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Based on a microscopic theory developed recently, a dynamical model of density fluctuations in
simple fluids and glasses is proposed and analyzed analytically and numerically. The model exhibits
a liquid-glass transition, where the glassy phase is characterized by a zero-frequency pole of the
longitudinal and transverse viscosities indicating the systems’ stability against stress. This also im-
plies an elastic peak in the density-fluctuation spectrum. Approaching the glass transition the slow-
ing down of density fluctuations is controlled by the increasing longitudinal viscosity, which in turn
is coupled via a nonlinear feedback mechanism to the slowly decaying density fluctuations. This
causes a divergence of the structural relaxation time at a certain critical coupling constant A.. At
the glass transition density fluctuations decay with a long-time power law ®(¢) ~¢ ~* with a=0.395
and approaching the transition the viscosity diverges proportional to € * and e, where
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e=|1—A/A,

and py=(14a)/2a, u'=p—1 below and above the transition, respectively. The

long-time tail “paradox” in dense fluids is briefly discussed.

I. INTRODUCTION

When liquids are cooled down sufficiently the relaxa-
tion time for structural rearrangements increases drasti-
cally. If crystallization can be avoided by large cooling
rates most supercooled liquids will enter a metastable
glassy state.! The glass transition is characterized experi-
mentally by relaxation times of the order of minutes or
hours and associated large viscosities of typically 10'°
poise. At this transition temperature T, one also observes
a gradual drop in various thermodynamic quantities like
compressibility, specific heat, and thermal expansion due
to the freezing in of the translational degrees of freedom.
In this so-called glass transformation range the various
measured quantities also depend on the duration of the ex-
periments. By reducing the time scale of the measure-
ments, e.g., in ultrasound experiments,2 one can observe a
glasslike transition at temperatures well above T, name-
ly, when the system’s relaxation time is of the order of the
inverse sound frequency. Thus the glass transition is not
well defined experimentally. Theoretically, however, the
ideal glass transition can be defined to occur at that tem-
perature T, or corresponding density where the structural
relaxation time becomes infinite assuming that on cooling
the liquid remains in equilibrium and crystallization does
not occur.

The glass transition can be studied by molecular-
dynamic experiments for systems of particles interacting
with various types of pair potentials; for reviews see Ref.
3. Although these simulations are limited by the small
system size and the short time intervals, they can provide
detailed information on the dynamical processes. Trans-
port coefficients, thermodynamic quantities, time-de-
pendent correlation functions, and dispersion relations in
the amorphous state* were examined. Neutron scattering
is also a valuable tool to investigate the dynamical struc-
ture factor of supercooled liquids and glasses and to ob-
tain various kinds of information like dispersion relations
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and line widths.

Theoretically, to describe the behavior of the diffusion
constant and thermodynamic quantities near the glass
transition the phenomenological free volume theory was
developed by Cohen and Turnbull,’ where the decrease of
the diffusion constant is attributed to the decreasing free
volume available to a particle by the rearrangement of its
neighborhood upon approaching the transition. Concepts
of percolation theory were introduced later by Cohen and
Grest.5 In mean-field theories’ it is argued that the nar-
rowing of the quasielastic peak of the dynamical structure
factor of a supercooled liquid observed in neutron scatter-
ing experiments® is due to a soft mode instability caused
by the divergence of the static structure factor at the wave
number corresponding to its main peak. These theories
were critically discussed by Sjolander and Turski.’ The
authors argued that the narrowing may be caused by the
decreasing diffusion constant. The important role of the
increasing shear viscosity in the previtrification regime
was also noted recently.!?

An interesting question is what the dynamical behavior
of a liquid would be if it could be cooled down so slowly
that it always remains in equilibrium and if crystallization
would not occur. It is this question that will be addressed
in this work using a simple model which, however, is sup-
posed to represent some essential features of the liquid-
glass transition.

The microscopic theory'"!? on which the model to be
discussed here is based and the resulting picture of the
liquid-glass transition shall be summarized briefly. The
basic quantity of the theory is the dynamical structure
factor describing the dynamical properties of density fluc-
tuations. Their decay is controlled mainly by the longitu-
dinal viscosity.!> Among the various contributions to the
dynamical transport coefficients the most important one
at high density is that representing configurational relaxa-
tion or, in microscopic terms, dynamically correlated col-
lisions. This part was expressed in terms of bilinear prod-
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ucts of fluctuations of the slowly decaying conserved vari-
ables of the fluid. Among those the density fluctuations
were found to yield the main contribution in a dense fluid.
The relaxation time of density fluctuations is by this non-
linear feedback coupled and increased by the slow decay
of density fluctuations itself. The theory was evaluated
numerically at a density near the freezing point. The re-
sults!> showed an enhancement of the longitudinal and
shear viscosity compared to the known kinetic theory
values in qualitative agreement with molecular-dynamic
results.*’>  Also in agreement with the mo-
lecular-dynamic experiments a slowly decaying com-
ponent in the density correlation function and propaga-
ting shear waves in the transverse current correlation
function were found at intermediate wave numbers.
These phenomena can be interpreted as indications of the
nearby transition to the solid state.

With increasing density the structural rearrangement
becomes more difficult and at a certain density the parti-
cles will be arrested in their cages formed by neighboring
particles. At this density the relaxation time diverges and
bulk and shear viscosity are infinite, as signaled
mathematically by a zero-frequency pole. This entails
that the system becomes stable against shear stress which
is the main characteristic of a solid body. In the glass
phase the particles execute vibrational motion around
their arrested positions. The configurational contribu-
tions to the various thermodynamic quantities such as the
compressibility are frozen in. Transverse sound waves of
arbitrary small wave number can propagate in the glass
where the sound velocity is determined by the modulus of
rigidity of the glass which is the residue of the zero-
frequency pole of the shear viscosity.

The simplifications of the microscopic theory leading
to the model presented below are based on the observation
that the glass transition is neither accompanied by an
essential change in the short-range order compared to a
dense fluid nor by the divergence of the static structure
factor. Therefore, the static correlations will be ignored
in a first approximation in order to isolate and discuss the
essential dynamical mechanism of the slowing down of
density fluctuations in its purest form.

The paper is organized as follows. In Sec. II the basic
equation of motion for the density fluctuations will be
presented and motivated. In Sec. III it is shown that this
equation exhibits a phase transition at a critical value of
the coupling constant and perturbation theory in the
weak- and strong-coupling regimes is discussed. The crit-
ical regime is investigated in Sec. IV and the nature of the
phase transition, the divergence of the relaxation time,
and the viscosity is examined. In Sec. V the dynamical
shear viscosity is discussed and the results are summa-
rized in Sec. VI.

II. THE MODEL

Let us consider the following nonlinear equation of
motion for a damped oscillator:

B0+ D)+ Q30 +4403 [ dr @Ard(t —1)=0 (1)

with the initial condition ®(z =0)=1, ®(t =0)=0, where
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the dot denotes the time derivative. Here Q is the fre-
quency of the free oscillator and y is a damping constant.
The nonlinear term has the form of a memory kernel de-
pending on the past motion of the oscillator and its
strength is controlled by the dimensionless coupling con-
stant A which is assumed to vary between zero and infini-
ty. The important question concerns the time evolution of
the oscillator, in particular its long-time behavior depend-
ing on the coupling constant. Equation (1) is of interest
also for mathematical reasons as an example of a non-
linear equation of motion with memory effects. Physical-
ly the oscillatory coordinate ®(z) is thought to represent
the density correlation function of a classical fluid at a
certain wave number. This interpretation becomes clearer
by introducing Laplace transforms

O(z2)=L {®(0) =i [ “dte™®(1), Imz>0 @
and rewriting (1) in the form
1
D(z)=— o (3a)
771D
D(z2)=iy +4 Q3L {®X1)} . (3b)

Equation (3a) is the well-known representation of the den-
sity correlation function in terms of its second frequency
moment Q} and the dynamical longitudinal viscosity D (z)
assuming that energy fluctuations can be ignored.!* Ener-
gy density fluctuations are not included in our model
since the microscopic theory'! showed that bilinear prod-
ucts of density fluctuations do not contribute to the
thermal conductivity. As one expects, this quantity is
therefore not singular at the glass transition. Also, com-
puter simulations'* show no significant enhancement of
the thermal conductivity near the freezing point.

The wave-number dependence of all quantities in Egs.
(3) is not indicated explicitly. For small frequency, as-
suming that the zero-frequency limit of D (z) is finite,

lim D(z)=iD , (4)
q,z2—0

the spectrum ®"'(w) of ®(w+i0)=P"(w)+iP"(w),

Q%D
(0*—03)*+(wD)?’

D" ()= (5

exhibits peaks at the frequencies w=+(Q3—D?2/2)!2, if
Q5> D?/2. This case is realized in fluids for sufficiently
small wave numbers g, since Qo=cg, and D =g¢D,,
where c is the sound velocity and D, =({++7) /p is the
longitudinal viscosity, £ and 7 are bulk and shear viscosi-
ty, and p is the mass density. Thus in this small-wave-
number hydrodynamic regime the spectrum consists of
two sharp sound peaks. The quasielastic heat diffusion
peak present in real liquids is not included in our model
for reasons discussed above and to make the model as
simple as possible. One observes that for increasing D,
i.e., approaching the glass transition, the above mentioned
wave-number regime shrinks to zero. Instead, for g > qq,
where qo=V"2c¢/D;, there appears a quasielastic peak in
®”"(w) with a  wave-number-independent  width
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1/7=0Q3/D =c?/D; decreasing for increasing D;. Also, O(2)= — 1 .S S ) o
the wave-number-independent zero-frequency value ,— 1 z4iv;  z4ivy
®"(0)=D, /c? increases indefinitely. Approaching the zZ+iy

glass transition the frequency range where D (z) can be as-
sumed to be constant is also expected to shrink. Thus the
dynamical viscosity D(z) is the fundamental quantity to
be calculated.

In the microscopic theory'! D(z) was written as a sum
of various contributions of different physical origin. One
part results from the transport of momentum by dynami-
cally uncorrelated collisions of particles as described by
Enskog’s equation. This part behaves regularly near the
glass transition and is approximated in (3b) by the con-
stant iy, vanishing ~g” for small wave number. The
other part describing dynamically correlated processes
was approximately evaluated in terms of bilinear products
of correlation functions of conserved variables of the sys-
tem. It was found'? that the product of two density
modes is the important contribution and this is expressed
by the second term on the right-hand side (rhs) of (3b) in
our model.

A further simplification in establishing the model equa-
tion (3b) was achieved by replacing the density correlation
function in the wave-number integral of the microscopic
theory!! by that at a typical intermediate wave number as-
suming that the detailed wave-number dependence is not
essential for the liquid-glass transition. The wave-number
integral can then be included in the coupling constant A,
which is an increasing function of the density. An argu-
ment in favor of this approximation is that, as discussed
above, the wave-number-independent quasielastic peak of
®"(w) is the dominating feature of ®. Also one expects
that the glass transition is not caused by a small wave-
number infrared singularity, i.e., by long-range phenome-
na, but that it is rather a phenomenon where intermediate
wave numbers are important. The approximation leading
to (3b) is, however, not allowed in two dimensions because
of hydrodynamic singularities.

Equations (3) or, equivalently, (1) is probably the sim-
plest conceivable model for a glasslike transition. Al-
though it is based on a microscopic theory for the dynam-
ical correlation functions of a hard-core fluid, the model
is valid and useful for fluids in general. In (3b) the
dynamical longitudinal viscosity D (z) is expressed by the
bilinear product of the density correlation ®(¢), which in
turn is controlled by D(z) in (3a). The equations will be
analyzed in subsequent sections. In the following, fre-
quency and time will be measured in units of Q, or Qg !,
respectively, or equivalently o= 1 unless stated otherwise
in order to simplify the notation.

III. THE PHASE TRANSITION

For small coupling constant A a weak-coupling expan-
sion of (3) is straightforward. In zeroth order in A

D(z)=iy (6)

and the density correlation function ®(z) has two simple
poles in the lower complex half-plane:

where v ,=[yF(y*—4)2]/2 and a,,=[1+y/(y*
—4)1721/2. Inserting this in (3b) the longitudinal viscosi-
ty in first order is

4
5 . (8a)

D(z)=iy—
Z._

z+iy—

z+2iy
The zero-frequency value is enhanced compared to zeroth
order

D=y4+2AMy+1/7), (8b)

which suggests that there may be a divergence character-
ized by an infinite D (z) and ®(z) for zero frequency.
To examine this possibility we try the following ansatz:

O(2)=—f/z +(1—f)®,(z) , )

where ®(z) is written as a zero-frequency pole contribu-
tion with weight f to be determined and a remainder
®,(z) with weight (1—f), so that ®,(¢ =0)=1. Then (3b)
shows that D(z) has a similar structure:

D(z)=—4Af*/z+D,(2), (10a)
D,(z)=iy +8Af (1—f)®,(2)
+AM1—PL{ D)) . (10b)

Inserting (10a) into (3) and comparing with the ansatz (9)
the strength f is given by

f=0+VI=1/A)/2. (11)

Also, the remaining part ®,(z) can be expressed by D,(z)
in a simple way:

d)v(z):————-laz——- ) (12a)
‘724D,
where
Q2=1+41f2. (12b)

Equation (11) shows that when the coupling constant is
larger than the critical value A, =1 the ansatz (9) leads to
an acceptable solution. This means that for A > 1 density
fluctuations do not decay to zero for long times as for
A <1 but they decay to the finite value f which increases
from f =+ at the transition to f =1 for A—> co. This is
shown in Fig. 1 where the density correlation function
®(t) obtained by numerical solution of (1) is plotted for
various coupling constants. Thus the spectrum of density
fluctuations exhibits a 8(w) peak with strength f which is
characteristic for the glass phase. The nonzero infinite-
time limit of &(z) is analogous to the Edwards-
Anderson'® order parameter in spin-glasses. In the glass
phase the translational motion is frozen in. The vibra-
tional motion around the arrested positions is described by
®,(z) where () in (12b) is the oscillator frequency, increas-
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FIG. 1. Time dependence of the density correlation function
®(¢) for various coupling constants A indicated. Parameters are
Qy=1and y=1. Transition point is at A, =1.

ing from Q=v"20Q, at A=1 with increasing coupling con-
stant. D,(z) will be called the longitudinal viscosity of the
glass phase since it describes the damping of the vibra-
tional motion. The residue of the zero-frequency pole in
(10a) is related to the bulk and shear moduli of the glass
phase, B and G, respectively, by (B+3G)/p
=4AQ3f2/q>.

It is convenient for the following discussion to rewrite
(10b) with the use of (12a) as

z[z +D,(2)]1D,(2)+2z —D,(z)(Q*—2) _
z[z +D,(2)]— Q2 B

€ (z), (13a)

where
€ (2)=iy +4M1—f2L{Di(1)} .

In this way the theory in the glass phase is formulated en-
tirely in terms of the vibrational component ®,(z) of ®(z)
alone. For a given ®,(¢) the memory kernel €' (z) is deter-
mined by (13b), which in turn determines D,(z) via (13a)
and finally ®,(z) by (12a). The main advantage of this re-
formulation is that a perturbation expansion in the glass
phase for A— 1 becomes obvious. For example, (13a) sim-
plifies for z—0 to

D,(z=0)=%(z=0)/V1-1/A. (14)

(13b)

Thus, if & (z=0) were regular for A— 1 the longitudinal
viscosity would diverge with exponent % approaching the
transition. However, as will be discussed in Sec. IV, the
feedback mechanism, expressed by the second term in
(13b), leads to a somewhat stronger divergence. A similar
reformulation of the theory allowing a perturbation ex-
pansion in the fluid phase A <1 near the glass transition
will be presented in Sec. IV.

The special value A, =1 as the glass transition point
was of course achieved in this model by appropriate defi-
nition of the parameters in (1) or equivalently (3). In the
microscopic theory, however, A, is determined by a cer-
tain wave-number integral over static two- and three-
particle correlations.

In the limit A— o« the weight (1— f) of the vibrational
spectrum which is proportional to the compressibility of
the glass tends to zero according to (11) and (9), thus also
the vibrations are frozen in. This limit can be interpreted
as the random close-packing density of the glass. Pertur-
bation theory can be performed also in this strong-
coupling regime. According to (13b) one has in zeroth or-
derin 1/A
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FIG. 2. Inverse longitudinal viscosity vs coupling constant A
in the fluid and amorphous phase. Parameters are Qy=1 and
y=1. Solid line represents the numerical solution of the model
and the dashed lines represent the weak- and strong-coupling ex-
pansions.

€ (z)=iy (15a)

and the vibrational part of the density correlation func-
tion reads

1

PD,(2)=— 7 (15b)
zZ— 3
zZ+1y
In first order (13b) leads to
. 4M1—f)?
E(z)=iy— Y (16a)
= 202
2= z+42iy

Thus with decreasing A the zero-frequency value €' (z =0)
increases leading with (14) to an increasing viscosity

1
YA

1+8 +0(1/A%) | . (16b)

D,=—=L

VI=1/A
The asymptotic expansion (16b) for D, is compared in
Fig. 2 with the numerical solution obtained by integrating
the differential equation (1). The good agreement down to
values near A > 1 is remarkable. Also shown is the numer-
ical solution and the weak-coupling expansion (8b) in the
fluid phase. The nature of the singularity near A=1 will
be discussed in Sec. IV.

IV. CRITICAL REGIME

In the following the small-frequency behavior near the
phase transition will be investigated where the inequality

|z/D,(2)| <1 (17

is fulfilled. The point A=1 and the regimes A>1 and
A < 1 are considered separately.

1. A=1. At the glass transition point (13) simplifies
with the assumption (17) to

D,(2)={%(2)+[€X2)—8%F (2)/2]'*} /2,
€ (2)=iy+. L (D)} .

Assuming for the moment that % (z) is constant for small
frequency, (18a) would imply that D,(z) and also ®,(z)
exhibit a square root singularity for small frequency.
This would imply a long-time power-law decay propor-

(18a)
(18b)
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FIG. 3. Time dependence of the vibrational part ®,(¢) of the
density correlation function at the transition A,=1 and in the
amorphous phase for two coupling constants A. Parameters are
Qo=1and y=1.

tional ¢ ~!/2. The singularity of ®,(z), however, also im-
plies a singularity of ¥ (z) by the feedback mechanism
manifested in (18b) and so the assumption of a constant
& (z) is not justified. It is easy to show that a self-
consistent solution of (18) and (12a) for z—0 is

Du(z)~z"‘“1 s
(g(z)NZZa—l ,

where @=0.395 is a solution of I'(1—2a)=2T*%1—a),
implying a power-law decay ®,(¢)~t %, thus a singulari-
ty somewhat stronger than a square root. So the density
correlation function ®(¢) decays very slowly with the ex-
ponent a to the time persistent value % for t— . This is
shown in Figs. 1 and 3. The spectrum ®"(w) exhibits a
8(w) peak of strength 5 and a w~‘'~% singularity for

small frequency.
2. A> 1. Defining e=A—1 the Eq. (13a) for D,(z) for

small frequency can be rewritten as
22D2(z)—2V'eD,(z)+2% (z)=0 . (20)
In view of (19) for €e=0 the scaling ansatz
D,(z)=z%"'d(z/s),
€ (2)=z"*"c(z/s),

with the critical frequency s =€” and v=1/2a leads to
the equation for the scaling functions

d¥(x)—2x "% (x)+2c(x)=0.

This implies that the zero-frequency limit of the viscosity
scales like

(19a)
(19b)

(21a)
(21b)

(21c)

D, ~s%l_e™#, (22)

where p’'=(1—a)/2a=0.765. This is in agreement with
the numerical solution for D shown in Fig. 2. The
density-fluctuation spectrum for A > 1 consists of a 8(w)
peak of strength f Z% and a vibrational part of strength
1—f <5 with a quasielastic peak of width 1/D, vanish-
ing proportional (A— 1)* when approaching the transition
point. Correspondingly, the time-dependent correlation
function ®(z), after an initial short-time decay, shows a
crossover from the critical power law proportional to ¢ ~¢
to an exponential decay with a relaxation time 7~D,. In
Fig. 3 the numerical solution ®,(¢) near the transition
point is plotted indicating that the critical region where
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the crossover can be observed is quite small.

3. A<1. In this section it will be shown, starting from
(3), that the viscosity is also diverging when one ap-
proaches the transition point A, =1 from below. At first
sight it is not obvious how an expansion of (3) in terms of
€=1—A can be achieved, but it can be accomplished as
follows. We assume that ®(z) can be written as the sum
of a pole contribution and a remaining part ®,(z). The
pole contribution is expected to evolve continuously into
the elastic component of ®(z) for A>1. Then equations
for the pole position, the residue of the pole, and for ®,(z)
can be derived. Thus the ansatz is

a
+id
where @ +b =1, so that ®,(¢ =0)=1. Then according to
(3b) the viscosity can also be divided into a pole part and a
remaining part

D(z)=—(4Aa?)/(z +2i8)+D,(z) ,

D, (2)=iy +8hab®,(z +i8)+4Ab2.L {®(1)} . (24b)

D(z)=— > +b®,(2), (23)

(24a)

The pole part in (24a) can be considered as a viscoelastic
component with a Maxwell relaxation!’ time 7=1/28.
For the density correlation function ®(z) instead of (3a)
the simpler representation
1
E—— 25
Z_ ] (25)
D(z)
which is valid for | z/D(z)| << 1 will be used in order to
simplify the formulas. The method is applicable, howev-

er, also to (3a). Inserting (24a) and (24b) into (25) one
finds for the pole position and pole residue two equations

(26a)
(26b)

D(z)=—

i8D,(—i8)=4a’A—1,
a=[2+4i8D,(—i8)—8&*D,(—i8)]" !,

expressing 6 and a in terms of D,(z), where in (26b)
D, (z)=dD,(z)/dz. The equation which determines D,(z)

reads

D,(z)—8abA®,(z +ib)=%(z), (27a)
D, 2i8)—4a’A
b, (z)= — (z)(z +2i8)—4a
zD,(z)(z +2i8)—4a’rz —z —2i8
a
+ s (27b)
C(2)=iy +4Ab2.L [(DX(1)]} . 27¢)

In this way the theory is formulated entirely in terms of
D,(z). Equation (27) is analogous to (13) for A > 1. Once
D,(z) is known, d and a can be evaluated using (26). The
viscosity is determined by (24a), yielding

D =2Xa%/8+D, . (28)

Equations (26) and (27) are a reformulation of the original
problem admitting an expansion for small e=1—A. In
the small-frequency regime |z | <<€ one finds, after
some calculation, in leading order
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(29a)
(29b)

a=%+e/8 ,

D,(z)=i€/28, |z | <<€

assuming that § vanishes faster than € for e—0. The
variation of the pole position & with € can be determined
in the following way. In the frequency regime 8 << |z |
<< €" the set of equations (27) simplifies to

22i8D, (z)+2z°D2(z)+4i8D,(z)+2e+2z€ (2)=0.  (30)

If one could replace % (z) by iy then the choice 8~ /2
would lead to the scaling form D,(z)=€~!"%d(z/e), im-
plying that D~e~3/? according to (28). However,
% (z=0) is singular for A—1 because of the nonlinear
term in (27¢). The scaling ansatz

D,(z)=s"d(z/s), (31a)

€(z)=s2"1c(z/s), (31b)

where s =€!/2® is a critical frequency, a=0.395, and

8=s5!%% leads to a Riccati equation for the scaling func-
tions

2ixd*(x)+x2d*(x)+4id (x)+2+2xc (x)=0 . (32)

Thus for zero frequency, according to (31a), D, diverges
proportional to s~ =~ 179722 with the same exponent
as for A>1. The relaxation rate & vanishes as
§~sltea_¢ll+a/2a g4 one finds with (28) that in leading
order the longitudinal viscosity diverges as

D~e#, p=(a+1)/2a=1.765 (33)

where the exponent u is related to the exponent u’ of D,
by u=p'+1.

Qualitatively, the behavior of the solution for A < 1 near
the transition can be characterized as follows. The spec-
trum ®"(w) consists of two contributions. One part is a
very sharp quasielastic Lorentzian peak of strength a ~+
and width 6§ ~¢€# shrinking to zero for A—1. This part
evolves continuously into the 8(w) peak in the glass phase.
The other part of weight b~ 5 also exhibits a quasielastic
peak, but its width is proportional 1/D, ~€*~! similar to
above the transition. This part diverges at the transition
as o1~ for small frequency. So the main difference
between the two phases near the transition as it shows up
in the density-fluctuation spectrum is that there is a very
sharp quasielastic peak in the fluid phase while it is elastic
in the glass phase. In both phases an additional broader
quasielastic peak is superposed, whose width shrinks to
zero upon approaching the transition. In Fig. 1 the nu-
merical solution for the time-dependent density correla-
tion function is shown. For A <1 near the transition the
slow exponential decay stemming from the quasielastic
Lorentzian dominates the behavior at long times. This is
also clearly shown in Fig. 4 where the straight line corre-
sponds to 3exp(—t/2D) as discussed above. This part
evolves into the time persistent component f [see (11)] for
A>1. An exponential decay near the fluid-solid transition
was recently observed in molecular-dynamic experiments
for supercooled liquid rubidium.!® The other component
of ®(¢) behaves akin to A>1. It has a crossover from
power-law decay ~t~¢ for intermediate times to an ex-
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FIG. 4. Time dependence of the density correlation function
®(¢) in the fluid phase near the transition at A=0.98. Parame-
ters are Qo=1 and y=1. Solid line represents the numerical
solution of the model and the dashed line represents the visco-

elastic exponentially decaying component.

ponential decay with relaxation time increasing propor-
tional to D, for long time. The typical time separating
power-law decay from exponential decay tends to infinity
when the transition point is approached. At the transition
®(¢) decays according to the power law ®(t)~t~% with
a@=0.395 to the value + for t— oo.

V. THE SHEAR VISCOSITY

In this section the implications of the liquid-glass tran-
sition for the transverse current correlation function and
the shear viscosity shall be discussed. The transverse
current correlation function!® can be represented in terms
of the generalized dynamical kinematic shear viscosity
D,(z) by

1

D,(z)= PSR

(34a)

where in the limit of small wave number g and frequency
z for fluids the shear viscosity 7 is given by

lim lim D,(z)=ig*n/p . (34b)

z—0 g¢—0
In the framework of the microscopic theory!! the dynami-
cal shear viscosity, similar to the longitudinal viscosity in
(3b), has two contributions of different physical origin,

D,(z)=iy,+BrY.ZL [®X(1)} . (35)

The first part stems from the usual two-particle collision
processes described by kinetic theory. It has the form of a
Lorentzian with a width given by the collision frequency,
but for simplicity it is approximated in (35) by the con-
stant iy, ~gq* for g—0. The second part in (35) arises
from the structural rearrangements in a dense fluid. In
the microscopic theory!! it is represented by bilinear prod-
ucts of correlation functions of conserved variables and it
was found'? that, as in the longitudinal case, the product
of two density modes is the dominant contribution at high
density. Only this contribution is considered in the model
equation (35) where 3 is a numerical constant arising from
a wave-number integral over static two-particle correla-
tions. Note that this structural rearrangement contribu-
tion to D,(z) is proportional to the corresponding one for
the longitudinal viscosity D (z) in (3b) so that the dynami-
cal behavior of D,(z) is governed by that of D(z) which
we have already discussed.

In particular, the shear viscosity diverges at the same
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critical point A,=1 and with the same exponent as the
longitudinal viscosity in both phases. Furthermore, in the
fluid phase near the phase transition, the time-dependent
transverse stress correlation function which is essentially
the inverse Laplace transform of D,(z) has a very slowly
exponentially decaying component, stemming from the
pole contribution of

D,(z)=—BAQ3a*/(z +2i8)+D,(z) . (36)

In (36) D, (z) is the remaining part of D,(z), which is
proportional to D,(z) in (24a). The relaxation time
7=1/28 of the exponential in the transverse stress corre-
lation function is the same as the corresponding one of the
longitudinal stress correlation function in (24a). At the
phase transition the transverse stress correlation function
decays according to a power law with the same critical ex-
ponent as the longitudinal stress correlation function.

In the amorphous phase D,(z) has a zero-frequency

pole
D,(z)=—BAf2Q3%/z +D,,(z) , (37)

where the residue is related to the modulus of rigidity G
of the glass phase by G /p=pBAf?Q}/q% Thus the system
has the property of a solid being stable against shear
stress. Inserting (37) into (34a), the resulting form of the
transverse current correlation function

z
(38)
22—q%2+2zD,,(2)

(I)t(z)z -

shows that transverse waves can propagate with the trans-
verse sound velocity ¢,=V G /p at arbitrarily small wave
numbers. Their damping is described by D,,(z =0)~gq?
for small wave number.

It is interesting to note that the residue of the viscoelas-
tic pole is continuous at the glass transition since
f=a=5 at A=1. Thus one can observe solidlike
behavior already in the fluid phase below A, for w>26
and can determine the bulk and shear moduli of the amor-
phous phase. It should, however, be emphasized that
these bulk and shear moduli are not the high-frequency
moduli of the liquid as is often assumed in viscoelastic
models of fluids.!* For example, in the model presented
here as well as in fluids with hard-core interaction, the
high frequency elastic moduli, defined in terms of the
second frequency moments of the longitudinal and trans-
verse currents, are infinite. In this model it becomes ap-
parent, that the viscoelastic component of the stress corre-
lation functions in (24a) and (30) which determines their
long-time properties is not related to the short-time
behavior of the system. One may conclude that the
liquid-glass transition is universal in the sense that short-
time properties are irrelevant.

VI. SUMMARY AND CONCLUSIONS

In this work the liquid-glass transition was studied us-
ing a model derived from a microscopic theory!! of densi-
ty fluctuations in a dense hard-core liquid. It was shown
that a system described by (1) or (3) evolves from the fluid
to the amorphous state when the coupling constant A re-
lated to the density is increased beyond a critical value A,.

An ergodic-nonergodic phase transition similar to the
liquid-glass transition occurs also in the Anderson locali-
zation problem!®?° and the diffusion-localization problem
of a classical tagged particle in a static random poten-
tial.2! In these theories,?%?! however, the relation between
the current relaxation kernel and the tagged-particle den-
sity correlation function, which corresponds to (3b) in this
model, is a linear one entailing enormous simplifications
since the frequency is simply a parameter. The physical
reason is that the tagged particle is scattered elastically by
the fixed scatterers. In the case of a fluid, however,
scattering is inelastic, and momentum and energy are
transferred via interaction processes into at least two other
modes. It was the main purpose of this paper to study the
pure effect of this nonlinearity in (3b) by neglecting the
wave-number dependences in a first approximation.
Qualitatively, however, no change is expected when this is
incorporated.

For small coupling constant A the dynamical viscosity
D(z) in (3a) is a constant iy. For increasing A it becomes
frequency dependent, D (z =0) increases, the system slows
down and becomes more and more rigid and a viscoelastic
part develops, as described by (24a). The irreversible
structural rearrangement, as described by the product of
two density modes in (3b), leads to an enhancement of the
longitudinal viscosity, resulting in turn in a slower relaxa-
tion of density fluctuations via (3a). This process may be
called self-induced slowing down. For increasing A this
finally leads to the freezing in of the translational motion
at the transition point A,=1 where the relaxation time
7=1/28 and the longitudinal and shear viscosities diverge
proportional to |1—A/A.| ¥, u=1.765. This result is
intermediate between the Batchinski-Hildebrand?*?* law
~(Ae—A)~! and Fulcher® law ~exp[1/(A,—A)].

At this density the viscosities and the density correla-
tion function acquire a zero-frequency pole, characteristic
of the glass phase, signaling an ergodic-nonergodic transi-
tion.”> The particles can only sample a restricted phase
space since they are arrested by their neighboring particles
in a cage. At the transition the compressibility drops to
(1—f)= %, e.g., one-half of its fluid value, but in any ex-
periment involving nonzero frequencies or finite observa-
tion times a gradual decrease of the compressibility will be
observed. At A=A, the density correlation function de-
cays to = for long times with a power law ®(¢) ~¢~* with
a=0.395, related to u by u=(14+a)/2ec.

For increasing A the viscoelastic component of the den-
sity fluctuations in the fluid evolves continuously into the
elastic peak ~mf8(w) in the glass phase. In addition,
there is a vibrational part whose spectral weight (1—f)
approaches 1 for A— . Near the transition the vibra-
tional motion of the particles around their arrested posi-
tions is overdamped since the viscosity diverges propor-
tional to (A—1)"*" where p'=(1—a)/2a=0.765.

The time dependence of the longitudinal and transverse
stress correlation function is particularly interesting. As
was already discussed in connection with (36), the visco-
elastic part in (24a) and (36) manifests itself near the tran-
sition in a very slow exponential decay where the relaxa-
tion times of the longitudinal and transverse stress corre-
lations are both 7=1/28, approaching infinity for A—1.
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This may provide an explanation for the slowly exponen-
tially decaying component observed in molecular-dynamic
experiments for liquid argon at the triple point performed
by Levesque et al.?® They found that the longitudinal as
well as the transverse stress correlation functions could be
fitted by two exponentials with relaxation times 7_ and
7, where 7, >>7_. The slower relaxation process corre-
sponds to the cooperative process of structural rearrange-
ments in the fluid and 7, can be viewed as the Maxwell
relaxation time 7=1/28. As in the model presented here,
7, was found to be the same in the longitudinal and
transverse case. The faster initial exponential decay with
relaxation time 7_ probably is due to binary collisions,
characterized by the collision frequency. This part is also
present in the microscopic theory!! but was replaced in
the model equations (3b) and (35) by an instantaneous
term y&(¢) or y,8(2), respectively, for simplicity.

The long-time tail of the stress correlation function is,
at present, not well understood. The stress correlation
function can be divided into a kinetic part, a potential
part, and a cross term. Kinetic theory?’ predicts that, of
these contributions, only the kinetic part has a long-time
power-law decay, with exponent d /2 and well-known am-
plitude, where d is the space dimension. Molecular-
dynamic experiments!*?%2%2° show, however, that the
cross term and to a greater extent the potential contribu-
tion are very slowly decaying in dense liquids in the time
regime observable in these experiments. If the slow decay
observed in liquid argon?® is interpreted as the power-law
decay ~t~%/? one finds?® an amplitude which is 2 orders
of magnitude larger than predicted for the kinetic part.
Similarly, computer simulations for the hard-sphere sys-
tem'*? near the liquid-solid transition clearly demon-
strated that both the cross and the potential part of the
transverse stress correlation function have a slowly decay-
ing component. If the slow decay of the potential part is
interpreted” as a power law ~t 3/, its amplitude is 372
times larger than the one of the kinetic part, while the
kinetic-theory prediction is zero.

The theory of the liquid-glass transition may provide an
explanation to this phenomenon. As explained above, the
stress correlation function has a very slowly, exponentially
decaying component, which is a precursor of the nearby
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liquid-solid transition. Therefore, it is understandable
that to explain this effect, the theory must be able to
describe the liquid-solid transition.

It is also remarkable that the slowly decaying com-
ponent of the stress correlation function found by Erpen-
beck and Wood? in the hard-sphere system can be fitted
equally as well by an exponential as by a ¢ ~3/2 power law.

Note that the time integral of the stress correlation
function is the viscosity which diverges at the liquid-glass
transition. In the present theory this divergency is not re-
lated to the hydrodynamic long-time power-law decay
~t~42, n fact, this power-law decay due to hydro-
dynamic singularities is not contained in the present
model because of the approximations leading to the model
equations (3) and (35), as discussed in Sec. Il. The in-
clusion of the hydrodynamic singularities is expected to
affect the stress correlation functions only at very long
times. Moreover, approaching the transition the decay
~t~9/2 disappears and is replaced by the critical power-
law behavior.

The tagged-particle motion and the self-diffusion coef-
ficient do not play a direct role in the formulation of the
liquid-glass transition presented here. This is physically
reasonable, since the motion of a tagged particle is not ex-
pected to have any influence on the glass transition which
is rather a cooperative phenomenon where all particles are
involved and thus is expressed in terms of the density
correlation function and the longitudinal viscosity. On
the other hand, the tagged particle is strongly influenced
by its surroundings and thus the self-motion is strongly
coupled to the density fluctuations of the system.2%2130
The effect of the liquid-glass transition on the incoherent
dynamical structure factor and the extension of the
present model to include the wave-number dependence
will be discussed elsewhere.!
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