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Hydrodynamic stability of rotational gravity waves
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We generalize the Arnold functional to discuss I.yapunov stability of rotational mater waves.

Usually gravity waves are studied through the velocity
potential P{x,y,z, t), i.e., by considering just the case of ir-
rotational flows. ' Recently the introduction of the
stream function %(x,z, t) was shown to be rather useful in
the study of two-dimensional motion of rotational
flows. In this paper we study gravity-wave motion,
i.e., the two-dimensional divergence-free motion of an m-

compressible fluid bounded by a free surface g{x,t) using
the stream function 0'(x, z, t). We verify the hydrodynam-
ic stability in the sense of Lyapunov for rotational gravity
waves by using a generalization of a theorem of Ar-
noId 10, 11

I.ct us consldcr thc vertical plane with cooldlnatcs x,z,
where we define the velocity

U
—= (u, m):—( 8,%'(x,z, t);—d„V(x,z, t)) .

The Euler equation can be written

B,V'e+ B„eB,V'e —B,e B.V'% —=B,q+J(f,q) =0,
where q=V' 4 represents the vorticity of the fluid. On
the air-sea surface z =rt(x, t) the fluid must satisfy'

—'
I

U
I
'+z.~ +gz I.=,=—'(Vf)'+u. ~ +gz I.=&

Vfe will discuss the case of' periodic traveling waves

%(x,z, t) =%(x+ct,z); g(x, t) =rt(x+ct),
where c is the constant phase velocity. Using the Galilean
transformation

we may obtain the stationary case. Disregarding the
primes in the above formulas, we obtain

4—+qj(x,z),
rl ~g(x),

which must obey

2 [VV(x,z)] +gg{x)=f(%')= const,

4' =const' (3c)
on the streamline z=g which corresponds to the air-sea
surface aild wifli

+= const" (3d)

on t4e bottom which is located at z —+ —m.
We will show that for solutions of (3) in which F( . )

is an increasing function, the configuration Il', 7)I is
Lyapunov stable. We introduce the Lyapunov functional
H (Ref. 13):

H(+, il)= f f [—,'(V4) +4&(V 4)+gz]dx dz, (4)

where 4(. . . ) is a function to be determined. Let us
check the following three properties of the functional.

(a) H(+, rt) =—0,6

(b) bH =H(4+5, r7+e) H(+, r7) =0—

to first order in I5(x,z, t),e(x, t) ):
(c) b. H(+, rt) &0 .

Later we will prove that if (a), (b), and (c) hold, then we
have the Lyapunov stability of the stationary configura-
tion (%',rl).

It is easy to prove that (a) holds if we write (4) as fol-
1ows:

H= f f [—,'(V%)z+gz]dxdz+ f f 4(q)dx dz .

(5)
The first integral is the total energy of the system; the
second integral is also a conserved quantity.

Let us prove (b) by considering the variation of H for
%(x,z) ~V(x,z)+5(x,z, t), we have

b,,H =H(% + 5,g) H(+,g)—
= f f" (V+V5)~ e(q)

00

q =—V %(x,z )=F('P(x,z )),
F( . ) being some regular function, and

(3a)

+ f +V5ds,
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where q =V qi, 5q =V 5. Since 5=0 on the boundary (see
Whitham, Ref. 3, p. 435), it follows that

f f" (py q5)+ @(q) 5q dxdz
—00

dx dz

If we choose 4 such that

4=F '(q),
dg

[where I'( ' ) is defined by (3)], then we have the second
integral zero. Clearly I'( ) must be an invertible func-
tion, hence irrotational flows are excluded from this
analysis.

For variations of the boundary ri( x)~ ri( x)+e(x, t) it is
easy to prove that

a~ =H(4, q+ ~) H—(P,W

f ~I[ '(py)'+gz]+@(q}j, „dx . (7)

The term inside the curly brackets is constant along the

streamline z =q; hence it is possible to write from the Ber-

Iloull1 equat1on aIld from the conservat1OIl of vort1c1ty

&+=I[—,
' (VV) +gz]+&I(q)}, „f edx .

If we consider only perturbatlons that conserve the mass&

we have e x=O, hence 5 =0.
Finally we discuss property (c) by evaluating the second

variation of H(V, g). For %~4+5 from Eq. (6) we have

(i) Aq(bgH)= f f (V5) + — 4(q)
dg

For ri~rj+e, from Eq. (6) we have

(ii) &„(~+H)= f VV. A+ C(q)
dg

F« p —+0'+5, from Eq. (7) we have
r

(iii) b,~(b,+)= f g+ q5+ @(q)
dq

F«ri~q+&, «om Eq. (7) we have

(tv) ~„(&+)=—,'g f e'dx.

(5q) dx dz .

5q edx .

From the Euler equation we see that (ii) and (iii) are
zero. The integral (iv} is positive, hence by inspection of
the expression (i) we see that property (c) holds if

t

4(q) = F '(q) = +(p)—
dq~ dq d%'

This is the same as requiring that F( ) is an increasing

function. In the simplest case when I'(+) is linear, Eq. (3)
shows that this condition implies the vertical length scale
is less than the horizontal one.

As a consequence of the above three properties of H, we

will now show the Lyapunov stabihty of the system de-

fined by 4 and rl. Let us consider the perturbed initial

system defined by (0+5;g+e). Because of property (a)

I

we have that H will remain constant regardless of the time
evolution of the i»tiai system. Now if we assume that the
perturbation increased with the tiIne, then it would follow
that H must increase, since the configuration defined by
(O', Fi) represents a minimum of H [properties (b) and (c)].
From this contradiction we can deduce that the perturba-
tion cannot increase with time and hence the system is
stable. Finally, if H has a relative minimum, the initial
perturbation has to be sufficiently small; if H has an abso-
lute minimum, larger classes of initial perturbations are
stable. Internal waves, nonperiodical surface waves, and
irrotational waves will be discussed in a subsequent paper.
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