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A general, formal structure of the Kirkwood coupling-parameter expansion method for the distri-
bution function of a Auid is presented. In this method, no closure approximation, such as the super-

position approximation, is required. Various properties of this method are discussed.

I. INTRODUCTION

The interest in the two-particle distribution function in
a classical fluid results not only from the fact that this
quantity can be determined by numerical and experimen-
tal methods, but also from the fact that simple formulas
exist which express thermodynamic quantities of fluid in
terms of the two-particle distribution function. In order
to express the chemical potential of the fluid in terms of
the two-particle distribution function, the dependence of
this distribution function on the Kirkwood coupling pa-
rameter g has to be determined. This g dependence of the
distribution function is not given in the conventional
methods of determining the two-particle distribution
function. In the conventional methods the two-particle
distribution function is determined by solving an integral
equation such as the Percus- Yevick or HNC (hyper-
netted-chain) equation which is obtained by essentially
summing diagrams corresponding to different powers of
the density up to infinite order. The other method is
based on the superposition approximation for the three-
particle distribution function, leading to the integral equa-
tion of Kirkwood and of Born, Green, and Yvon.

In the Kirkwood coupling-parameter expansion method
which we propose here, the g dependence of the distribu-
tion function is determined by expanding the pair correla-
tion function in powers of the coupling parameter g,

G( rl r2 g) Ã1(rl r2)+ÃG2(rl r2)+

where the pair correlation function G(r~, r2, $) is defined
by the Kirkwood decomposition of the two-particle distri-
bution function

and triplet correlation functions. The closure approxima-
tion, such as the superposition approximation of the
hierarchy equations, is found unnecessary if the quantities
of the same power of g' are taken to be equal in the hierar-
chy equations. In the lowest-order approximation which
takes only terms linear in g, the equation for G&(r&, r2)
does not include three-particle correlation effects. If one
takes terms up to g, three coupled equations for G&, G2,
and H~ are obtained. In this case the quantity G&(r&, r2)
includes three-particle correlation effects and differs from
the similar quantity G&(rt, r2) which is derived as the
lowest-order approximation. If one takes terms up to g,
the quantity G

& ( r &, r2) includes four-particle correlation
effects together with three-particle correlations. Thus the
approximations associated with the Kirkwood coupling-
parameter expansion method are quite different from the
conventional approximations where the lowest-order
quantity is used to determine the higher-order quantity in
a successive manner. In Sec. II we show the formal struc-
ture of the Kirkwood coupling-parameter expansion
method.

II. KIRKWOOD COUPLING-PARAMETER
EXPANSION METHOD

We consider a classical system of monatomic rnolecules
in a volume V at temperature T and the chemical poten-
tial p. In the configuration r~, r2, . . . , r~, the potential
energy Uz of the system is given by

N N —1 N

U~(r(, rp, . . . , r~, g)=g g u(r)J)+ g gu(rj), (2)
J=2

p (~1 r2 4) p (rl k)p

X[1+G(r„r,;g)] .

The triplet correlation function H(r&, r2, r3,$) is defined
and expanded in powers of g in a similar manner. Thus
the hierarchy of the two- and three-particle distribution
functions is transformed into the hierarchy of the pair

l

where we assume only the pair interaction between mole-
cules. The quantity u (r,j ) is the potential energy between
the particles at r; and rJ and is normalized by k&T where
k~ is the Boltzmann constant. The quantity g is the
Kirkwood coupling parameter. The n-particle distribu-
tion function p'"'(r~, rz, . . . , r„;g) in the grand-canonical
ensemble is defined as

pN/k& T

P ( l~ rr2. . ~ rn~k) g 3~ J f e ti~n+] drN= &, T,p;5 ~)„(X n)!Ag—
where Az is the thermal de Broglie wavelength and the quantity =( V, T,p;g) is given by
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pN/k& T

:-(V,Tp;g)= g f fe " ' ' '' ' dr)drz drN .
N&0 + ~8

Taking the derivative of p'"'( r1, rz, . . . , rn;g) with respect to g, we find the following equation:

Bp'"'( r), r 2, . . . , r „;g)
Bg

n

g u(r)J)+ —f u(r)2)p' "(r),rz, g)dr)drz p'"'(r), rz, . . . , r„;g)

(n+1) ~
II (&),n+1 )p ( r1 r2 ~ ~ i r n+1 k)d n +1 (5)

where

pN/k& T
1 ~ We UN[ r

1
r 2' ' '

3X dr jdr2CY =

2
p 3X e dr3 . dr& .

= w&0 &I~a

EquatIon (5) is identical with Eq. (37.60) in Hill. Conventionally, Eq. (5) is used as the basic equation for
p'"'(r „rz, . . . , r„;g). ln this case the basic equation for p'"'(r1, rz, . . . , r„;g) in the grand-canonical ensemble is dif-
ferent from the similar equation derived in the canonical ensemble in which the quantity p' '*(r), rz', g) does not appear.
Besjdes, the chemical potential of the system is expressed by the quantity p' '"(r1, rz, g) in the grand-canonical ensemble,
while in the canonical ensemble it is expressed by p' '(r(, rz', g) as shown in Eq. (30.35) of Ref. 1. This inconvenience can
be avoided if one uses the following equation to eliminate p' '"(r), rz, g) in Eq. (5):

(2) -+ ~
~

1
u(r)2)p (r), rz, g)dr)drz ——

&
lnp (r)', g)+ u (r)2) drz .(2)n . ~ (1) p (r), rz, g)

p(1)(r .g)
(7)

Equation (7) is obtained by setting n = 1 in Eq. (5). Substituting Eq. (7) into Eq. (5), we find the basic equation of the n

particle distribution function

p'"'(r), rz, . . . , r„;g)
p(1)(r .g)

p' '(r, , rz;g) p'"'(r„rz, . . . , r„;g)
p(1)(r .g) p(1)(r .g)

(n+1) ~
p (r„rz, . . . , r„~),g)

u(r) „+1) d m+1p(1)(r .g)

The identical equation to Eq. (8) is obtained in canonical and isothermal-isobaric ensembles. Thus the basic equation for
the n-particle distribution function in different ensembles is found to be formally identical.

The Kirkwood decompositions of the two-, three-, and four-particle distribution functions are given by the following
equations:

p' '(r), rz,'g)=p'"(r)', g)p"'(rz)[1+G(r), rz,'g)],
p' '(r), rz, r3,$)=p"'(r),g)p'"(rz)p"'(r3)[1+(1+P23)6(r, , rz, g)+6(rz, r3)+H(r), rz, r3,$)],
p' '(r„rz, r3, r4, g)=p'"(r(, g)p"'(rz)p'"(r3)p"'(r4)

)&[1+(1+P23+Pz4)G(r),rz, g)+(1+P34+ z4)6( 2, 3)

+ (1+P23+P24)6 ( r(, rz, g)6 ( r3, r4)+ (1+P34~P24)H ( r(, rz, r3,'g)

+H(r»r3 r4)+I(r( r2 r3 r4,'k)]

where PJ is the exchange operator between i and j. Substituting Eqs. (9), (10), and (11) into Eq. (8), we find the follow-
ing equations for 6, H, and I:

~6(rz)'4) = —u(r12)[1+6(rz(,'g)]+pa dr321 ( 3)[I61(r3),g)6(r», g) —6(r32) H(I21 r3(,g)], (12)
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BH(r2l, r31,'g) = —(1+P23}u(r12}[6(r3»g}+6(r32}+H(r2lrsl k)]

+po f 4 ( 14)[ ( 41,g) ( 2l, 3l, g) —(1+P23)G(r2l,'g)6(r43) — ( 32, 42) — ( 2l, 31, 4l', g)],

( r 21~ r31~ r 41' k)
( 1+P23+P24 }u (r12)[6(r31 k)6( r42)+ 6( r41 k)6( r32}+H( r31 r41 k)

+H(r32 42)+I(r21 31 41 4)]

+po fdrsu(&15) {6(rslig)I(r21 r31 r4l'g)

( 1 +P23 +P34 )[6( r31', g)H ( r42, r52)+ G ( r53 )H ( r21, r41,$)]

I(r32 r42 52) ~(r21 r31 41 51 4) I

where we have assumed the uniform fluid with the density

po for simplicity.
Making use of the definition of the n-particle distribu-

tion function, we find the following relation:

Comparing Eq. (15) and Eqs. (9)—(11), we can easily ob-
tain the equation

6(r2l, 0)=H(r2l, r3l 0)

=I(r21, r31 141,0)=0 .

Thus it is quite reasonable to expand these quantities 6,
H, and I in terms of power series of g as follows:

6( r21 k) Ã1(r21}+k 62(r21}+

H( r21 r31 4) Wl(r21 r31}

+O'H2(r2l r3»+ '

I(r2l, r31 4l f) gI1(r2j 131 r4l)

(17)

+0 I2(r21 r31 r41}+ (19)

Substituting Eqs. (17)—(19) into Eqs. (12)—(14) and taking
terms of equal power of g to be equal, we find the follow-
ing:

61(r21} u ( 12 } pof dr3u (r13)6( 32}

262( r2l) u (r12 )61(r21}—po fdr3u (r13 )Hl( 21 31}

363( r2l) u(r12)62( r21)+po fdr3u (r13 }[Gl(r31}61(r21) H2(r21 r31)]

Hl( r21, r31)= —[u (1 12)+u (rl3 )]G( r32) po fdr4u (r14)H ( r32, r42),

2H2( r21 r») = —u(r 12)[6l(rsl)+H l(r21, r31)]—u (r 13)[61(r21)+Hl(r2l r»)]

po fd r4u (r—l4)[6l ( r21)6(r43)+ 6l (r31)6 ( r42)+I 1(r21, rsl, r4l)],

Il(r21 r3l r4l)= — [u(rl2}+u(rl3)+u(r4 1])H(r,32r42} po fdrsu(rls)I(r32, r4»rs2} .

(20)

(21}

(22)

(23)

(24)

(25)

The second term on the right-hand side (rhs) of Eq. (20)
implies the following:

po fd r 3u (r l3
—)6 ( r 32)

Similar care has to be exercised for the quantities 6, 0,
and I in Eqs. (23}, (24), and (25).

In the lowest approximation, we set 6 =61 in Eq. (20)
and the following equation is obtained which determines
the quantity Gl(r21):

= —po fd rsu (r» )[61(r32) +G2( r32)+ ], (26) 61('»)= u('») —po f"'3"("»)Gl('32) . (27)



MASAAKI WATANABE

61(q)=- u (q)
I +pou(q)

' (28)

where the Fourier and the inverse Fourier transforms are
deflined as

u(q)= Jdr21e "u(r21),

u {r21) =f,e "u ( q ) .
(2m )'

In the second approximation, we write 6 and H as fol-
lows:

6 =GI+62, H =Hj .

When the Fourier integral of the interaction potential
u (r12) exists, Eq. (27) can be easily solved in the follow-
lQg:

262(r21) = —u (r12)61(r21)

—Po r3~ ~&3 Hr ~z»r3I

H1 {r21 r31)=—[u (F12)+u (r13)][61(r32)+62(r32)]

Po f3+ ~13 ~1 &2]. I'3]. (33)

These coupled equations (31), (32), and (33) can be re-
duced to the linear integral equation for the quantity
61(q ) in the following:

Substituting Eq. (30) into Eqs. (20), (21), and (23), we find
the following coupled equations of the quantities 61, 62,
and H).

61(r21)= —u (r 12)

—po J dr3u(ri3)[61(r32)+62(r32)]

2 ~t ~l ~)I I q' Po~ q ™q —q

2Po 1+p11u(q ) (2~)' 1+p11u(q' —q )u(q')u(q )

pou(q ) pou(q ) dq '
p11u (q ')u(q ' —q )+

2
[1—pou q +pou q u q

po[1+pou(q )] po[1+pou(q )] (21r) 1+pou(q ' —q )u(q ')u{ q )

Pou q dq,
)

2
( ) {, )

Pouu( ) p u( '+ )
Pog q+q —POQ q Q q+q

2po[1+pou{ q )] (2' ) 1+pou(q ')u(q )u(q '+ q )

p11u(q
' —q )[1—p11u(q )]+, 61( ') .

1+pou(q ')u(q )u(q ' —q )

The quantities 62(q ) and H1(q2, q3) are related with the solution of Eq. (34) as follows:

1 +p11u q

Po pou(q )

u (q1)
H1( q2, q3) =

1+pou (q1)u(q2)u(q3)

61(q2) 61(q3) 61(q3) 6,(q, )2+ + —u(q2) 2+
Po u (q2) u(q3) u(q3) u(q1)

61(q1) 61(q2)+ p11u(q2)u(q3) 2+
u(q1) u(q2)

(36)
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where q1 ———(q2+q3). In this approximation the cou-
pled equations (31), (32), and (33) can be regarded as linear
approximations for the basic equations (12) and (13).

In the next-order approximation, the nonlinear term on
the rhs of Eq. (12) is included and the six coupled equa-
tions for the quantities G1, 62, 63, H1, H2, and I1 are
obtained by the following substitution of the quantities 6,

H, and I:
6 =G)+62+63,
H =H) +H2,
I=I, .

In this approximation the six coupled equations are

(37)

(38)

(39)

G1(r21 ) = —u (r12 ) —pp fdr3u (r13 )6( r32)

262(r21) u(r12 )61(r21) pp fd-.3u(r13 )H1( r21, r31)

363(r21)= —u(r12)62( 21)+Ppfdr3 (r13)[61( 31)61(r21)—H2( 21 31)1

H1(r21, r31)= —[u (r12)+u(r13)]G(r32) pp f—d r4u(r14)H(r32 r42),

2H2(r21, r31)=—u(r12)[G1(r31)+H1(r21 31)]—u(r13)[61( 21)+H1( 21 r31)]

—Ppf dr4u(r14)[61(r21)6(r43)+61(r31)6(r42)+Il(r21, r31 r41)],

I, (r21, r31, r41) = —[u (r,2)+u (r,3)+u (r14)]H(r32, r42, ) —pp fdrsu (r,3)I,(r32, r42, r52) .

(40)

(41)

(43)

(45)

Solving these coupled equations is a lengthy process, how-

ever, the approximation scheme is systematic and it has
the advantage that no closure assumption such as a super-
position approximation for the three-particle distribution
function is required. For completeness we have derived
the Born-Green- Yvon type of equation based on the
present method in the Appendix.

function is not obtained and other formulas to determine
the entropy in terms of the two-particle distribution func-
tion are available. In these methods, one starts from
the following expression of the entropy S of the fluid:

S=—,f ffzlnfzd(1)d(2) d(N)
k21

III. DISCUSSION

Various thermodynamic quantities and the pair correla-
tion functions are related in the following equations:

E 3 Po=—+ u«12)[1+6(r21)]dr21
NkB T

pV pp du (r12)=1— f r12
——[1+6(r21)]dr21, (47)

NkB T 6 dr)2

= Hp A,
P 1

3

B

+pp f dg fu(r12)[1+6(r2„$')]dr2, , (48)

T

Bpp
kBT

. T
=1+pp fG(r21)dr21, (49)

where the quantities E and I' are the total energy and the
pressure of the fluid. The entropy S of the fluid can be
obtained by making use of the thermodynamic relation
S =E/T+PV/T pN/T. —

In the conventional method of deriving the two-particle
distribution function, the g dependence of this distribution

or its variations, where fz is the N-particle distribution
function and d(1)d(2) d(N) represents a volume ele-
ment of 6N-dimensional phase space. The final expres-
sion of the entropy includes not only two-particle distribu-
tion functions, but also n-particle distribution functions.
Besides, these expressions must be shown to be equivalent
in the thermodynamic limit. Although one could presum-
ably prove the equivalence between the expressions of the
entropy in the canonical and grand-canonical ensem-
bles"' it seems to the author, at least, that an easier prob-
lem is to determine the g dependence of the pair correla-
tion function.

Let us discuss the structure of Kirkwood coupling-
parameter expansion method. If one uses Eq. (7) in the
grand-canonical ensemble and similar equations in the
canonical or isothermal-isobaric ensembles, one can easily
find that the basic equation (8) of the n-particle distribu-
tion function becomes identical to the different ensembles.
We use this integral equation (8) as the definition of the
n-particle distribution function, rather than its defining
formula as suggested by Kirkwood. This is specifically
mentioned by Green. The basic equation (8) is
transformed into the basic equations for n-particle corre-
lation functions G,H, I, . . ., making use of the Kirkwood
decomposition of the n-particle distribution function. If
one wants to include in the pair correlation function
6(r21,$) the effects of up to n-particle correlations, one
simply expands the quantities G,H, I, . . . in terms of the
Kirkwood coupling parameter g as follows:
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G(rzi', g)=gG1(rzi)+g Gz(rzi)+ +p 'G„ 1(rzi),

H(rzi, r31 g)=(H1(rzi, r31)+g Hp(rzi 131)

+ ' ' '+P 'H. -z(rz»r3i»

I(rzi, r31, 41,$)=/I, (rzi, r31, 41)+g 2( 21, 31, r41)

+ +P I —3(r21 r31 r41)

(51)

+ +G„ 1(rzi)]drzi .

(52)
This equation can be compared to the well-known expres-
sion of J. E. Mayer:

PV k

Nkj3T k) k+1 (53)

where pi, is the irreducible cluster integral. Equation (52)
is based on the Kirkwood coupling-parameter expansion
of the correlation function, while Eq. (S3) is the conven-

t

etc., and constructs the coupled equations of (n —1)nl2
dependent variables from these basic equations of
G,H, I, . . . in the manner described in Sec. II. These cou-
pled equations can be solved for Gi, Gz, . . . , G„ 1 and
substituted into Eqs. (46), (47), and (48) to obtain therrno-
dynamic quantities of the fluid. The following equation is
obtained from Eq. (47):

PV pp du
[ 1 + G 1 ( rzi ) +G2( rzi )

Wkly T

tional density expansion. In the low-density limit of the
uniform fluid, the two-particle distribution function is
known to be

(2) 2
p (ri, rz) =ppe (54)

In order to find this equation in the present method, we
have to take an infinite number of terms in the expansion
of 6 ( r zi,'g') with respect to g, and the quantities
G~, G2, . . . correspond to the Taylor series of the factor—u(r]2)
e " shown in Eq. (54). Thus our method is quite dif-
ferent from the conventional density expansion.

We now apply the present method to the classical elec-
tron plasma. The Fourier transform of the interaction po-
tential u ( q ) can be expressed as

1
ppu(q )= (55)

where all lengths are normalized by the Debye length
A,D (kiiT/4'—p—pe )' . The quantities pp and T are the
density and temperature of the electron plasma, respec-
tively, and e is the electronic charge. Substitution of Eq.
(55) into Eq. (28) yields the Debye-Hiickel pair correlation
function' as follows:

4m.e
(S6)q+1

where e=[4npp(e Ik&T) ]' is the plasma parameter
and the condition e «1 is assumed. In the next-order ap-
proximation, G, (q ) can be derived by solving the in-
tegral equation

1+q
I

d 1
1 —2~a q,

1+q (2ir) 1+(q' —q ) q q'

4ire (4me) d q
'

1
2+1+q 1+q 27T 1+ q

' —q q q'

Gi(q )

1+q' (q —1)
I

2m'e dq '
1 1 q'2[1 —(q '+ q )2] q'2(qz —1)

1+q (2ir) (q'+q ) (q'+q ) 1+q' q (q'+q ) 1+(q' —q ) q q'
(57)

BPp
AT

. T
(58)

BPp

dP T
=1 f re "dr=o. — (59)

which is obtained from Eq. (34). In any method of deriv-
ing the pair correlation function of the classical electron
plasma, " the Debye-Hiickel pair correlation function
shown in Eq. (56) is obtained in the lowest order. Howev-
er, Eq. (57) tells us that the Debye-Hiickel pair correlation
function itself has to be modified in the second-order ap-
proximation of the present method. We now check the
validity of the Debye-Huckel pair correlation function by
deriving and comparing the isothermal compressibility
obtained from the pressure and the compressibility equa-
tion of state shown in Eqs. (47) and (49), respectively,

The discrepancy of these two equations occurs at order
0(1). One may argue that this discrepancy is either due
to the well-known fact that the l3ebye-Huckel pair corre-
lation function is not good for short distances or the lack
of three-particle correlation effects. Such a modification
was done by O' Neil and Rostoker. ' They defined that
the pair correlation function G(rzi) consists of the sum
of the short-range correlation function $11(rzi) and the
long-range correlation function p, (rzi ). The quantity
pii(rzi ) is the so-called nonlinear Debye-Hiickel pair
correlation function. The long-range correlation function
pi(rz, ) consists of the Debye-Hiickel pair correlation
function pi"(rzi) and the higher-order quantity pi '(rzi)
which includes three-particle effects. Making use of these
functions, Eq. (49) can be calculated as follows:
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AT po
BI'

r

po /A, D
1+4]rpo~D f NII(r)r dr+ f,~, [p]"(r)+p] '(r)]r dr

0 p,-'/'/xa

=1+— ( —1+e ' " )r dr
(4m@) i

0

7=E
12

y+ ln(4vre)'~
(60)

where y is Euler's constant and all the lengths are normal-
ized by the Debye length A,D. The rhs of Eq. (60) is due to
the contribution associated with the quantity PI '(r). By
comparing Eqs. (58) and (60), it is clear that thermo-
dynamic consistency is still not recovered at O(l). Basi-
cally, the cause of this discrepancy can be traced to the
idea of the conventional successive approximation, i.e., the
Debye-Hiickel pair correlation function is assumed to be
unchanged even when the short-range and three-particle
correlation effects are taken into account. In other words,
if these two effects are taken account of, the Debye-
Hiickel pair correlation function itself has to be modified.
We have already pointed out such a modification in the
present method in Eq. (57). In the rhs of Eq. (57), the

f

term associated with the quantity 1/(q '+q ) represents
the short-range effect, while terms associated with the
quantity 1/[1+(q '+q ) q q' ] represents three-particle
effects. Although we are unable to solve Eq. (57), we have
shown that the Kirkwood coupling-parameter expansion
method has various advantages over the conventional
method of deriving the pair correlation function in fluids.
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APPENDIX

Taking the derivative of Eq. (3) with respect to r, we find the Born-Green-Yvon integral equation for the n-particle
distribution function:

V]p'"'(r] r2, . . . , r„;g)=—g g [V]u (r]J)]p'"'(r], r2, . . . , r„;g)—gf [V]u(r] „+])]p'"+"(r],r2, . . . , r„+]',g)dr„+] .
j=2

(A 1)

Substituting Eqs. (9) and (10) into Eq. (Al), we find the basic equations for G ( r2], g) and H ( r2], r», g) in the following:

V IG (r21'P =—k[ V ]u(r 12)][1+«r21'k)]

+gpo f [V ]u(r]3)1[G](r21 PG(r3]'k) —G(r32) H(r21 r31 k)]d r3

V]H(r2], r3] g) g[ 1 ( ]2)][ ( 3] g)+ ( 32)+H(r2], r3],g)]

—/[ V]u(r]3)][G(r2],'g)+G(r32)+H(r2], r3]', g)]

+kpo f [V] «]4)l[G(r4]'C)H( 21 r314) —H("32 42)

—G(r2], g')G(r43) —G(r»,.g)G(r42) —I(r2], r31, r4],g)]dr4 .

(A2)

(A3)

(A5)

In the lowest-order approximation which takes only terms of g, the quantity G(r2, ) is assumed to be G(r2]) =G](r2])
and the equation which determines 6& is given as

Expanding the quantities G(r2], g') and H(r2], r», g) in powers of g' and taking terms of equal power of g to be equal in
Eqs. (A2) and (A3), we find the following equations:

V ]G](r21) V lu (r]2 ) po fd r3[ V ]u (r]3 )]G ( r32) (A4)

V]G2(r21) [V]u(r]2)]G]( r21) po fdr3[ V]u(r]3 )]HI( r21 r31)

V]H](r» "»)=—[V] ( ]2)+V]u«»)]G(r32) pofd 4[—V]u( 14)]H(r32* 42) . (A6)
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~1G1(r21) ~lu(r12) paf dr3[~lu(r13)]61(r32) ' (A7)

(A9)

(A10)

1n the second-order approximation we take terms up to g2 ar d we have three coupled equations for 61, G2, and II1-.

~1G1(r21) ~lu(&12) —pOf dr3I: ~»(&13)]t61(r32)+62(r32))

~ 1G2(r21)= —
I: ~ 1u(&12)%1(r21)—po fd r3i &» (&13)lH1(r21 r31),

~1~1(r», r») =-t~1u(r»)+ ~ 1u( r»)&tG 1(-r»)+G 2(-r32» p-of d-"[~1u«14»~1(r32, -r42)S

These coupled equations correspond to Eqs. (31), (32), and (33), respectively.
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