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This paper deals with two types of rotational average which arise in a number of physical pro-
cesses in fluids. The first are termed "phased averages, " and occur in the theory of bimolecular in-

teractions with radiation; the second are "Boltzmann-weighted" averages, which occur in the theory
of anisotropic media. A general method for obtaining these results is presented, and analytic results
are given for tensorial interactions up to and including the fourth rank. Several applications are dis-

cussed including laser-induced forces, cooperative two-photon absorption, and electric-field-induced
harmonic generation. The proof of a relation involving conventional rotational averages is also
given.

I. INTRODUCTION

A(n)$ (T V ei u w)~1''''' n 1''''' n
(1.2)

Here T;, ; and u are tensors and vectors which are
fixed in a laboratory frame of reference; V;, ; and w
are tensors and vectors fixed in a molecular frame. The
superscript n on the left-hand side of the equation refers
to the rank of the tensorial interaction; the label P denotes
the fact that the result is a phased rotational average, i.e.,
the quantity to be averaged involves a phase factor
exp(iu. w). Averages of this kind frequently arise in the
study of pairwise interactions of molecules with radiation.

Three-dimensional rotational averages are involved in
the theory of a great many physical phenomena which
take place in isotropic media. Typically, the response of
the component molecules to external conditions represent-
ed by a rank-n tensor T;; is given by the inner prod-

uct of this tensor with a molecular response tensorV;;,and the result is generally dependent on molecu-

lar orientation. Observations on the bulk system, howev-
er, provide measurements of the ensemble-average
response A; by virtue of the ergodic hypothesis, the result
is thus written as the rotational average of the molecular
response, i.e.,

A=(T;, t V;, ;),
where we use the implied summation convention for re-
peated tensor indices. The procedure for the evaluation of
this type of rotational average using isotropic tensors is
now well established. ' An alternative method appropri-
ate for the special case where T, , ; and V;, ; are

expressible as products of vector components has also re-

cently been discussed.
Other types of rotational average may arise, however.

In this paper we deal specifically with two different cases,
and the procedure we adopt may readily be adapted for
others.

The first type of average we consider is of the form

For example, if a traveling wave of phase

exp[i (k. r —cot) j is incident upon two molecules with vec-

tor displacement R, then any process which results in in-
terference of probability amplitudes associated with the

two centers yields a phase factor exp(i k R). le,ading to ro-
tational averages of the kind (1.2). Specific examples,
which we discuss in detail later, include calculation of
laser-induced intermolecular forces, and rates of coopera-
tive two-photon absorption due to short-range energy
transfer.

The second kind of rotational average we consider has a
real rather than imaginary argument to the exponential:

A(n)e (T V e
—u w )

This type of average frequently arises in dealing with an-
isotropic fluids. For example, if any polar liquid is sub-

jected to an applied static electric field E, then a
Boltzmann-weighting factor exp(p. E/kT) has to be in-
cluded in the evaluation of any ensemble-average property
in order to account for the field-induced anisotropy. A
specific example discussed later is the derivation of the
well-known I.angevin function. The label 0 is used in
(1.3) to denote the temperature dependence of the average
in such a case. Since the results of averages of this type
are readily obtained from the phased averages, however,
calculations and results are only presented explicitly for
the latter.

The format of the paper is as follows. In Sec. II, the
procedure used for the evaluation of phased rotational
averages is discussed in detail, and in Sec. III the results
are given for tensorial interactions up to and including the
fourth rank. Various applications of the results are given
in Sec. IV and, finally, in an appendix, a hitherto
unproved identity involving conventional rotational aver-
ages is proved using the results for the phases averages.

II. CALCULATION PROCEDURE

In this section we demonstrate the method for calculat-
ing the phased average defined by Eq. (1.2); defining
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we have

(2.1)
To (j')

l]po ~ ~ pl ~ l)p ~ ~ ~ pl
j'=0

(2.9)

g (n)P ( T V eiau m).
pin '&p p'n (2.2)

e' "' = g (2j+1)ijjj(a)Pj(u w),
j=0

(2.3)

where jj(a) is a spherical Bessel function of the first kind.
To proceed further, we introduce the decomposable ten-

sors uz J and wz j, defined by

The first step in the calculation is to express the exponen-
tial function as an expansion in terms of Legendre polyno-
mials Pj(u.w );

V y V(j ) (2.10)
j"=0

Thus, T j '; up'
z is a tensor of rank (n +j ) and

weight j"' in the range
~

j' —j ~

&j'"(j'+j, and in order
to contract with an isotropic tensor of weight 0 to give a
scalar, only the weight-0 term (j"'=0) resulting from
j'=j can contribute. Similar reasoning shows that only
the term with j"=j in (2.10) can contribute to Eq. (2.8).
It also follows from Eqs. (2.9) and (2.10) that terms with

j& n provide vanishing contributions; hence, Eq. (2.8) may
be rewritten as

QJ J Qj j
r=1

WJ j = Wj
r=1

(2.4)

(2.5)

g(n)y ~ (2j+1)!.j.
( )

,=p 2'(j!)'

X ( T(j) (j) V(j) w (j)
Jj

In general, any Cartesian tensor of rank m may be written
as a sum of irreducible Cartesian tensors, for example,

m
(s)Q. QJ)p ~ ~ ~ p J Jm

'
s=1

(2.6)

Here uj' z is an irreducible tensor of rank m and

weight s, i.e., its elements provide a basis for an irreduci-
ble representation of dimension (2s + 1) under the symme-

try operations of the rotation-inversion group O(3). Ir-
reducible tensors with equal rank and weight such as

uz,
' j are refered to as nature tensors Zemach . has

shown that Legendre polynomials of the type appearing in

Eq. (2.3) may be expressed in terms of natural tensors as
follows:

r r

n 2n —3k —j—2~(j) y ( 1)k
k

where 0 & k ( [(n —j)/3]. Hence, we write

(2.12)

T(J) ~ Z (J;P)
l]p ~ ~ ~ p le ~ l]p ~ ~ ~ p ling

p=1
(2.13}

(2.11)

The tensors uj j and wz z of rankj have only

one representation of weight j; however, the representation
of weight j in the rank-n tensors Ti; and V;; is

generally associated with a multiplicity N„' ', given by

(2j)!P(u w) . uj jwj jJj)2 ~ J ~ J
(2.7) V(J;q)

l)p ~ ~ ~ p l (2.14)

From Eqs. (2.2), (2.3), and (2.7) we thus have the follow-

ing:
where Ti,

' '; and V; '~'; are expressible in terms of
natural tensors tk

' '
k and Ul' ' '

l by use of the map-

ping formulas

g(n)y ~ (2j+ )! J ()(T . . (j)
lt'p ~ ~ ~ p le J )p ~ ~ ~ p Jj l )p ~ ~ ~ p le

T(J;p) G(0;p), (J;p)
l]po ~ op le l]p ~ ~ ~ p l~pk]po ~ op kk]po ~ ~ pkj (2.15)

XWj(, . . . ,j. ) o (2.8)

V(j;q) 6 (0q) (j q)
l ]p ~ ~ ~ p tt l]p ~ ~ ~ p l pl]p ~ ~ ~ p lj l)p ~ ~ ~ p l' (2.16)

By substituting these results into Eq. (2.11), we now ob-
tain

where T;, ; uJ,
'

J is fixed in a laboratory reference

frame, and V;, ; WJ
'

J is fixed in a molecular

frame. According to a theorem of Weyl, the result of the
rotational average represented by angular brackets in Eq.
(2.8) is a linear combination of products of scalars ob-
tained by contacting both T;;uJ' '

J and

V;, ; wj
j'

z
with isotropic (weight-0) tensors of rank

(n+j}. We now decompose Ti, , . . . , i„and Vi, , . . . , i„ into

a sum of irreducible parts T, '; and V J '; with

weights j' and j",respectively, according to the formulas

+ t(j;p) (j)
k )p ~ ~ ~ p kj J)p ~ ~ ~ p Jj

(j;q) (j)
Ul

~ lj J& --. Jj (2.17)

~ )~= y "+"' ' ( ).=p 2'U')'
~(j)

n

( G(0;p) G(0;q)
leap

~ ~ ~ p l pklp ~ ~ ~ p k lip ~ ~ ~ p ltd pl]p ~ o ~ p ljn
p, q =1
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However, the product of mappings in this equation is re-
lated to the natural projection Ek ' k. ( j, through
the relation

G(0;p) G(0;q)
il, . . . , i„;kl, . . . , kj il, . . . ,i„;Il, . . . , Ij

=gpss "Ek",, . . . , k ;I,,. . . . , J. (2 18)

and UJ
' '

~. satisfies the relation

to reexpress Eq. (2.23) in terms of the original tensorsT;; and VJ„~,' the result is as follows:

A(")~= g .
'

ijjJ(a)T;, ; u J

j—0 J ~

X V w(j)
At lp ~ ~ ~ p Aln fc lp ~ ~ ~ p pj

E(J) (j;q) (j;q)
j ~1 Ij k 1 kj

Hence, (2.17) gives

A(n)p y (2j+1) j ( )

,=0 2'(j!)
~(j)

n
(n;j)( &(j;p) (j)

Pq klp t t o p kj Jlp ~ ~ ~ p Jj
p, q=1

(J,q) (J)

(2.19)

(2.20)

~(j)
g(0;q)

lip ~ ~ ~ p l fJlp ~ ~ ~ p Jj
q=1

g (0;q)
J

(2.27)

(2.28)

It is useful to reexpress the result in a form in whichT';; and V~ ~ do not appear explicitly. Since
the rotational average represented by Eq. (2.2) may be
written as

The rotational average represented by angular brackets
in the above equation is now readily evaluated. Noting
that the result is a product of scalars resulting from the
contraction of tk,

'
k u, . and Uk,

'
k,w,(j p (j) (j;q) (j)

with isotropic tensors of rank Zj, we make use of the re-
sult"

where i; )( is the direction cosine of the angle between the
P P

laboratory ip axis and the molecular A,p axis, then by corn-
paring Eqs. (2.27) and (2.28) we find

(t(j;p) (j) )(0) (2 + 1)—1&(j;p) (j)
klp ~ ~ ~ p kJ Jlp ~ ~ ~ p Jj l lp ~ ~ ~ p lj l 17 ~ ~ ~ f lj

XE"
Jlp ~ ~ ~ p Jjfklp ~ ~ ~ p kj

together with the relation,

(2.21)

E(j) (j q) (j) (j q) (j)
J 1, . ",j J,kl, "., kJ. kl, . ",kJ. jl, . ",jJ —"11,. ",IJ ll'", lJ

A A

(I . . . i eian w)l
1

JII
1 ink,

n (2 ')!j ', j ( ) (j) (j)
+j I ~

( )2 JJ J lp ~ ~ ~ p Jj @lf ~ ~ ~ p Ijjjtj—0 2(J ~ )

~(j)
g(o;q g (o;q)

l lp ~ ~ ~ p lnf J lp ~ ~ o p Jj plp ~ ~ ~ p pjfglp ~ ~

q=1

(2.29)

to obtain
(2.22) (2.30)

A'"'~= g j
' ijj (a)(2 )!

,=0 2'(j!)'
~(j)

n
(n;j) (j;p) (j)

gpq IJ, J uJ,
p, q=1

Finally, using the relation

~(j)
n

g (0;q) pq g(0 p)
Pl, . . . IMJ, J)i, l . . . kn ~ g (n;J) J)I,] . . . An,'P 1

. ~ . jtl ~

p=1

(2.31)

x J'q
.

(J
P lp ~ ~ ~ p PJ' Ilt lp ~ ~ ~ p Pj (2.23)

and by defining

U(n'J'q) =G( 'q) . . (J)
'n '1 'nf Jlf (2.32)

~(J;p) g (0;p)
Jlf ' ' ' 7 Jj Jlp 7Jjf 17 ~ fin

(j;q) G (0;q) Vj I"1' ' ' '~"j'

(2.24)

In writing Eq. (2.23), greek indices have been introduced
for expression of the inner product v&~'q'

& w&~,
'

&., to
denote reference to a molecule-fixed frame in which both
U&,

' '
& and w&' & are rotation invariant. We now

make use of the results

~(n;j;p) g (0;p) (j)
Alp ~ ~ ~ p Atn Alp ~ ~ ~ p Xnfplp ~ ~ ~ ppj p]7 ~ ~ ~ 7p

we have

(n)Pii . . . ,i„;z,, . . . , ()(attwu)

n &n(j)

(n;J)( ) U(n;i;p) $y(n;j;q)
~

~~

~

pq l 17 ~ ~ ~ f l Allp ~ ~ ~ p Alnj =0p q=1

where

(2.33)

(2.34)

~(j)
n

~~

~~ ~
~

(n;j)g (0;p) G(0;q)
gPq Jlp ~ ~ ~ p Jjfl lp ~ ~ ~ p ln l17 ~ ~ ~ p l 7Jlp ~ ~ ~ p Jjp=1

(2.26)

. , ~ jJ(a)g(n J)
(n;J) (2J)!

(2.35)

are coefficients which are symmetric in the indices p and
q. The results given in the following section have been de-
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rived by use of Eqs. (2.34) and (2.35) together with the ex-
pressions for gp.Ji derived previously. ' Before leaving
this section, we note that the usual nonretarded rotational
averages are readily obtained as limiting cases of the above
results:

TABLE I. Spherical Bessel functions j„(a), n (4. Higher-
order results can be determined from the relation

j„+I(a)= (2n + 1) 'j„(a)—jn &(a).

j„(a)

1(n) (,t — t )l ]p ~ ~ ~ p l )Al]p ~ ~ ~ 7 Aln l
$ Al] ink, n

= lim (t; ~ t; ~ e' "'")
0 'l l 'n n

~(0)
(n) p(O;p) p(P;q)

pq J l]p ~ ~ ~ p l J Ar]p ~ ~ ~ p

p~q =1

where

~pq g(n;0) ~

(n) pq

(2.36)

(2.37)

0 1 ~—sina
a

1 . 1
2

slna — cosa
a

—1 3 ~ 3+—sina ——cosa
a a2

—6 15 . 1 15+—sina+ —— cosaa' a4 a

and f' '~', f' '~' are isotropic tensors of rank n

The result represented by Eq. (2.36) agrees exactly with
that derived previously. '

1 45 105 . 10 105+ sina+ — cosa
a a' a' a' a4

III. RESULTS

In this section results are given for I,""'~; .~ ~ (a, u, w), defined by Eq. (2.29), for n &4. The results are ex-
l)& ~ ~ ~ p ln& )~ ~ ~ ~ p

pressed in terms of spherical Bessel functions j„(a),the explicit forms of which are given in Table I:

A. n=O

I ~(a, u, w) =Jo(a) ~ (3.1)

I;"z~ (a,u, w) =ij, (a)u; wx (3.2)

C. n=2
2

(2)P ~ ~ (2;j)bIl i 'iI, A, (a~u~w) g Ii i A, A,

j=p
(2 0)$ & ~

I;,;; ~, , = —,j (a)5;.,;,5,„, ,

(3.3)

(3.4)

(3.5)

I;, 'i2.xi~2
———, j(2a)( —;uui;, —,5;,;, )—(w~, wx2 —T5iI, i~ ) .

D. n=3
3

(3)P ~ ~ ~ (3;j)P)= Z. I, ', ,j=0

i~i~i:II,kik2A3
=

6 JO(a)eiii2i3ekix2A

(3.6)

(3.7)

(3.8)

i&l2l3&A&A2A3 ~P
J1 i&l3 i2 4

.—1 —1

(3.9)

1

e;, ;,; (u;, u; ——,5;,; )
(2J2( ) (r r i 5 )l ]l3l l2 lrr 3 l2lrr

r

1' E~,~,~,(wi, w~„—-'4,x,)

. e~,~,~,(w~, w~, —34,~, )
(3.10)
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I~ I~i~;x x x = J3(+)[~iiui2ui& s (5i i ui +5i i3ui2+5i2i& i&)][wA, wA, wk, s (5A, A, wA, +5& g wg +5& g wg )]

E. n=4
4

I" '~ ~cx u le~= ~ I'
l ]l2l3l47 ~]~2~3~4 m l ) l2l 3l4l~]~2~3~4

j=0

(3.1 1)

(3.12)

5. ~ 5l ] l2 l3l4

l $l2l3l4jk]k213k4 30 JO' ' l )l3 l2l4

5 -5
l&i4 i2i3

4 1 1 A)A2 Ar3145 5

—1 4 —1 5aia351214
—1 —1 4

Ar JA4 Ar213

(3.13)

g
(4;1)$

i &i2i&i4jXJA2Asi 4 10J i

T
~i ) l 2l u l l 3 l4

e. . u5l I l3l/ lg l2l4

l4l~ l~ l2l3

e . u 5.
lZl3l l l ]l4

e u 5l2l4l l l)l3

e. . u5l3l4l l l ] l2

3 —1 —1 1 1 0

0 1 —1 1 —1 3

—1 3 —1 —1 0 1

—1 —1 3 0 —1 —1

1 —1 0 3 —1 1

1 0 —1 —1 3 —1

&Z,Z3X,X, 5X2X4

X2k3k Ar X]A&4

(3.14)

5iii2(uisui4 s i3i4)

j 5 )3 l2l3

5;,;,(u;, u;, ——,'5;, ;, )

5i i ( u/ ug 3 5 ji)

5;,;„(u;,u;,
~)i~i2i&i4, k~k2iL314 14 J2

2 3 1 4

11 —3 —3 —3 —3 4
—3 11 —3 —3 4 —3
—3 —3 11 4 —3 —3
—3 —3 4 11 —3 —3
—3 4 —3 —3 11 —3

—3 —3 —3 —3 11.

4,~,( w ~, w~„—7'4,~, )

5A, ,R,(wg, wg, ——,
'

5g,g, )

4,~,(wi, w~, ——,
' 4,~, )

Y~@,,z4)

4,~,(w~, w~, ——,
' 4,~, )

I(4'3)y
l ] l2l3l4 jk]Ar2AI314

I(4;4)P
l

&
i2i3i4, A, &12'.3A4

e;, ;,; [u;,u;, u; —,(5;; u;, +5;; u, +5, , u, )]
Si .——j3(~)
8 ~i2ipi [ui] i@i s (5iii ig+5i4i ui$+5i/i4ui

e;,;,; [u; u;, u; ——,'(5;,; u;, +5;; u; +5;; u; )]
r

eg, g,g [wg~wg, wg ——,
'

(5g2g wg, +5g„g wg, +5g,g„wg )]

—1 3 1 eg,g,g [wg, wg„wg ——,'(5g g wg, +5g,g wg +5g,g„wg )]

e~,~,~ [wq, w~ w~ ——,(5~,~ w~, +5x x wx +5i. ~ w~ )]

g Jg(CX)[Q; u; El; u; —
7 (5;; u; Qj +5i i Bj ui +5 iuii u~/ +5i i 1lg Elf

(3.16)

&&[w~ w~ w~ w~ ——,'(5~,~,w~, w~, +5~ q w~ wq +5~,~,w~, w~, +5i ~,w~, w~,

+4,~,w~, wi. , +4,~,w~, , w~, )+ —,', (4,~,5~,~,+4,i,5~,~,+4,i,5~,~, )] . (3.17)
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Several identities involving direction cosine products
may be utilized in order to obtain relationships between
phased rotational averages of different ranks. By using
the formulas

lalblc ~a~b~c la~a lb~b c~c

& - &~ ~ I ~.hb~b=3

I. I =21.
la blc a b c a a b b c c

together with the defining relation (2.29) for the phased
averages, we obtain the results

6Il, ~ ~ ~ i i~~ ~ ~ ~ ~ ~ ~ ig —2ipg —1n n —2 n —1 n

as we have shown recently, " the shift in the intermolecu-
lar potential energy is given by the expression

EU=(16&le)laji(k)a;k(k) Vki(k, R)e;eicos(k R) . (4.1)

Here k is the wave vector and e is the polarization vector
of the radiation with intensity I; aji(k) and ai~i, (k) are the
dynamic polarizability tensors of the two molecules la-
beled A and 8; Vki(k, R) is the retarded resonance dipole-
dipole interaction and R is the vector displacement of the
molecule 8 from an origin located at A. The retardation
factor cos(k R) in (4.1) arises through the difference in
phase of the radiation at the two molecular centers. In or-
der to utilize the result for any fluid system, it is necessary
to orientationally average Eq. (4.1) for each pair of mole-
cules. This may be accomplished in two stages, the first
of which involves averaging the orientation of each molec-
ular pair with respect to the radiation. We thus have, by
reference to Eq. (2.29),

(n —1)P
iI, , . . . ,i„,;z,, . . . , A,„,( a» r tc )

(au w)2 l)&. ~ . &ln 2l ln+) Al, . . . , A, 2A, A,

g o ~ ~

n —1n n+1 n —1 n n+1

16
b, U= Iaido(k)ai„„(k) V (k, R)e;e) ReI j~~g~q(kR, k, R ) .

C

(4.2)

Using the result (3.3) and noting that the weight-1 contri-
bution (3.5) vanishes by virtue of the i,j index symmetry,
we obtain the following relation:

AU=(8m /c)lap, (k)ag„(k) V~(k, R) W'gq(k, R), (4.3)
These equations can be used to obtain the phased average
of any rank lower than n from the rank-n result. They do
not permit the evaluation of higher-order results due to
the index symmetry restrictions imposed by the tensor
contractions on the right-hand sides.

IV. APPLICATIONS

where the explicit expressions for V„,(k, R) and

W~&(k, R) are as follows:

V (k, R)=(4~) 'R '[F(kR-)S,.+-G(kR)R,R.], (4.4)

8'zp(k, R) =(kR) [M(kR)5zp+N(kR)RzRp], (4.5)

F(kR) =cos(kR)+kR sin(kR) —k R cos(kR), (4.6)
In this section we consider examples of the kind of ap-

plications which may be made of the results provided in
Sec. III.

G(kR)= —3cos(kR) —3kR sin(kR)+k R cos(kR),

(4.7)

A. Laser-induced intermolecular forces

In the presence of an intense source of radiation, inter-
molecular forces are modified by a dynamic Stark effect;

M(kR)= —sin(kR)+kR cos(kR)+k R sin(kR),

N(kR) =3 sin(kR) —3kR cos(kR) —k2R2sin(kR) .

Hence, we obtain the result

(4.8)

(4.9)

I
a" (k)a& (k)[ s&n(2kR)+2kR cos(2kR)+3k2R2sin(2kR) 2k R co—s(2kR) kR sin(2k—R)]k3~ 6 k, Ajtl

+2a~„(k)a& (k)R~R&[3sin(2kR) —6kR cos(2kR) —7k R sin(2kR)+4k R cos(2kR)+k R sin(2kR)]

+a~„(k)a&, (k)R~R&R„R,[—9sin(2kR)+18kR cos(2kR)+15k R sin(2kR)

—6k3R cos(2kR) —k R sin(2kR)]I . (4.10)



DAVID L. ANDREWS AND MICHAEL J. HARLQW

As it stands, the above result represents that Stark shift
in the intermolecular potential energy of two molecules
held in a fixed mutual orientation as, for example, in a
van der Waals complex. In order to obtain an expression
appropriate to the case of random mutual orientation, a
second stage of calculation is required, involving two fur-
ther rotational averages; the procedure is identical with
that described by Schipper in the context of induced circu-
lar dichroism. ' These secondary rotational averages in-
volve only the simple unretarded rotational averages, and
the final result is directly obtained as follows:

b, U= aii(k)a„„(k)
9ck R

X [ 3 sin(2kR) —6kR cos(2kR) —5k R sin(2kR)

+2kiR cos(2kR)+k R sin(2kR)] . (4.11)

This result is applicable to any pair of molecules, regard-
less of their symmetry properties; in the case of isotropic
molecules, it reproduces the result previously obtained by
Thirunamachandran. '

The laser-induced force associated with the Stark shift
immediately follows from Eq. (4.11) and is given by the
expression

F(R)= aii(k)cc„„(k)
9ck R

X [—9 sin(2kR)+18kR cos(2kR)

+16k R sin(2kR) —8k R cos(2kR)

—3k R sin(2kR)+k R cos(2kR)] . (4.12)

At large distances, the last term within brackets provides
the dominant contribution, and effectively averages to
zero over a range of more than half a wavelength. How-
ever, for small separations, where 2kR «1, it is readily
shown that the forces assume a limiting R dependence

lim F(R)=, Rizii, (k)cz„„(k),
2kB ((1 135cR

(4.13)

which is always attractive.

(4.15)

where the third rank transition tensor +,Jk is given by the
expression

B. Cooperative two-photon absorption

We show in this section that phased averages are also
important in the calculation of the rate of cooperative
two-photon absorption, in which both molecules of an in-
teracting pair (A,B) are excited when the system absorbs
two photons from an intense laser beam:

2fico

~EA)~EB) ~EA)~E8) (4.14)

There are two possible modes of cooperative two-
photon absorption which are differentiated by the selec-
tion rules of the molecules involved. A common feature
in both modes is that the interaction between the mole-
cules is mediated by the exchange of a virtual photon. In
the first case, which we have considered in detail in a re-
cent paper, " both molecules have two-photon allowed
transitions, resulting in the concerted absorption of a sin-
gle incident laser photon and either the absorption or
emission of a virtual photon at each center. In the second
case, two-photon transitions are forbidden in both mole-
cules and, as a result, only one- or three-photon interac-
tions are allowed. In this mode one of the molecules ab-
sorbs both the incident photons, and virtual photon cou-
pling excites the other.

A full and detailed discussion of this latter mode of
cooperative two-photon absorption will be given in a
forthcoming paper. ' Here we outline the general results
leading to the application of the fourth rank phased aver-
age. The matrix element connecting the initial and final
states of the system is given by

—8m I ~O P)
2

e;ej[&;,v Pi I'aiV»R)
c

rO sr fs rO fs sr sr fs rO
fp i ~ Pi PjPi 'Pi Pj Pk PiPj P&

(Ep, +2%a))(Ep„+Ra)) (Ej, fico)(Ep„+.fico) (—Ef, fm)(Ef„2fico)— —

sr rO fs fs rO sr fs sr rO
Pl I J I k I i Pj I k + pg pjpk

( Epg +2fico )(Ep„+fico ) (Ef —fici) )(Ep„+tnt ) (Ef —fico )(Efp —2%co )
(4.16)

and is seen to be the same forxn as the hyper-Raman tran-
sition tensor. ' The parameters p and q which appear in
Eq. (4.15) are defined by

(4.17)

(4.18)

The two terms in square brackets in Eq. (4.15) represent
the probability amplitudes associated with the absorption
of the two photons at centers 3 and 8, respectively. Cal-
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culation of the rate equation using the Fermi rule' re-
quires the square modulus of Eq. (4.15), resulting in in-
terference of the probability amplitudes, and retention of
phase-dependent terms in the final rate equation. The rate
thus derived relates to a pair of molecules (A,B) fixed in

space relative to each other and to the laser beam. In or-

der to calculate the rate of cooperative absorption for a
fiuid sample, the rotational average of this initial expres-
sion is required. The result of such an average, in which
the pair of molecules retain their fixed mutual orientation
but where the (A,8) system is free to rotate in the space
frame, is given by

1 =Ke;eje~e»[X~&~~X»p pPV~(p, R)V,(p, R)(l ~lj&l~g„p)+X'~, X p p V~, (q, R)V,(q, R)(1~~1~&1 P«)

+Xq+~, X polT, V„, (q, R)V, (p, R)(l xlj„l l„e2'"'a )

+Xx„~+X+~ p, V,„,(p, R)V, (q, R) ( 1;qlj„l „l„e "" ' " )], (4

where

l 28 5I2g (2)

K=
Ac

(4.20)

It can be seen that the last two terms of Eq. (4.19) are of the same form as Eq. (2.2); in the case of cooperative two-
photon absorption it is the fourth rank phased average [Eqs. (3.12)—(3.17)] that is required. Using the result for

. . . t z,, . . . , z in the first two terms of (4.19) and those for I," '~; .~ ~, (+2k+, k, R ) in the last two terms gives

the following final form of the rate equation:

1"= 40-I 56[X;,kX&„(2g—1)+Xi&kX J0(3 rl)i@i p p Vk&(p, R) V p(p, R)
840

+5&jo(2k&)[X;;kXJJ (2'—1)+X+&~X,J, (3 g)]p~~p +—V«(q, R)V (p, R)

+336ij, (2«)(g)e;.+,X,,kx, ',1,'1-, V«(q, R) V„(p,R)

—2oj (2k&)[2X;;kX ', (5g 4)+4X;,kX—;,, (3 2g) 3X;,kX—',R—;PY, (5' 4)—
—3X;;kX~„,R R» (5g —4) —12X~pX ~~,R;A~(3 2g)]pI 1T—~+V«(q, R) Vap(p, R)

—&4ij3(2M)(g)&; Q, (X,J Xk,, 5X;,kX „,R,—R„)pI 1T, V«(q, R)V (p, R)

+ J~( k+)( +q)( 5X~PX ~«+~~i+~'+» 5X~~'~X m»o+~+» 5X~P X ~~o+~+J 20X~JkX ~~o

+XIX ', +2XjX, J, )p/'ppV I(q, R)V, (p, R)+(&,p &,q)], (4.21)

where

g=(e.e)(e e)

and

g=(eXe) k .

(4.22)

(4.23)

festation of two-photon circular dichroism. The appear-
ance of this feature directly results from the phased rota-
tional average; a full discussion of the physical implica-
tions and a further development of the theory are given in
our forthcoming paper. '

C. Electric field-induced polarization

For plane polarized light, we have g=1 and /=0.
More interesting, however, is the case of circularly polar-
ized light, where q =0 and (=+i depending on the hand-
edness; /=i for right-handed radiation and g= i for-
left-handed radiation. Because of the linear dependence of
the j~ and j3 terms on g we find that the rate of coopera-
tive two-photon absorption differs if the handedness of
the radiation is reversed; in other words we have a mani-

As a simple example of a Boltzmann-weighted average
we consider the polarization of a fluid induced by an ap-
plied static electric field. In the presence of an applied
field E, polar fluids become anisotropic, and the

Boltzmann-weighting factor e " '
has to be introduced

into any ensemble average. The mean electric dipole mo-
ment, per molecule, in the direction of the applied field is
given by
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E) (( .E) P'E/kT)/( P'E/kT) (4.24)

=E;pkI k'~( i p—E/kT, E,p )/I' '&( ip—E/kT, E,p )

where x =pE/kT. The result is the well-known Langevin
function for x «1 the Taylor-series expansion gives
the well-known result

=ipj i ( —ix)/jo( —ix)

=p(cothx —1/x), (4.25)
pEp= (4.26)

D. Electric field-induced second harmonic generation

As a final example, we consider the generation of second harmonic radiation in a gas under the influence of an applied
static electric field. We assume that the gas consists of polar molecules, and we restrict our attention to the
temperature-dependent effect resulting from the field-induced anisotropy. (Our method of averaging enables results to
be obtained without approximation of the dipolar Boltzmann-weighting exponential, in contrast to previous
methods. '

) The intensity of harmonic emission with polarization e ' produced by an incident laser beam of frequen-
cy co, polarization e and intensity I is given by'

4

I
I (Pjke,'ejek)

Ic c
(4.27)

32 I
I
e l e, ekPkpdijk;Ap»( ipE/kT—,E,p)/I'"~( ipE/kT E p—)

I

'
c

(4.28)

where pk„„ is the molecular hyperpolarizability tensor, symmetric in its last two indices. Using the results in Sec. 1&l we
obtain

4 2

I I2iji( ipE/k—T)[3(e' e)(e E)P. kk~& (e'.e)(—e.E)13k&~k (e e)(e—' E)Pkk~„

+2(e e)(e '
E)pkz~k] —10j2( —ipE/kT)(e E)(e 'X e) Eek&gk&~~,

—ij3( —ipE/kT)[5(e ' E)(e E) —2(e ' e)(e E)—(e.e)(e ' E)]

X(5Pk,ukp~. 2Pkk~, Pk—,~k)1 /j 0(—ipE/kT)
I

'—. (4.29)

It is clear from this equation that the harmonic intensity vanishes if the electric field E is parallel to the coherent scatter-
ing direction; hence, we shall assume that E lies perpendicular to the incident and harmonic beams. The j2 term in
(4.29) then disappears, and by using the explicit expressions for jo, ji, and j3, we obtain

4 2

I
2(cothx —1/x)[ 3(e 'e)(e E)pkk~„(e ' e)(e—E)pk„~k —(e e)(e 'E)pkk~„+2(e e)(e ' E)pk„~k]

+ [(1+15/x )cothx —(6/x+15/x )][5(e' E)(e E) —2(e'. e)(e E)—(e e)(e'E)]

X [5Pkp»pkp~» 2Pu~~ Ap)pl]l. (4.30)

where again we have set x =pE/kT. Finally, for the limiting case pE &&kT, Eq. (4.30) reduces to

I
2(pE/kT)[ 3(e ' e)(e.E)pkk~& —(e ' e)(e E)pk„~k —(e e)(e ' E)pkk~k+2(e e)(e '.E)13k&~k]225c'

+ 35 (pE/kT) [5(e ' E)(e.E) —2(e 'e)(e.E)—(e e)(e 'E)](5pk„~kp~„2pkk~„Pk„~k) —I—
(4.31)

Firstly, we note that in the absence of an applied field, i.e., where E =0, the system becomes isotropic and, as expect-
ed, W vanishes. ' Secondly, in the presence of the field it is possible to produce harmonic emission from a circularly po-
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larized source; the result from Eq. (4.31), in the case where the emission is analyzed for its polarization component paral-
lel to E, is as follows:

4 2

I (PE/k7)(3AkpPI A—
/ yPA)+ 70 (PE/k7) (5PApÃAP)JJ 2P—uyPI ~)) yP A) i

~225c' (4.32)

This contrasts with the well-known fact that harmonics cannot be generated with circularly polarized light in any iso-
tropic medium. ' Again a full discussion with these results will be given in a forthcoming paper.
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APPENDIX: PROOF OF A RELATION
INVOLVING CONVENTIONAL

ROTATIONAL AVERAGES

In the conventional expression for the rotational aver-

age of a product of n direction cosines, '

1(n) =(i i )1 1p ~ ~ ~ p l yA']p ~ ~ ~ p A' l $Ar1 'n ~n

Consider the rotational average

((&.~)(& b)e'"') =a,
,bf, ,a,,l,", ,',~...,(a,c,C), (As)

where A, 8, and C are real molecule-fixed unit vectors
which form a right-handed set, and a, b, and c are real
space-fixed unit vectors which also form a right-handed
orthogonal set. Using Eq. (3.3) to evaluate the right-hand
side of (AS), it is readily seen that because of the ortho-
gonality of the vectors in each frame, the only contribu-

tion comes from the term (3.5). Since (a && b ) c
= (A &&8 ) C = 1, this simply gives

r, s
~ ~ ~ ~

(n) p(0;r) g(0;q)
Ps J l1, . . .~l J A1p. ~ ~, A

(i/2)(sina/a —cosa/a) . (A6)

the coefficients m„',"' of the isotropic tensor products satis-
fy the relations

Taking Taylor-series expansions of both the left-hand side
of (A5) and the result (A6) in terms of a we obtain

1)$

(n + 1) ' for even n

(n —1)/12 for odd n
(ia))'((A.a)(8.b)(C.c) )

p=0 P.
(q+1)(ia)"+'

(2q+3)!

The result (A3) for even n has been proved previously in
this Appendix the result (A4) for odd n is proven, using
averaging formulas derived in the main text. The left-hand side of Eq. (A7) may be written as

(A7)

;b;; . . ; A B C I
f l1 l2 l3 p+2 1 2 3 p+2 17 ' ' ' & p+2) 17 ' ' ' P p+2

p=O
00

,=o &'

The terms in parentheses on the right-hand side of (A8) vanish for euen p because then the isotropic tensors of rank p +2
are products of —,

'
(p +2) Kronecker delta tensors, which contract with the unit vector products to give zero. For odd p,

the isotropic tensors are products of one Levi-Civita antisymmetric tensor with —,(p —1) Kronecker deltas and, taking
the result for the rotational average in block diagonal form, ' we note that only those isotropic tensors involving
e;;;,e~ x x can yield a nonzero result. There are p such epsilon tensors, each of which contracts with the unit vector12m 12m
product to give unity. Since the full set of epsilon tensors obtained by index permutation contains —,p(p+1)(p+2)
members, we thus have

(p+z) ~ f (o,~) ~ ~ ~ ~ {,g)
PS l1 l2 l3 l +g 1p . ~ . p p+2 1,

1 A2 A3 Ap+2z A, 1~. . . p Ap+2

0 for even@ (A9)

'6(p+1) '(p+2) 'g m„'~+" for odd p. (A10)
P, S

Taking Eqs. (A7), (A8), and (A9) and writing p =2t + 1 we thus have
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(ia) '+
y (2t+3) y (q+ 1)(ia)

, , (2t+3)! „, ",, (2q+3)!
(Al 1)

For odd n, comparison of the coefficients of (ia)" on both sides of (Al 1) immediately gives the required result, Eq.
(A4). Since the results for I "'; .& & are only available for n &8 at present, ' the results (A3) and (A4) should

provide a useful check on calculations of higher-order results.
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