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We present a new approach for estimating line broadening. It relies upon the Thomas-Fermi
model at finite temperature and on the assumption of local thermodynamic equilibrium. This
method can predict general features without requiring detailed computations of specific effects, usu-
ally encountered in accurate calculations of line broadening. Obviously, no very precise results can
be expected from our nonspecific approach, but rather plausible estimates of the general features
can be obtained with only modest effort. Results for a Hf plasma are presented and compared with

experimental observations.

I. INTRODUCTION

The phenomenon of line broadening is well known' and
so are its applications (e.g., computation of opacities?).
The standard treatment involves explicit calculation of
those effects which are believed to be the major contribu-
tors to line broadening (e.g., Stark effect). We present
here a different approach, which is capable of estimating
line broadening although it ignores some of the finer de-
tails. It turns out that when this method is valid (e.g., for
high densities) the finer details which were neglected have
hardly any influence on the results.

Our method is statistical in nature and it does not con-
sider any specific effects that should have otherwise been
taken into account explicitly. In this way we avoid some
of the obstacles encountered in the standard methods: We
do not have to worry about which of the many possible
processes need to be included for the particular case under
consideration, and we do not face the difficulties which
usually occur when attempting to calculate these effects
with sufficient accuracy. Since we employ single-particle
lines of an average atom in the framework of the
Thomas-Fermi (TF) model, we also avoid the computation
of a huge number of terms and configurations as ex-
plained further on.

The treatment of a many-electron atom is a rather com-
plicated problem, even for the case of an isolated atom in
its ground state. Nevertheless this problem has been ap-
proximately solved by several methods which generally
yield quite satisfactory results. It was shown that the sim-
ple TF model is exact in the limit of large Z.3 In the
isolated-atom case and finite Z, simple single-particle
models, such as some versions of the TF model, already
give good level energies for the ground states of atoms and
positive ions.* The lines (transition energies) are sharp ex-
cept for their natural width. Now in the relativistic treat-
ment spin-orbit interaction splits the allowed single-
particle lines into doublets whose components are usually
very close to each other. In a real many-electron atom,
the electrostatic and magnetic interactions further split
each line into an array of very narrowly spaced lines.

When the atoms are embedded in a plasma this picture
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changes gradually with increasing temperature and densi-
ty. The possibility of excitation, especially in a hot plas-
ma, gives rise to many different states of ionization of the
atoms and for each ion many possible initial (final) config-
urations (not just the ground state). Also the mutual in-
teractions between the radiating atoms and surrounding
atoms, ions or free electrons cause the sharp levels to
spread into bands. This happens because electrons in dif-
ferent atoms but in the same nominal level (n,l,j) “see”
different time-dependent electrostatic potentials which
vary from atom to atom. The discrete splittings and con-
tinuous spreadings of the levels cause the same phenome-
na in lines. The transition between two given configura-
tions gives rise to a number of lines. We refer to the col-
lection of all such allowed lines as an ““array of lines.” We
call a “cluster of lines” the collection of all allowed lines
between two single-electron states (subshells). Obviously a
cluster includes a number of arrays stemming from vari-
ous possible configurations and states of ionization and
excited states. Each line is further continuously
broadened by various mechanisms, like the Doppler effect
(movement of the ion) and the shortening of the lifetimes
of the levels due to collisions. Evidently some of these
broadened lines can merge together to form still broader
lines.

In this paper we refer to the joint effect of “discrete
splitting” and “continuous broadening” as ‘broadening.”
It is our aim to estimate broadenings caused by splitting
of ionization and excitation states, which is in fact a com-
putation of broadening of lines originating from transi-
tions between different single-electron levels. Therefore,
we assume that splittings within configurations are small
and can be ignored. In this picture arrays of lines belong-
ing to the same cluster merge together. The merging
phenomenon has been observed experimentally’ where in
some cases one sees almost smooth curves rather than
discrete peaks. If, on the other hand, configurations are
electrostatically split wider than splittings caused by the
different states of ionization and excited states, then the
present treatment is naturally less adequate.®

A straightforward computation which treats each of the
possible configurations is of course very difficult to carry
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out due to their enormous number. This is still true when
local thermodynamic equilibrium (LTE) is assumed, as we
do in this work. (The LTE assumption is certainly justi-
fied for sufficiently dense plasmas and can still be ade-
quate for our purpose when the deviations from LTE are
not too large.) We choose to treat this problem by starting
from a description in terms of an “average atom.” The
average atom is a fictitious atom defined as having for
each given density and temperature, an initial configura-
tion which is determined by average, not necessarily in-
tegral, occupation numbers appropriate to the collection
of atoms in the plasma. Starting with the narrow lines of
this average atom as our zeroth approximation we com-
pute the broadening of these lines (which represent a clus-
ter) due to the deviations from the average values of occu-
pation numbers. The main idea in our derivation is to ex-
ploit the statistical nature of a model of an average atom
and calculate the statistical fluctuations around the aver-
age occupation numbers. These fluctuations cause
changes in the electrostatic potential which in turn yield
changes in level energies and thus cause line broadenings.
The standard deviation of these broadenings is believed to
be a good estimate of the “typical” line broadening in a
plasma of given temperature and density. However, we
emphasize that we do not claim to calculate precise values
for broadening with this procedure. We do however be-
lieve that this approach yields quite plausible estimates of
the actual values with minimal effort.

In the next section we present a somewhat detailed
derivation of our method, which we then apply to the TF
model. The method can be extended to deal with other
possible models. In fact results of binding energies and
bound-free cross sections for various modified TF models
have been already reported.” Since it was shown there
that these results are hardly sensitive to the particular
model chosen, we prefer to concentrate in this paper on
the TF model solely. In the final section we compare our
results with the experimental ones and discuss our
method. In an Appendix we discuss a consistency test for
the TF model.

II. DERIVATION OF STATICTICAL
LINE BROADENING

As already stated our method is based upon the concept
of an average atom for which one computes an average-
atom potential. The one-electron Schrodinger equation (or
Dirac equation which we actually used in this work) is
solved in this average-atom potential. The energy levels
and wave functions thus obtained do not in general corre-
spond to any particular real atom or ion. However, as-
suming that the true potentials of the most probable con-
figurations do not differ much from this average poten-
tial, one may regard the energy levels and wave functions
as zero-order estimates, and use perturbation methods to
obtain higher-order approximations for the energy levels.
Models of average atoms at finite temperature already ex-
ist; the TF model was suggested quite long ago,*° and also
the Debye-Hiickel-Thomas-Fermi (DHTF) model.!° Level
energies and other physical quantities based upon these
models and some of their versions have been published.’

D. SHALITIN, J. STEIN, AND AKIVA RON 29

As one example of non-TF average atom models, we men-
tion Rozsnyai’s Hartree-Fock model.!! It turns out that
the simple TF model seems especially suitable for our ap-
proach to this problem. It is true that some of the more
elaborate versions of the TF model (Fermi-Amaldi,?
Thomas-Fermi-Dirac!® and their modifications*) can yield
better results for zero-temperature level energies. Howev-
er, as already stated, the magnitude of the differences
among the results obtained from the different versions
does not appear to justify at this time the extra effort in-
volved in carrying through all other computations. In this
finite temperature and density case we are presently in-
terested more in general features than in high-precision
computations. We follow Latter’s derivation’ of extend-
ing the TF model to finite temperature and density for its
simplicity. We consider a one-component plasma in
which each atomic nucleus is placed in a sphere the
volume of which is 1/p (where p is the atomic density)
and its radius is 7o. We assume that the electrons are in
thermal equilibrium with a heat reservoir of temperature
T=1/kpB, where k is Boltzmann’s constant, and with an
electron reservoir having a chemical potential u (or in the
language of solid-state physics a Fermi energy p). In this
model the electrons come in and out of the fixed volume
of the atom. Thus the atom is electrically neutral on the
average, but not at any given moment. We prefer this pic-
ture to the confined-atom picture in which the atom is al-
ways neutral, because the former is more physically
sound, and, besides, it makes the treatment of fluctuations
easier.

One can assume that at each point in configuration
space there exists an average electrostatic potential V(1)
due to the joint effects of the nucleus and all Z electrons
(the superscript a denotes an average value). According to
Fermi-Dirac statistics the average density in phase space
of a macroscopic system of noninteracting particles is

2 1
(27%) exp{[—eVXT)+p>/2m —pu]/kT}+1
(1)

The average density of particles in configuration space is

pe(D)= [ &’p pi(F,P)

pe(T,B)=

172 32
=_2_—(%_11/2([#+9Va(?)]/kT) , )
where I,,(7) are the Fermi-Dirac functions:
_ (2t
L= [ e 3)

For 17— one gets I, < 7", and for 1— — o0, I,(7)
xe.

A second relation between p;(T) and V%T) is provided
by Poisson’s equation, which in the case of a point nucleus
becomes

V2IV(T)=4mep?(T)—4meZ8(T) . @)
The solution of Egs. (2) and (4), for the unknowns p5(T),

V4T), and u, is unique if the two boundary conditions are
fulfilled:
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Ve(ro)=0 (5a)

which is the natural choice of zero potential energy, and

[ o=z (5b)

which is the constraint on the average charge density.
The second of these boundary conditions implies
[BV"(r)/ar]l,__.,O:O. Since the problem is spherically
symmetric we will use r instead of T where possible. The
singular part of Eq. (4) may be replaced by the additional
boundary condition:

lin%) [rVer)]=2Ze . (5¢)

Note that the chemical potential p is a function of p and
T. Therefore, our method of solution consists of itera-
tions for different values of p until our boundary condi-
tions are fulfilled.

The potential ¥%(r), which in fact depends also on T
and p can now be used as an average-atom potential to
compute zero-order energy levels and wave functions, by
solving the Schrodinger equation (or the Dirac equation).
We get then a series of one-electron levels, Ef( p, T, all as-
sociated with the same potential V%(r;p,T). The only
quantum effect which we introduced in order to calculate
the potential is the Fermi-Dirac statistics. Nevertheless it
is instructive to see that there is in fact some consistency
between the semiclassical pg(7), V%(r) and the quantum en-
ergy levels and wave functions. This is discussed in the
Appendix.

The width and shape of a level (in the sense that was
described in the Introduction), due to fluctuations in the
occupation numbers of the electrons of different atoms,
can be estimated as follows: Suppose that the local densi-
ty in phase space for a particular atom is

P(T,B)=p5(r,p)+8p.(T,B) , (6)

where pg(r,p) is the electron density in the average atom,
assumed to be the average of p,(T,P) over all atoms. The
electrostatic potential at any given point T’ is

d’rd? T,p
V(f’l): Z,e _ f r pepe(r p)
r |T—T1"|
—Ze L yary 18V, (7)) (7)
where
3 —>
dp.
sV, ()= —e [ L0per) (®)
[T—T1"
and
8p.(T)= fd3p8pe(f§3). 9

If most deviations from the average are small (as is the
case in a macroscopic system) then most deviations in the
values of the binding energies will also be small. There-
fore, first-order perturbation theory may be used for the
computation of these deviations. The effect of such a
fluctuation 8p,(T) on the energy level E; is
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SE,' =Ei -—Eia
=— [ |9HT")| %8V, (F)d’r

= f d3rd3r’e28pe(F) | 9i(E) *

|T—71"|
=—e [ v(D)dp.(T)dr , (10)
where
|9f(r) |
(A= — 3.
v;(7T) efd r | (11)

is the electrostatic potential induced by the electron in lev-
el i described by a wave function ¢{(T) as calculated in the
average-atom potential. In order to simplify the calcula-
tion we approximate the potential by the first term of its
multipole expansion. Thus Eq. (11) is replaced by

| 3T |2
max(r,r’)

We shall define AE; as the root mean square of (8E;)
averaged over all atoms:

2
(AE = (B Y =e( | [ utropo (i |')

=e2< [ v,-(r)v,-(r')Spe(?)Spe(?’)d3rd3r'>

vi(r)=—e fd3r’ (11

=e? [ vi(ro(r')(8p (DI8p(F))d*rd¥ . (12)

We may also estimate the correlation function
(8p(T)8p(T"')) within the TF description. For this pur-
pose we will further assume that deviations at different
points in phase space are uncorrelated. The assumption is
valid for noninteracting fermions in a potential, a descrip-
tion which was fundamental in obtaining Eq. (1).

Consider volume elements in phase space, labeled by
some index j. The size of the jth volume element is
5(27#%)’Q;; Q; is the number of cells in the volume.
[Each cell in phase space which contains at most one elec-
tron has a volume +(27%)3; the factor 5 is due to the two
possible spin states.] The probability that N; noninteract-
ing particles having similar energies will occupy the (;
cells of the jth volume element is given by the binomial
distribution

Q| —N;
[Nj]nj’(l——nj)n’ N (13)

where n; is the probability that an electron occupies a cell

in phase space. The average occupation of the jth volume
element is then

and the fluctuation 8N; from the average occupation may

be written in terms of the fluctuation 8p, of the electron
density in phase space as

(2mh)?
2

SN, = 0,80, (T},8;) - (15)
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The correlation (8N;8N;) between a fluctuation 8N in

the number of particles in cell £ and a simultaneous fluc-
tuation 8N in a different cell j is given by

[Remember that we have assumed that fluctuations at dif-
ferent points in phase space are uncorrelated, resulting in
the Kronecker delta. For j=k we use the result for the
variance (sz) —{(N;)2=((8N;)?) =n;(1—n;)Q;.]
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where
E;=E(r;,p;)=p;/2m —eV(r;) (18)

is the energy of a classical electron at a point ( T;,B;). As-
sluming these expressions remain valid in the limit
+Q(27#)*—0, and taking into account Eq. (15) and

Now we also have that 8(p,~~—p,-)8(r,~—r,~)=ni1;§rio WY (19)
1
- , an
"= expl(E;—p) /KT +1 yield
|
N = o oy w2 exp{[E(r,p)—u]/kT}
8p.(T,P)6p. (T, =8(r—-1")8(p—p") , (20)
(8p.(T,B)8p.(T',B ")) =8(F—T")8(B—P e (oxpl[E(r.p)—pl AT] + 17
and therefore
— — 8(r—r1"') 3 exp[(E —u)/kT]
80, (F)8p, (£ =2E=L) 4
(Bp. (FIdp (£)) == 55 { exp[(E —p)/kT]+1}?
32
=%1_1/2([u+eVa(r)]/kT)5(?_?’) . 1)
T
Hence Eqgs. (12) and (21) yield
32
<AE,-)2=(2’Z—"27;i§-e2f [0 (P _y o[ +eV ) /KT ) . 22)
T

This is our expression for the broadening of an energy level, due to thermal fluctuations in the occupation numbers in
phase space, within the TF model. [Note that by Eq. (3) (AE;)* « T for T—0, and for T— oo, AE;— const. ]
We follow the derivation of Eq. (22) in order to calculate the width of a transition line between levels having energies

E; and E;. We start by utilizing Eq. (10) and define

SE,] =8E, —SEI =—e f [Ui(r)—vj(r)]ﬁpe(?)d:;r . (23)
Following a similar procedure finally yields the width of a transition line:
2mkT)3"?
(AE, )2=((6E,-j)2>=(——’2’72—ﬁ§—e2 [ i —v, (NPT _y o[ +eV4r)1/KT)dr . (24)

The fluctuations which we described cause level and
also transition energies to appear as bands rather than
sharp values. Therefore, we have to refine the treatment
of transition probabilities which are defined for sharp
values and introduce cross sections. The spontaneous
emission probability 4,_,,  for a very narrow transition
between states u and p' is given, in the nonrelativistic di-
pole approximation, by the expression

4a

A=
alad 3

3
:z"l(ul?lﬂ’ﬂz, (25)

where a=e®/#ic=1/137. If 0, ,(#iw) is the cross sec-
tion for photoabsorption of a very narrow transition, then

8y e H _

f(I,,'_.,u(ﬁa))d(ﬁco)=‘—g*,(ﬁwf)2 o
n

(26)

A,_,, is an average (over a group of nearly degenerate
states) of the transition probability for an atom in initial

I

state 4 to a final state u'. The initial (final) state u (u’) is
any of the g, (g,’) degenerate initial (final) states, and %o
is the average energy. In this presentation we have re-
placed the discrete line by a continuous one but kept
f o(#iw)d(fiw) constant. The shape of the line is Gauss-
ian with a standard deviation of AE - [see Eq. (24)]. The
Gaussian shape is a necessary consequence of the assump-
tion that the broadening is caused by many small but in-
dependent effects. Keeping f o(fiw)d(#iw) constant (i.e.,
independent of the line shape) in deriving (26) is fully jus-
tified as long as AE <<#iw and AE << | Ej, |, where E}, is
the energy of the higher level of the two. However, we
still use it also for wider lines, expecting that a more so-
phisticated treatment would change but slightly the final
results.

III. RESULTS AND DISCUSSION

We illustrate our method by presenting a few emission
spectra of Hf (Z=72) at temperatures kT =300 and 350
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Wavelength (A)
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FIG. 1. Emission spectrum of a Hf plasma at temperature of
kT =300 eV and density of p=5x 10" atoms/cm’, according to
the TF model is presented over the same wavelength range as in
Ref. 14. Solid curve is the intensity of the spectrum. Dashed
curves are the separate broadened lines. The short bars on the
abscissa indicate the centers (location of the maxima) of the
separate lines. (Note that some of the dashed curves have their
centers outside the graph boundaries.) The central peak is due
to the three 4f—3d transitions, the left peak is due to the two
4d —3p;; transitions, and the right peak (only partially shown)
is due to the three 4p — 3d transitions. Some less prominent and
hardly noticable lines are the two 4s — 3p transitions (on the two
sides of the main peak). Relativistic wave functions in a nonre-
lativistic TF potential were used.

eV and at densities p=5x10" and 5x10%° atoms/cm>.
We chose to present these spectra in order to simulate a
previously measured and interpreted emission spectrum of
a laser-produced plasma.'* Figures 1—4 show our calcu-
lated TF spectra. These figures (and additional ones
which are not presented here!®) suggest that the major ef-
fect of temperature is to shift somewhat the location of
the centers of the lines and hardly change their width.
The density affects more the width (the higher the density
the broader the line) and to a lesser degree it also shifts the
spectrum. Figures 1 and 4, out of our four examples, bear
resemblance to the experimental result (Fig. 1 of Ref. 14).
In both graphs the general structure and locations of the
“hills” are quite close to those of the experimental graph.
In all cases the theoretical TF lines seem to be too wide.
This may be explained by the continuous nature of the TF
electron density versus the shell structure of electrons in
real atoms. In many cases the freedom to fluctuate is far
greater in a TF model than it is for an actual atom. In a
planned subsequent paper we will take into account the
discrete nature and shell structure of the electrons while
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FIG. 2. Same as Fig. 1 but for kT=350 eV and p=5X10"
atoms/cm’.

calculating the fluctuations and their effects on the line
(cluster) width.

In seeking a simple model which gives a reasonable
description of the shapes of the prominent features (hills
rather than sharper peaks) in spectra of plasmas (e.g.,
Refs. 5 and 14), we have restricted ourselves to average-
atom models. In this paper we have presented a detailed

Wavelength (A)

5.23 7.82

20
p=5x%10 atoms/cm3

kT =300 eV

In (Intensity) (arbitrary units)

\ 4 - N \\ \/\
NN \\i X 7
1\ l\\Vl/x\/ll ,1/ v b AN
S~
ad~3p \ 41534 \ 4p—3d
45—>3p 45 —>3p
/5 3/,

FIG. 3. Same as Fig. 1 but for kT=300 eV and p=5x10%
atoms/cm>.
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Wavelength (A)

5.23 7.82

= 5x lO20 atoms/cm>
,O

kT

350 eV

In (Intensity) (arbitrary units)
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.\v.\ h i\\l AN
!
4d—3p \ 41>3d \ 4p—>3d
4s>3p, ~3p3,

FIG. 4. Same as Fig. 1 but for kT =350 eV and p=5x 10%
atoms/cm®.

account for the TF model making a few plausible assump-
tions. Clearly we are assuming that by solving Egs.
(2)—(5) inside a sphere of radius ry we obtain a potential
which does not differ much from the potentials of the
most probable ionic configurations in the plasma. Then
the subsequent first-order perturbation approach is justi-
fied.

The mere introduction of fluctuations in the number of
electrons results in an “open-atom” model in which elec-
trons are coming in and out of the sphere. Such a model
which constrains only the average number of electrons is
different from the confined-atom model (with impene-
trable boundaries). However, we still find that the (time)
average number of electrons in an atomic volume (and not
the actual number for each individual fluctuation which is
considered in calculating the width) is equal to Z. This
open-atom model is equivalent to a confined atom with a
fluctuating volume which we have not treated here expli-
citly, but is rather easy to accomplish. Another approach
would be to keep the confined-atom model and artificially
impose the constraint by appropriately normalizing the
free-electron distribution. We examined this modification
and found that it hardly changed the results. Another
shortcoming of these models is that they ignore the
penetration of neighbor ions into the atomic volume. This
effect is better taken into account by the DHTF model.
In the examples in which binding energies and bound-free
cross sections were computed for the DHTF, TF, and
some of its versions’ it was found that differences between
the various results were rather minor.

An additional and crucial assumption made here is that
the actual line spectrum is sufficiently dense. Then, when
each line is spread, by its natural width and by time-
dependent mechanisms which cause continuous spreading
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(Doppler, Stark, collisions) the lines overlap and appear
rather as continuous hilly features, as sometimes seen ex-
perimentally.>!* Our model gives the rough shape and lo-
cation of these features but, of course, not the finer details
of the individual lines. In a planned subsequent paper we
intend to refine and extend the method beyond the TF
model so that some of the details of the spectra will be re-
vealed and the resemblance to experiment will improve.
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APPENDIX

We illustrate here the consistency of the TF approach
with quantum mechanics, in the sense that the number of
bound levels in the statistical framework agrees with the
number of bound levels derived by quantum-mechanical
calculations for the same statistical potential, and also in
the agreement of the number of bound electrons calculated
in the two methods.

Having found all the bound single-particle quantum
levels in a given potential, one can plot N, (E), the number
of bound quantum states not exceeding the negative ener-
gy E, as function of E. On the other hand, we can plot
N, (E), the number of bound states according to the classi-
cal statistical procedure to which we add the assumption
that there are two possible states in one cell of phase space
volume (277%)°. One gets then

o

where eV[r(E)]= —E defines r(E). Figure 5 shows these
two curves computed for an iron plasma having tempera-
ture kT =1 keV and density p=5X10?* atoms/cm>. The
two curves show the resemblance which is expected when
making statistical and quantum assumptions.

Another interesting comparison is between the electron
populations derived by means of these two approaches.
Let P(E) be the average number of electrons occupying
levels which have energies less than E. Then according to
the quantum-mechanical approach

Ny(E)= m{2m[E'+eV(r)]}2dr ,

-E (keV)

FIG. 5. Number of bound states in an iron plasma
(p=5x10% atoms/cm®, kT=1 keV) according to a quantum
calculation, N,, and a statistical calculation, Ny, in a Thomas-
Fermi potential.
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P(B)= 3 & , E<O0,
E,<E exp[(E; —u)/kT]+1

where g; is the degeneracy of the level (usually equal to
2j+1) and E; is its energy. Analogously we define the
average number of electrons occupying states according to
the statistical model

4 E dE'
P (E)= i f—w exp[(E'—u)/kT]+1

r(E’)
X fo r’m{2m[E'+eV(r)]}2dr .

Figure 6 shows these two curves computed for the same
values of p and kT as in Fig. 5. Again we find a reason-
able agreement. It is perhaps worth noting that for a pure
Coulomb potential, Ze /7, one gets

3/2

2m

Ze23
2% | | —E

Coul __2
N; (E)—3 2

where n=(m /—2E)"%(e?Z /#) is the analog of the prin-
cipal quantum number. Then we have

0.0l 0.l 1 10
-E (keV)

FIG. 6. Population of bound states in an iron plasma
(p=5x10% atoms/cm’, kT=1 keV) according to a quantum
calculation, P,, and a statistical calculation, P;, in a Thomas-
Fermi potential.

Nq(E)=%n'3 2n' 2nl2

1+L+Ll

=2(n'+3)P+0"),

where n'=[n(E)] is the integral part of n(E). Although
such results are expected of any plausible model it is
reassuring to find that they are indeed obtained in our
case.
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