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Adiabatic elimination in stochastic systems. I. Formulation of methods
and application to few-variable systems
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Adiabatic elimination of stochastic variables is formulated in a systematic and largely rigorous
manner, and applied to a variety of examples. Ambiguities in naive methods are resolved, and it is

shown that the resultant stochastic differential equation is not always to be interpreted as an Ito or
as a Stratonovich stochastic differential equation. A class of nonlinear examples is also treated in

which naive methods fail completely.

I. INTRODUCTION

There is a wide range of situations in theoretical physics
in which a well-defined separation of time scales arises,
where a class of variables varies on a time scale which is
characteristically very much more rapid than the time
scale of the remainder of the variables. When there is dis-
sipation, it is possible for the fast variables to relax to a
quasistationary state, in which the values of the fast vari-
ables follow the slow variables; as Haken would say, the
slow variables "slave" the fast variables.

The correct formulation of this problem in stochastic
systems is the subject of this paper. By a "correct" for-
mulation, I mean a method by which fast variables may be
eliminated from the equations of motion in some well-

defined limit. In deterministic systems, the limit is nor-
mally quite simple, it is when one time scale is very much
smaller than another. However, in stochastic systems,
there is quite a variety of limits available, and results will
depend on what limits are taken. The choice of a limit
appropriate to a particular physical situation is a physical
question, not a mathematical one—I do not wish to attack
that question here, but merely to indicate a method by
which one can clearly formulate limits, and derive results.

My aim in this paper is rather different from that of
most recent works on adiabatic elimination, which are list-
ed under Ref. 1. These works concentrate on developing
systematic perturbation series which can be, in principle,
computed to arbitrary accuracy. These series are normal-
ly applied to the problem of Brownian motion in a poten-
tial, and normally produce similar results. I do not wish,
in general, to go beyond a lowest-order calculation, but I
do wish to undertake adiabatic elimination in a wide class
of problems, and to show that the correct treatment of
noise in such elimination requires a modicum of care.
That is, I suggest that before developing a full perturba-
tion theory it is wise to look at the richness of the phe-
nomena which arise even out of the lowest-order terms.
In any perturbation theory there is always a measure of
complexity associated with higher-order terms —it is a
rare person who would go further than second order. As I
show in Sec. IIF, higher-order corrections yield non-
Markov processes with initial-value dependencies, and

therefore are very much less useful. However, in Ref. 2 I
have shown how higher-order corrections can be comput-
ed by my methods, and have computed the corrections for
the case of Brownian motion in a potential. Schuss has
also applied related methods to Brownian motion in his
book.

This paper, then, proceeds as follows. The elimination
method is developed in Sec. II: it is a reformulation of the
projector methods introduced originally by Zwanzig" and
Nakajima and since developed by a wide variety of au-
thors in numerous contexts, usually without any systemat-
ic analysis of the limits involved. Van Kampen com-
ments on these and, in fact, uses cumulant expansion tech-
niques to elucidate the limits involved, and Chaturvedi
and Shibata have adapted projector techniques in such a
way as to show their relation to those of van Kampen.

Section II develops the method, but applies it only to a
very simple problem: the white-noise limit of a differen-
tial equation driven by a nonwhite noise. This is a well-
known problem, and has been definitively solved by
Papanicolaou and Kohler. The method used here is less
rigorous but can be adapted easily to more complex prob-
lems.

In Sec. III a treatment of some simple "linear" stochas-
tic adiabatic eliminations is given. In these, the variable
to be eliminated occurs linearly in the equations, and the
naive elimination procedure commonly employed is given
by setting the time derivative of the fast variable equal to
zero. This naive method gives a stochastic differential
equation whose interpretation is ambiguous. We show
that this ambiguity is a very real problem: Correct pro-
cedures always give a Fokker-Planck equation which is a
possible interpretation of the naive method, but, depend-
ing on the particular problem being investigated, the result
may be that of the Ito, Stratonovich, or indeed even other
interpretations. Thus it is simply not true to say that the
Stratonovich interpretation of a stochastic differential
equation is the physical interpretation: A correct interpre-
tation can only be given when the detailed mechanisms
underlying the system are known.

Section IV treats "nonlinear" adiabatic elimination, in
which the eliminated variable occurs nonlinearly in the
equations. There is no naive elimination procedure avail-
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able in this case but, subject to certain conditions, it can be
shown that adiabatic elimination can proceed, and sensible
answers developed.

II. THE ELIMINATION METHOD

We formulate our method on a well-studied problem,
namely, the white-noise limit of a system with a fluctuat-
ing term. The most thorough treatment of this problem is
that of Papanicolaou and Kohler.

The system being studied can be written in the form of
a differential equation

=a(x)+yb(x)ao(t jy ) (2.1)

in which ao(t) has zero mean, and is the solution of a sto-
chastic differential equation

dao =3 (ao)dt ++28 (ap)d W(t) (2.2)

(S) dx =a (x)dt +v'2Db (x)d W(t),

where

(2.3)

D = f dt (ap(t)ao(0) ), . (2.4)

Equation (2.3) is equivalent to the Ito stochastic differen-
tial equation

dx =[a (x) Db (x)b'(x—)]dt +v'2Db (x)dW(t) . (2.5)

The problem to be solved is now best restated in terms of
the corresponding probability density function p(x, a, t),
which obeys the Fokker-Planck equation

The limit y~ co results in an effective noise term in (2.1)
whose correlation time goes to zero like y, and whose
amplitude increases like y. Thus the fluctuations increase
and become very rapid. We can show that in this limit
(2.1) becomes equivalent to the Stratonovich stochastic
differential equation

A. Introduction of a projector

A projector is introduced in a relatively standard way.
We assume a unique normalized stationary solution p, (a)
to the equation L ip, =0, and (as noted above) we require

(a), = f dap, (a)=0.
A projector P is defined by

Pf(x, a)=p, (a) f da'f(x, a') . (2.14)

By definition, then, P projects any function f(x,a) onto
the null space of L i. There are then the following proper-
ties of P which (except for the last) are essentia/ for the
use of the method:

P =P,
L jP =PL] ——0,
P= lim exp(Lit),

f—+ oo

PL2P =0,
PL3 ——L3P .

(2.15a)

(2.15b)

(2.15c)

(2.15d)

(2.15e)

Properties (2.15a) and (2.15b) are trivial to show. The
property (2.15c) follows if L i is a genuine Fokker-Planck
operator, from the fact that exp(L, t)f (x,a) is a solution
of the Fokker-Planck equation Bp/r}t =Lip, which there-
fore approaches the stationary solution as t~ oo. Equa-
tion (2.15d) is very important and follows from the requir-
ment (a), =0 for

PL3Pf (x,a) =p, (a)(L2 ), f da'f (a', x), (2.16)

B. Introduction of Laplace transform for asymptotic results

and the definition of L2 [e.g. , (2.8)] shows (L3),=0 if
(a ),=0. Property (2.15c) is trivial. The properties
(2.15a)—(2.15d) will be used again and again in this paper,
and are fundamental to the method.

Bt
=(y Li+yL2+L3)p,

where

(2.6)
For the Laplace transform we use the notation

f(s)= f dte "f(t) . (2.17)

L] —— 8 a2
A (a)+ 8 (a),

()CX

b (x)a,a

a (x),a
(2.9)

The evolution equation (2.6) becomes

sp(s) p(0) =(y L—i+yL2+L3)p(s) .

We now write

u(s) =Pp(s),

w(s) =(1—P)p(s)

(2.18)

(2.19)

(2.20)

a.(tiy') =a(t) . (2.10)

We want to show that the probability density function for
x, p(x, t), defined by

P(x, t)= f dap(x, a, t) (2.11) sv(s) u (0)—L3u(s) +yPL2w(s) (2.21)

so that u(s) and w(s) represent, respectively, components
of p(s) in the null space of L i and the complement of the
null space of Li. Using the properties (2.15) we readily
deduce

in the large y limit, obeys the Fokker-Planck equation
[equivalent to (2.3) and (2.5)]

and

sw(s) w (0)—L3w(s) +L2u(s)+ y( 1 P)L2w(s)—
Bp (3——a(x)+D b(x) b(x) p .
Bt BX BX BX

(2.12)
+y L& ( w). s (2.22)

We solve (2.22) for w(s), and substitute in (2.21) to find
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su(s) —v(0)=ILz+y PLz[s y—Li —y(1 P—)Lz —L3] 'LzIu(s)+yPLz[s y—Li —y(1 —P)Lz —L3] 'w(0) . (2.23)

Equation (2.23) is the fundamental exact equation from
which limits and asymptotic forms can be quite readily
deduced —at least formally. More rigorous results have
been given by Papanicolaou.

C. The white-noise limit

We take the limit y —+ oo in (2.23) and readily obtain

PLzu(s) =PLzPp(s) =0 (2.25)

using (2.15d).
The term PLzLi 'Lv(s) can be evaluated, because we

note

PLzP =0, because L i
'

only exists in the complement of
the null space of L„and Lzv(s) is in this complement
provided PLzu(s) =0, which is satisfied, since

sv(s) —v(0)=(L3 PLzL—i 'Lz)u(s) . (2.24) t exp L]t = —L~
'

1 —I' (2.26)

The result shows a "drift" L3, as well as a "noise" [by straightforward integration, and the use of (2.15c)].
PLzL—i Lz. This noise term is only well defined if Thus

l

PLzL, Lzu(s) =PLzL i (1—P)LzR)(s}
r

= —p, (a) f da' — b(x)a' —f dt exp(L i t) — b (x)a' p, (a')v(s) .
x 0 ax

(2.27)

Note that exp(Lit)a'p, (a') is the solution of Bf/Bt =L if
with initial condition f (a') =a'p, (a'): This is simply

f da"p(a', t
~

a",0)a"p, (a"), (2.28)

where p(a', t
~

a",0) is the conditional probability density,
so that p(x, t'

i
x', t') =5(x —x') . (2.33)

where p(x, t) satisfies Eq. (2.12), which is a Fokker-Planck
equation, involving only the x variable. This means that
we can define a reduced conditional probability,
p(x, t ~x', t') which is a solution to the Fokker-Planck
equation (2.12) subject to the initial condition

PLzL i Lzu(s) = —p, (a) b (x) b (x)

dt utuO, us

where

(a(t)a(0)) = f da'da"a'a"p(a', t
~

a",0)p, (a")

(2.29)

p(x, t
~

x', t')p, (a)

(2.30) which becomes

(2.34)

In what way is this reduced conditional probability re-
lated to the full conditional probability p (x,a, t

~

x', a', t')?
We first note that there are many solutions to Eq. (2.6),
corresponding to different initial conditions. The result
(2.24} gives an approximate solution

is the stationary autocorrelation function of a(t). Invert-
ing the Laplace transform, we find p(x, t) obeys Eq. (2.12).

D. Markov property of the resulting equation

5(x —x')p, (a) when t =t'

and the initial condition (2.35) is the same as that for

f da'p (x,a, t
~

x', a', t')p, (a'),

(2.35)

(2.36)

In the y~~ limit, for any choice of L), L2, and L3
[satisfying the conditions (2.15)] the initial value of w(0)
does not appear. This means that (2.24) gives rise to a
Markov process whose distribution function is p(x, t).
[Papanicolaou and Kohler show that the Markov proper-
ty arises even if a(t) does not form a Markov process, . but
satisfies only a weaker condition of being "strongly mix-
ing. " However, this stronger result does not generalize to
the more interesting problems which will be considered
later, since it does not provide an equation of motion for
a(t).]

In this limit

which is the conditional probability for x and cx, at time t,
given x' and that a' is distributed over the stationary dis-
tribution p, (a') at time t'. This means that p(x, t

~

x', t') is
obtained from p(x, a, t

~

x', a', t') by summing over the fi-
nal value a and taking the stationary average over the ini-
tial value a', i.e.,

f f dada'p(x, a, t
~

x', a', t')p, (a')

~p(x, t ix', t') as y —+OD . (2.37)

E. Choice of the projector

w(s)- y'L i 'Lzu(s)~0—

so that

p (x,a, t) -u (x,a, t) -p, (a)p(x, t),

(2.31)

(2.32)

The projection method used here has a strong resem-
blance to that used by many authors, which was originally
developed by Zwanzig in a statistical mechanics context,
and has since been widely used in quantum optics. ' In
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contrast to these more physical applications, in this
method the projector is not arbitrary. All of the condi-
tions (2.15) must be satisfied, for the following reasons.

(a) If condition (2.15b) is not satisfied, the equations
(2.21) and (2.22) are altered in such a way that no y ~ oo

limit exists.
(b) Condition (2.15c) follows automatically from (2.15b)

if p, (a) is unique, in other words, there is only one solu-
tion for P which satisfies (2.15b) if p, (a) is unique.

(c) The condition (2.15d) arises as an essential prere-
quisite for the limit y ~ oo to exist, for it says that L2 act-
ing in the null space of Li gives a result not in the null

space of L, . Thus L, 'L2P exists, and this means that
(2.24) exists.

F. Alternative dependence on y

Slightly less elegant asymptotic results arise if we con-
sider the equation

cedure is commonly used, which consists of a setting
da!dt equal to zero. Thus in this section the eliminated
variable and the remaining variable both influence each
others motion. The motion of a is fast compared to that
of x, so that a(t) is effectively a stationary process which
depends on x. This is the classical meaning of the concept
of an "adiabatic approximation. "

We now present three models, in which we find that the
resulting stochastic differential equation, though closely
related to a "naive adiabatic elimination, "may, in turn, be
a Stratonovich, an Ito, or yet another interpretation of the
white-noise stochastic differential equation.

A. Haken's slaving model (Ref. 11)

The deterministic version of the model is a pair of cou-
pled equations, which may be written

X = —6X —QXCX,

Bp =(y L, +y L2+L3)p, 2) r)0. (2.38) n = —va+bx (3.2)

The reduced equation p is

"r),p=(L y" PL—L, 'L )p . (2.39)

If r =0, the noise term PL2L, 'Lz is of the same order of
magnitude as the term w (0), whose neglect is only justifi-
able if the PL2Li 'L2 term is also neglected By .not
neglecting either term, we obtain the equation

b
tX= X

K
(3.3)

One assumes that if a is sufficiently large, a will relax
rapidly to a quasistationary value given by setting a =0 in
(3.2) (this procedure is quite easy to justify rigorously).
Thus, we inay replace a by the stationary situation of (3.2)
to obtain

su(s) —[v (0)+y PL2L i w(0)]

=[L3—y PL2L i 'Lz]u(s) . (2.40)

ab
X = —EX-

K
(3.4)

This is of the same form as the equation for any r, except
that the initial condition on u (t) is no longer v (0), but in-
stead the term in the square brackets on the left-hand side
of (2.40). The process is no longer a Markov process in
u(s) to this order, since u(t) is not determined solely by a
knowledge of u(0), but requires knowledge of w(0) as
well.

6. Non-Markov property of higher-order terms

Any perturbation expansion of (2.23) to higher order
will yield terms of the same order of magnitude as the
terms in w(0), which are of order y '. Thus the equation
involves the full knowledge of initial conditions, and no
longer represents a Markov process to this order. Useful
results can be obtained in such perturbation expansions
[e.g., see Refs. 1, 2, and 7] but care must be taken not to
assume the Markov property.

III. ADIABATIC ELIMINATION
OF VARIABLES WHICH APPEAR LINEARLY

The example of Sec. II contains all the symbolic for-
malism in terms of projectors, etc., to be used in a com-
plete theory of adiabatic elimination. However, in the ex-
ample chosen, the motion of a(t) is quite independent of
x, and this is a rather special case.

In this section we treat a class of systems in which a(t)
occurs only linearly, and in which a naive elimination pro-

The result of the elimination of a is a single differential
equation for x.

In a stochastic version of this model there are various
possibilities available. The usual condition for the validity
of adiabatic elimination in a deterministic system is

E'((K . (3.5)

In a stochastic version, all other parameters come into
play as well, and the condition (3.5) is able to be realized
in different ways, with characteristically different
answers.

Let us write stochastic versions of (3.1) and (3.2) by
simply adding on noise terms:

dx = —(ex +axa)dt +C d W, (t),
da=( aa+bx )dt—+D dW2(t) .

(3.6)

(3.7)

We assume here, for simplicity, that C and D are con-
stants, and Wi(t) and W2(t) are independent of each oth-
er.

The Fokker-Planck equation is

a2

Bcx
(3.8)

We wish to eliminate a. It is convenient to define a new
variable P by

Bp 8
(ex +axa)+ —,C + (a.a bx )—2 ~ ~ 2

Bt Bx Bcx
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so that, for fixed x, the quantity P has zero mean. In
terms of this variable, we can write a Fokker-Planck equa-
tion

where

0

Lz Lz——ie,
L3 L——3ie .

(3.20)

Bt
P =(L, +L +L )p,

D 8L i
—— irP+ ——

BP 2 ()pz

(3.10)

(3.1 1)

The equation (3.19) is now in a form similar to (2.6), with
the exception that the coefficient of Lz does not become
infinite as e~O. The PLzL| Lz term is therefore negli-
gible compared to terms arising from L3, and the limiting
equation is

=L3p = (x +Ax )+8 p .P ~ 8 3 8
Bt Bx Bx

(3.21)

bx 8 8 bx 2b x CC2 --+ — +
BxBp BxBp a ~z &13z

(3.12)

0 8 ab 3
C' Bz

L3 —— ex+—x +-
Ox Ic 2

(3.13)

In terms of these variables, the limit e—+0 is not interest-
ing, since we simply get the same system with @=0—no
e/imination is possible, since I.

&
is not multiplied by a

large parameter.
In order for the limit e~O to have the meaning deter-

ministically that (3.4) is a valid limiting form, there must
be a quantity A snch that

a =aE'

b =be'",
(3.22)

where

This corresponds exactly to eliminating a adiabatically,
ignoring the fluctuations in a, and simply setting the
deterministic value in the x equation. I call it the "silent
slave, " since (in Haken's terminology) a is slaved by x,
and makes no contribution to the noise in the x equation.
This is the usual form of slaving, as considered by Haken.

(ii) The noisy slaue: a proportional to e' . We now con-
sider a case where both a and b are proportional to e' we
can write

and for this limit to be recognizable deterministically, it
must not be swamped by noise, so one must also have (for
some 8)

ah=a .

I. j stays constant, L, 3 is proportional to e, and

+ ~ ~ ~0 } 2
2 2

(3.23)

(3.15)
where the ellipses stand for higher-order terms in e and

which means, as @~0,

(3.16)

(3.17)

We see that I. l is independent of e, while 1.2 and 1.3 are
proportional to e. If we rescale time by

a' ~

L3 +F (x +Ax—)+8

However, there are two distinct possibilities for L z. In or-
der for L,

&
to be independent of e, we must have ~ in-

dependent of e, which is reasonable. Thus, the limit (3.14)
must be achieved by the product ab being proportional to
e. We consider two possibilities.

(i) The silent slaue: a proportional to e. We first consid-
er a case where we can write

Lz ——aP—x .8
Bx

(3.24)

Thus the limiting equation is (following a procedure simi-
lar to that in Sec. III 8)

Bp =(L3 PLzL i Lz)p . —
O'7

(3.25)

The term I'I.2L, i 'L2 can be worked out by noting that
L

& L& as defined ——by Eq. (3.11) corresponds to an
Qrnstein-Uhlenbeck process, for which the stationary au-
tocorrelation function is given by

D2
(13(t),i3(t')) = exp( —a.

i
t t'

i
)—(3.26)

2K

(3.1g) and following the procedure of Sec. II, we find

then

Bp 1—L i+L2+L3 u
B7

(3.19)
so

PLzL& Lz ——a — x xp, (13)
a a

BX Bx
(3.27)
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8 8 a Dx 1 — +Ax
87 Bx

the case, as is shown in the next example.

B. A case which yields an Ito equation

a zDzxz+, ~+ 'p . (3.28) We consider the large-y limit of

x = ex +ae—' xa+(2eB)' gi(t),

a= ma+be—' x +Dgz(t),

(3.29)

(3.30)

and elim. inate a by substituting the "stationary solution"
of (3.30) obtained by setting a =0,

I call this the "noisy slave, " since the slave makes its pres-
ence felt in the final equation by adding noise (and affect-
ing the drift, though this appears only in the Ito form as
written —as a Stratonovich form, there would be no extra
drift).

(iii) Comment on naive elimination. We could write, for
case (ii) given by (3.22), ordinary Langevin equations
equivalent to (3.7),

dx =pdt,

dp = —y[p f(x—)]+yg(x)dW(t) .
(3.32)

a=y '~
[p —f(x)]

so that the Eqs. (3.32) become

dx =y' a dt +f(x)dt,

da = ya+ y'~—g (x)d W(t)

+y '~ f'(x)[y'~ adt+f(x)dt]
so we find

(3.33)

(3.34)

There is no Ito-Stratonovich ambiguity in this case, since
the p equation depends only on x. We define a new vari-
able

be'" x'+ gz(t—) yLi =y +Tg(x)
8
a '

Ba

in Eq. (3.29), to obtain

abx = —ex+@ -x
K

Y' Lz(Y) =—y' a

[f'(x)a+f (x)f'(x)y '~ ], (3.35)

+e'~z (28'~z)g, (t)+ xgz(t)
K

(3.31) f(x) .

This is obviously related to the Fokker-Planck equation
(3.28), but the precise interpretation rule for the nonlinear
noise xgz(t) is not given. The method given here indicates
that in this case, each noise is to be interpreted as an in-
dependent Stratonouich noise. However, this is not always

We note the following.
(i) Lower-order terms in L (y) will not contribute to the

asymptotic result for large y.
(ii) Because Li depends on x, LzP&PL&. Hence in-

stead of (2.23) we obtain [setting iv (0)=0)

su(s) u( 0)=PL —zu(s) +P[y' Lz(y)+L&)[s yLi —y' (1—P)L—z(y) —(1—P)Lz]

X ['Y Lz(y)+(1 —P)L3]u(s) (3.36)

and in the large-y limit, Eq. (3.36) approaches

sv(s) —v(0) =PLzu(s) —PLzL i 'Lzv(s),

where

(3.37)

L i
———a + —,g(x)

8 ] z 8
Ba ' Ba2

L2 ——a
Bx

(3.38)

a
Lz lim Lz(y)= —a-—

/~ OO Bx

In this case, and in other situations in which L
&

depends
on x, it is technically a little simpler to carry out the pro-
cess of computation of PLzL i 'Lz using the backward or
adjoint Fokker-Planck operators. These are described in
Ref. 2. For the system described in (3.32) the backward
operators are

L z f(x)——
Bx

and the projector becomes P", defined by

(P'f)(a, x)= f dap, (a)f(a,x) . (3.39)

q(x)= f dap, (a)q(a, x) . (3.40)

%e denote the solutions of the backward equation by
q(a, x), and define



2820 C. %. GARDINER 29

The equation for q(x) will be

(3.41)

pyL g (L e
)

= —f dap, (a)a (L i ) 'a q(x)
BX Bx

(3.42)

From (3.38) it is clear that a is the eigenfunction of I. i
with eigenvalue —1, hence Eq. (3.42) equals

f dap, (a)a q(x) = q(x) (3.43), a' g(x)' a'
BX 2 BX

and hence

IV. NONLINEAR SITUATIONS

dx = —(ex +axa)dt + C d W, (t),
da=( aa —pa +—bx )dt+DdW2(t) .

(4.1)

(4.2)

The examples in Sec. III were all similar in one respect:
The eliminated variable (or a variable linearly related to it)
corresponds to an Ornstein-Uhlenbeck process, and in
every case, a naive adiabatic elimination corresponded
quite closely to the correct result; the main difficulty lying
in the resolution of ambiguities of the Ito-Stratonovich or
similar types.

In genuinely nonlinear situations the situation is very
much more complex. The result of a naive elimination
can be quite inscrutable. For example, instead of Haken's
model [(3.6) and (3.7)] we could consider the pair

82=f(x) + —,
'
g (x)'— q(x) (3.44)

The stationary solution for a involves the solution of a cu-
bic equation

which is the backward Fokker-Planck equation corre-
sponding to the Ito stochastic differential equation

x =f(x)+g (x)g(t), (3.45)

which would result from naive elimination methods. The
basic difference between this example and the previous
one is where the x dependence of the noise arises. In the
previous example it arose because of an x multiplying the
eliminated variable in the x equation, here the x depen-
dence arises because of a dependence on x of the noise
term in the equation for the eliminated variable p.

~a+pa =bx D$2(t)— (4.3)

A. A class of nonlinear examples

whose solution for a is a nonlinear function of (2(t); a
function whose meaning is not defined. Thus, naive adia-
batic elimination is no longer feasible even for giving a
rough idea of the eliminated equation, and the more
abstract formulation in terms of operators is quite essen-
tial.

C. Examples which give neither Ito
nor Stratonovich equations

We consider the pair of equations

dx =yb (x)a dt,
da= —y A (x,a, y)dt +y&2B(x,a, y) dW(t),

(4.4)

Using the equations

dx =h (x)p dt,
(3.46)

and we assume the existence of the following limits and
asymptotic expansions:

dp = —y p —— — +yg(x)dW(t)f(x)
h(x)

~

will similarly produce a backward Fokker-Planck equa-
tion

A(x, a,y)- g A„(x,a)y
n=0

B(x,a,y)- g B„(x,a)y
n=0

(4.5)

—=f(x) q(x)+ —,
'
g (x) h (x) h (x) q(x)

dt Bx Bx Bx
(3.47)

and these expansions imply that there is an asymptotic
stationary distribution of a at fixed x given by

which is clearly neither the Ito nor the Stratonovich equa-
tion for the naive result,

x =f(x)+g (x)h (x)g(t),

but rather, a mixture of the two kinds of equation.

D. Summary

This section has demonstrated that naive adiabatic el-
imination is of strictly limited value —that even in systems
where no Ito-Stratonovich ambiguity exists, one cannot
automatically predict what kind of stochastic differential
equation interpretation is to be used.

p, (a,x)= lim p, (a,x,y),g~ oo

p, (a,x) ~Bp(x,a) —'exp f da[Ao(x, a)/Bp(x, a)] .

We assume that Ap(x, a) and Bp(x,a) are such that

(a(x)), = f daap, (a,x)=0

so that we deduce from (4.5) that, for finite y

(a(x,y)), = f daap, (a,x,y)-ap(x)y

where ap(x) can be determined from (4.5).
%'e define the new variables

(4.6)

(4.7)

(4.8)

(4.9)
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1p=a ——ap(x),
y (4.10)

in terms of which the Fokker-Planck operator becomes
(the Jacobean is a constant, as usual) on changing xi back
tox

L = — [ap(x)b (x)]—yP b (x) + ap( x) ap( x) b(x) + IP[ap(x)b (x)]I
a a 1 ~

BX X y

ap(x)+y' A +pxy +, 8
(1 y Qp2

ap(x)
+p,x,y

y
(4.1 1)

and, by using the asymptotic expansions (4.5) we can write
Lz ———p b (x)

8

L =LI +yL2(y )+y'L I (4.12)

BAp(p, x)
ap(x)+A I (p, x)

()2 B8p(P,X)

Qp2
ap(x)+81(P,x) (4.16)

L3 ——— ap(x)b (x),
BX

L i
—— Ap(P, X)+ 8p(P,X),

Bp

Lz(y) =Lz+0(y '),

(4.13)

(4.15)

%'e note that I.3 and I.
~ do not commute, but this does

not affect the limiting result, which takes the usual form

Bp
Bt

=(L3 PL2L I L—z)P .

The evaluation of the PLzLI 'Lz term is straightfor-
ward, but messy. We note that the terms involving 8/c)p
vanish after being operated on by P. From the explicit
form of P, (a,x) one can write

a~,(p,x) yz c)8p(P x)
ap(x)+A 1(p,x) + 2

ap(x) +8 I (p,x) Pg (p, x) —G (p,x)pg (p,x)
ap'

(4.18)

and one finds that

PLzLI Lzp= b(x)D(x) —+— b(x)E(x) p
8 I)

Bx Bx Bx

%'lth

D(x)= f"dt(P(t), P(0)~x&,
(4.20)

E(x)= f dt(P(t), G(P,x) ix),
where ( .

~
x) indicates an average over P, (p,x). This

is a rather strong adiabatic elimination result, in which an
arbitrary nonlinear elimination can be handled and a finite
resulting noise dealt with.

In this paper me have developed a completely practical
method of carrying out adiabatic elimination in a range of

few variable stochastic systems, which is reasonably
rigorous, is simple, and, above all, is necessary if the right
answer is to be obtained, as is demonstrated by the three
models of Sec. III, or if any answer is to be obtained, as is
demonstrated in Sec. IV. The basic idea of the method is
to compute limits of the terms in Eq. (2.23) as y~no.
Obviously any physical situation is presented to us with
the parameters defined: Physical insight must be used to
determine which parameters are large, i.e., which variables
are to be eliminated, and hence to compute what sealing
and redefining of variable is necessary to bring the
Fokker-Planck equations into a form suitable for applica-
tion of the method.

In the following papers the method will be applied to
the problem of coarse-graining in reaction diffusion sys-
tems, to the derivation of stochastic amplitude equations
111 llycllocly11RIllic lnstablllt1es, RIld flllRlly to derlvatlo11 of
blocking equations in renormalization-group theory. In
all of these we will eliminate infinite numbers of variables,
using basically the same methods as developed here.
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