP B + 8+DJkvk+g (vJ+vJvJ vJ )
JE ~UJ Bu J

As in Sec. III, we introduce a coarse-grained J space in
which

tern tends to homogenize.
Complete homogenization was discussed in Sec. II, and

in Sec. III we showed that partial homogenization resulted
in mapping the system to a coarser-grained lattice, with
an effective reduction in system noise. In fact, given that
the coarse-graining procedure maps the system from a lat-
tice of n cells to one consisting of a lattice of N, larger
cells, the noise term in the Fokker-Planck equation is re-
duced by a factor of Nln -0(D 'J ), where D is propor-
tional to the strength of the diffusion process.

Analysis also showed that this coarse-graining pro-
cedure was equivalent to the method of multiple scales
used in hydrodynamical systems to derive amplitude equa-
tions for slowly varying system variables. In this case
however, blocking of cells did not follow from rapid dif-
fusion but instead from the asymptotic behavior of the
system around the point of convective instability.

2n+1 J gv J+()v J

where, as in Sec. III, we have scaled the variables as
1/2

2X+ 1
UJ=UJ =C

2)i +1

where c is the concentration, and

(95)
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APPENDIX A: RELATION BETWEEN
CONCENTRATION OF CHEMICAL SUBSTANCE

AND SYSTEM VARIABLES

DJx= g fJ(Q)f x'(Q)A (Q)
Q

Equations (74) and (75) indicate that Nln -e' and so
the noise term in Eq. (95) has no e dependence.

Thus the stochastic differential equations corresponding
to Eq. (95) are

B~+-(r2,r)= Lu ++—(v
+-u +v —+u—)-+&-+(r2, r)-,

We note the relationship

XJ= J X
Q

With the use of Eq. (25) this becomes

XJ — J ' X ~

Q J
(A2)

(96)

where rz is the coordinate of J space and L is the operator
corresponding to DJk in Eq. (95). We note that in Q
space

Lu =A, '(Q)u(Q)-4q—p 2 u(Q) .
Bl'2

Thus Eq. (96) represents essentially the same amplitude
equation as that predicted by the method of multiple
scales, Eq. (66). We have therefore demonstrated the
equivalence between the methods of Secs. IV A and IV B.

V. DISCUSSION

In this paper we have demonstrated the procedure of
eliminating high-q Fourier modes in spatially distributed
systems in the limit of rapid diffusion. The adiabatic
elimination techniques used were those described by Gar-
d1nei. '

This elimination in q space corresponds to an effective
loss of spatial resolution in r space. Thus we have sys-
tematically formalized the method of coarse-graining or
"cell blocking" in coordinate-space. Physically, coarse-
graining follows as in the limit of rapid diffusion, the sys-

We now assume xz is a constant, that is xz is equivalent to
the concentration of chemical substance in the system.
Thus we set

[using Eqs. (22) and (31)] and becomes

XJ= X
exp(iJ l)2n5g pv'(2n +1)(2N+ 1) ~&

]/2
2n +1
2%+1

(A3)

(A4)

Thus we scale the variables as
' 1/2

2%+1
XJ=XJ 2' +1 (A5)

and xz is then proportional to the concentration of chemi-
cal substance in the system.

XJ =X =C

where c is the concentration. Hence (A2) gives

1 1
xJ ——x g —exp(iJQL ) g exp( —ijQl )

2n +1 2n+1
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APPENDIX B: SCALING OF NOISE TERM

Consider the noise term from Eq. (41),

d'T{r,t),
where, at present, the value of a is undetermined. We assume the scaling

2833

thus from Eq. (42) we find

r2 I'2 P2 f2(e'T(rt)e'T(, r t )) ',(e''T=, —PT
~«/2 g «/2 g 1/2 «/2

&T{r,t) e'+3~ T(r2, r) .
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