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Theory and experiment on optical transverse intensity bistability in the transmission
through a nonlinear thin (nematic liquid crystal) film
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A theory is presented for the transverse intensity distribution bistability of a Gaussian optical
beam after its passage through a nonlinear thin film. The equations governing the intensity distribu-
tion are cast in the form analogous to optical bistability in a longitudinal cavity (a Fabry-Perot in-
terferometer), i.e., into two coupled transcendental equations from which multiple solutions are ob-
tained. This formalism allows one to examine various physical approximations in obtaining the
equations, and to improve on these approximations. It also lucidly illustrates the mechanisms of
transverse intensity distribution bistability. The theoretical predictions are verified with quantitative
experimental results on thin films of nematic liquid crystals.

Optical bistability has been a subject of intensive inves-
tigation recently. ' Optical bistability in a system arises
as a result of its nonlinear response to the input optical in-
tensity, owing to some feedback from the output of the
system. Intrinsic devices, where the feedback is purely
optical, are usually based upon the Fabry-Perot cavities, '

where the transmission is governed by the Iongitudina/ in-
tensity dependent phase shift. Depending on the relative
magnitude of the optical input time, the material response
time, and the cavity decay time, the behavior falls into a
transient, quasisteady state and cw regimes. Optical bi-
stability has been shown to be an interesting phenomenon
for the study of chaos, and passage to chaos, and other
fundamental as well as applied problems of optical
switching and processing. A review of some of these pro-
cesses has recently appeared.

In this paper, we present the theory and experiment on
a fundamentally different form of optical bistability,
namely, bistability in the transuerse intensity distribution
of a laser beam after its passage through a nonlinear thin
(nematic) film. Feedback is provided by a partially
transmitting mirror at the output end. The theory
developed here is generally applicable to other thin films.
Theory for this type of so-called "external" self-focusing
bistability has been given before by Kaplan, who essen-
tially treated the film as a nonlinear thin lens with a focal
length that is dependent on the optical intensity. In the
theory to be described below, we make a further refine-
ment by taking into account the total phase shift due to
the thin film, and compare and contrast the results with
expressions obtained under the lens approximation. More
interestingly, the transverse intensity distribution is
described by the solution to transcendental equations in a
manner analogous to the case involving longitudinal phase
shift. The occurrence of bistability switching (in the on-
axis power, e.g.) can then be clearly represented as some
switching back and forth between the on-axis intensity
and the intensity at the wing of the Gaussian beam.

Theory and experiment on the so-called "strong self-
focusing limit" bistability has been reported by Bjorkholm

et al. In these studies, the nonlinear medium is rather
thick so that the incident optical beam undergoes substan-
tial wave-front reshaping within the nonlinear medium.
For thin films, the nonlinearity gives rise simply to a
phase factor in the otherwise undistorted wave front of
the optical beam following its passage through the medi-
um. Such a situation allows a more definitive imaging of
the output (by the feedback mirror) back on the film using
simple free space propagation description.

THEORY

Figure 1 depicts schematically the problem under study.
A cw transversely Gaussian laser beam is incident with a
radius of curvature 8 and beam waist co on the nonlinear
thin film. For a nematic film, the reorientation requires
that the optical field be linearly polarized. The incident
laser electric field is given by Eo~(r, O). A lens L with a
focal length f is situated a distance ZD from the thin film
and a mirror with reflectivity 8 is placed a distance
Z~/2 from the lens. A pinhole of radius a and an identi-
cal lens of focal length f are placed a distance (Zo+Z~/2)
and Z&/2, respectively (for convenience in calculation)
behind the mirror. The output power (or intensity)
through the pinhole is studied as a function of the total
input power I';„.

The nonlinearity induced in the nematic film has been
calculated before. In the case of a horn eotropically
aligned film of thickness d, with the incident optical wave
vector making an angle P with the nematic director, the
induced refractive index change associated with the opti-
cally induced reorientation can be expressed in the form

e'r (b,e) sin (2$)(dz z)E,v-
b, n(z) =

16mE
2

m e'r hesin (2P) Eop (dz —z )

4 E d

7r t AEsln (2$) dz —z'lop
4 I,h
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e induced refractive index change is of th f1s 0 c 8IQ1118I

where n2 can be deduced from (1).
This refractive index change produces a transversely

dependent phase shift on the optical beam by an amount
FIG. 1. SchSchematic of thc transverse optical Intensity dlstI1bu-

tioIl bistabillt cxR I 1 y experiment setup. Inset 1s Rn actual photo taken
of the intensity distribution just after switching-up. Before
switching, the intensity distribution is Gaussian.

where E,p is the square modulus of the optical electric
ield in the nematic film and E,h is the so-called optical

Freedericksz transition threshold field:

E,h 4m X(b,——e) 'd

Notice that hn (z) is dependent on the distance (z) into ihe
ncIIlat1c film~ 8 nonlocal opt1cal nonllncarlt

It 1is interesting to note here that, peculiar to liquid
y

crystals„ the response (i.e., the reorientation) of the nemat-
ic director axis is also nonlocal in the tra d
o the beam. Since the laser beam has a beam waist of
about mo, the problem should be solved for this transverse
direction subject to (approximately) the boundary condi-
tion that the reorientation is vanishing outside a region of
transverse dimension ohio. With respect to molecules out-
side this region, the molecules undergo basically a splay
distortion. It suffices to note from (1), that the r
tion o the director axis is inversely proportional to the
square of thickness of the sample (for the longitudinal

oundary problem) and to coo for the transverse direction.
n the experiment, coo-0.3 mm (300 pm) while d =50

pm, so that the reorientation of the director axis is more
severely [by at least (300 /50)=36 times) limited by the
t ickness of the sample, i.e., the transverse boundary ef-

ect is negligible, and thus a detailed calculation (which
would be extremely complicated if the transvers G

pro i e of the beam is explicitly accounted for) is not
necessary for the present treatment. (Nevertheless, we

and
ave exp icitly calculated this transverse nonlocal ff

the lengthy calculation, which will be published in a

2

21r
5$ r = nz(z)I(r)dz = n2dI(r),

wheI'e n2 denotes the average over th th' kr e ic ness 0 the
1 m. c total intensity in the saInple is given bvcn

(Eo+ER )'~Io+4 (4)

where the interference term due to Eo and Ell (the reflect-
e optical electric field) is neglected because the liquid
crystal undergoes vanishingly small reorientation for in-

rference on the order of optical 1 th Th'

slightly different from the usual third-order nonlinearity
g' ' EEE which results in a factor of 2 f Iof

or the sake of simplicity, we shall first neglect the
presence of the lens in the following analysis. The effect
o the lens is included in the next section. Using

ygcn s pr1nc1plc thc cx1t bcaIQ clcctr1 f ld
tance z from the nematic film is given b

2% —EkI'()
E(ro,z) = exp(ikz)exp

1 A,Z 2z
r

I co lkr2 27rrro
O

f'~ CXP Jo

Xexp[ i 5$(r))r—dr, (5)

Eo(r, O) =~I&exp
r ikr

2A

Squaring both sides of (5) with (6) substituted from
E r, ) yield tile ou'tpll't llltellslty d»tributlon at the plaiie

w ere r =o(x' +oy' )'o" and r =(x'+ ')'" and
zerot -order Bessel function. The incident el t f ld
Eo(r, O) is given by

I(ro»)=
2%'

Io dr re(2mrrolkz)exp( r lcoo)—
r 2

p
2

Q cxP —lk +-- +PI I d cxP
2z 2R

2r'
+niR~dI(r, z)

l2

0 4 0

Equatio~ (7) is an integral equation for the intensity distribution I r z vi

f d
e possi 1 lty 0 multiple solutions for I(r z). We r

» ri «ion I r,z via tile intensity-dependent phase shift f ti ac or

ee back (R =0) this ex io llo t 1

tive focal distance, interference ring t
s one o ca cu ate exactly the transInitte

0

ng s ruc ure, etc. The calculation was erformed f
i ed intensity distribution beam waist ffq C CC-

b hhtiv e eoretica and experimental results
e is no closed form analytic solution for I(r z). Hon e case o inite R there i

tion in the integrand into an infinite seri cs, some ncw 1nslghts can bc 81Ilcd and
OI I'O, z . owcvcf, by cxpandlng thc Bcsscl fuIl C-

can also cxam1Ilc various approxIQlatl d fions an re mements to these a roxima
'g c and nuIIlcrlcal solutions 8I'c poss1bl. 6nc

predicted bistability behaviors.
pproximations and how they may be reAccted in the

%riting
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Jo(2mrro/Az) = g, (mrro/~)( —1)' 2$

s=o

and inserting it into (7), one gets

I(ro,z)=(k/z) Io f dr rJo(krrolz)expI r —/co k[—r l2z+r /2R+dIoexp( 2r—/co )+nzdR~I] j

=(k/z) Io g (krol2z) ' f dr r '+'exp{( r /—co ) ik[—r l2z+r /2R+ n2dIoexp( 2r —lco )

s=o S.

+nzdR I]j

By inspection, I(ro,z) is of the form

I(ro,z)= g ( —1)"A2„ro",
n=0

where we have
00 2

Ao ——(k/z) Io f dr rf(r, z)

(10)

This assumption is equivalent to the usual lens approxi-
mation, where the total phase shift is represented by the
quadratic (in r) phase shift associated with a spherical
lens. In this approximation, we have

f(r,z) =exp[ r lco—
ik(r l2z—+r /2R 2n2Ior —/co +nzdIO

and

A, =(klz)' ' f"dr r f(r,z) f dr rf*(r,z)

+ f dr r f (v,z) f dr vf(r, z) where

n2dR —A2r +n2dR Ao)]

=exp( —Br )exp[ik(n2dR Ao —n2dIO)],

(15)

where

f( r,z) =exp —r lco

ik r l2z—+r l2R 2n2Iodlco—

1 . 1 1 28=
2

+ik + —n2dIp 2
—n2dR A2

Q) 2z Q)

The integrals in (11) and (12) yield
2 2

k 1
A = — I

z '2a
Io

(16)

+n2dIoexp( 2r lco )—
+ n2dR g A2„r "

n=o

42

'2
1 1 1+ +

2n2Iod —n2dR A

2

The infinite coupled [via the integral over f (r,z) on the
right-hand side (rhs)] transcendental equations for A2„ in

general imply multiple solutions for the A2„and therefore
for the output intensity distribution.

(i) "Near axis" approximation

~e now make a simplifying approximation (which will

be partially removed in the Appendix) by including only
the first two terms ( cc Ao and Az) in the feedback I(ro, z)
and the incident intensity (Io exp —2r /co ), i.e., the phase
shift due to the total intensity

and

k Io
z 4

4
k Io

4

1 1 1 1

2jy*2 28

1 1 1

4/8 [' & 8"
r

k Io 1 1/co
(18)

5p=n2dIoexp r lco +rT2dRm—g A2nr
"

n=0

is rewritten as

2

~y =n2dIQ 1 z +n2dRyg (AD+ A 2v
COO

(14)

Equation (17) for Ao shows that it is dependent via the re-
flectivity R on A2, i.e., the on-axis optical intensity is in-
fluenced by the intensity away from the axis, as a result of
the feedback. This indicates the possibility of energy
redistributions among the various radial positions. On the
other hand, Eq. (18) for A2 is a transcendental equation in

A2, clearly demonstrating the possibility of a multiple-
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valued solution for A2 (and therefore for AQ via its
dependence on A2). More interestingly, if we introduce
the variable

u =co k(1/2z+1/2R —2n2IQd/co —n2dR A2) (19)

we can rewrite Eqs. (17) and (18) as

o. 6

S
go 0.4

1
B)—B2u =—

(1+u )

with

8z (1/2z+1/2R —2n&IQd/e1')
B) ——

R n2Iodco k

(20)

(21)
FIG. 3. Plot of the detected output power at the pinhole vs

the change in refractive index An =n2IO.

8z4
B2 ——

Z n,I,d'k' (22)

Equation (20) is a transcendental equation for u in a form
analogous to the Fabry-Perot bistability problem, i.e., the
solution(s) is (are) given by the intersection of a straight
line y =(B~

—B2u ) and a bell-shaped function
y=(1+u ) . The slope of the straight line (B2) is in
uersely proportional to the magnitude of the incident inten-

sity, similar to that in the usual Fabry-Perot theory. The
difference is that in this case the intercept B& also varies
with I,.

Figure 2 is a typical plot of Eq. (20) for values of y cor-
responding to experimental parameters close to those used
in the experiment (co=0.03 cm, R= 1650 cm, R~ =0.99,
A, =5145 A and z =30 cm, d = 50 pm, P =22. 5'). The
straight lines 1, 2, and 3 correspond to An=6&(10
1.2&10 and 1.8)&10, respectively. n2 can be es-
timated from (1)—(3) to be roughly given by n2 ——3 X 10
cm W ' for b,e=0.8 and It. =10 cgs unit. So these
three values of b,n correspond to IQ ——20, 30, and 60
W/cm . The intersections of the two functions in Fig. 2
give the solutions for u (and therefore for AQ and A2).
For the range of values of IQ such that nd (b.n (n„ there
are triple-valued solutions for u, where nd and n, denote
the value of bn (and therefore IQ) for switch-down and
switch-up operation. The expressions for nd and n„can
be obtained from Eq. (20). More interestingly, Fig. 3
gives the output power (integrated over the pinhole with
a=0.005 cm) versus the input power for z=30, 35, and

40 cm. It clearly demonstrates the expected bistability
switching for some value of z.

Figure 4 depicts the results for various values of the
feedback mirror reflectivity R at z =30 cm. As expect-
ed, when R decreases, the switching powers increase.

As a refinement to the preceding analysis, we have tak-
en into account the total phase shift due to the input
beam, but still keep only the two leading terms in the con-
tribution from the feedback beam. As shown in the Ap-
pendix, one can again express the resulting equations in
transcendental equations. The multiple solutions (and
bistability) for the intensity distribution obtained by in-
cluding the total Gaussian phase shift is almost identical
to the one obtained before. This demonstrates that for the
first switching hysteresis loops, at least, the near axis ap-
proximation is quite good.

(ii) Bistability in the presence of a lens
between the thin film and the feeback mirror

%'e now consider the effect of the lens between the
liquid-crystal film and reflecting mirror M (cf. Fig. 1).
This corresponds to the actual experimental setup. We la-
bel the distance between the liquid-crystal film and lens

L2 as z and distance between L2 and reflecting mirror M
as z1/2 as shown in Fig. 5. Further, we let the output
beam field at L2 be E~, the feedback beam field at Lz be
E2, and the feedback beam field at liquid crystal be E3.
The Fresnel integral for the optical electric fields then
gives

I 1.Q
T

gO

-O. Q
%1 2.Q 2.4

»(lO 4)

FIG. 2. Theoretical plot of the functions y =B~ —B~u and

y =(1+u ) . Intersection(s) give the solution(s) for u.
FIG. 4. Similar plot for various values of Rm, the mirror re-

flectivity.



2760 KHOO, YAN, I.IU, SHEPARD, AND HOU 29

k 00
2 2

E&(ro,z) = —~Ioexp[i&I}(z)] dr rJO(krro/z)exp r—/co i—k +
2 0 2z 2R

exp( k—ro/4z 8)
Ioexp[ig(z) ] 28

2n 2Ipl
2

—n 2' A2 r
N

where

8= 1 /co +i k ( 1 /2z + 1 /2R —2n 2 dIO /co —n 2 IOR»& A 2 )

where

8& k /——4z 8 ik—/2f+ik/2z& . (26)

(24)

and &I}(z) is a phase factor which is only a function of z.
From Fourier optics, ' we know that the effect of a lens

is to change the optical field by a phase factor
exp(ikr /2f) with f being the focal length, so the field
right after I.2 is E& exp(ikr /2fl. An integral similar in
form to (23) is obtained for E2 which is given by

k k
E2(ro, z,z, ) = — — ~Ipexp(i/~)

Z Z1

exp( kr 0/4—z,B~ )
25

28 281

exp( kro/4z —Bz)
2828, 28,

(27)

where

82 k /4z, B——) ik/2f +—ik/2z .

The feedback intensity, therefore, is given by

I(ro&z, z))=
~

E(3r oz,z))
~

(28)

Similarly, the field E2 acquires a phase factor
exp(ikr /2f) after E2 just passed through I.2 and we find
that the field E3 is given by, finally,

k k
E3(ro,z,z, )= — ~I&

Z Z1

k Io exp( kro/4—,82)
z z1 2 88182

After a few mathematical steps we find

~
exp(k ro/4z 82)

~

(29)

—2b b1co rp
2 2 2

=exp
2 2 2(b )

—a, a ) + [(b —a )a )u+abco ]
2g2b ~2q2=1- , +0(r')

(b~ —a&a) +[(b~ —a~a)u+co ab]

(30)

and

4
EL
I

Q

Ch

X
I

K 2
Q

1 CO

~
BB&82

~

(b~ —a~a) +[(b—a&a)u+abco ]

with

b =(k/2z), bi ——(k/2zi )

a =k/2z k/2R, ai ——k/2—zi k/2f, —

u =co k(1/2z+1/2R 2n2Iod/co n2dR—~Aq) . —

(31)

(32)

3 6 9
hn (10

FIG. 5. (a) Theoretical plot of the function y =Bl —B&V and
y=(1+ V ) for the case where the lens between the sample
and the mirror is included in the calculation. Intersection(s) give
value(s) for V. Parameters used are identical to the experimen-
tal setup. (b) Theoretical plot of the output vs input power for
the parameters used in the experiment. Pinhole at the on-axis
location. Note: n2 is estimated to be 3 &(10 ' in the text.

Substituting (30) into (29), we obtain the output on-axis
intensity distribution. (To simplify matters, we have as-
sumed that there is another lens with focal length f, iden-
tical to L2, that is placed at a distance z1&2 measured
from the other side of M and the output intensity is mea-
sured right after that lens with a pinhole placed at a dis-
tance z from the lens. ) The output near axis intensity dis-
tribution is therefore given by
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I(r,z,z( )=Ao —A~r

with

(33) D) 1 1
Bi —— +

2b]b Ipa) n2dR~ 2z 2R

2n2Ipd ab+
kD,

Au ——(k /z zi)—6
6 4 Io~

26I (b
&

—a &a ) + [(b &

—a
&
a )u +baco ] I

(34) 2 4 8b, b4Ip~'n, dR k

(42)

(43)

Further, by letting D& ——b] —a~a and introducing a new

variable u defined by

D, u+ab~'
u

D(

(34) and (35) can further be reduced to

b (b Io67

Di(1+ V )

zb b]Iong

D)(1+V )~

(note: k6z/~z
~

26m6/A, z——z =2 b b&) From d.efinition
of u we have

d~ V—abc@

D)

Further by the definition of u, we have

2n 2Iod

2z 2k
+ —n2dR A2 ——

D] u —aha

D~ kQ)

(39)
1 1

n2dR~ A2 —— +
2z

Substituting (7) into (6) yields

n2Iod a
2 +

kD)
u

kco

1 1 2n2Ipd—+
(1+u ) 2b b&Iota n2dR 2z 2R cu

D4

zb "b ~Ipm n2dR~

1 1 2n2Ipd—+
2z 2R

ab+
kD,

D4

2b b)1pco n2dko) R~
(40)

i.e., we have

1
=8& —82u(1+u')' (41)

2bib co
A2 —(k /z zi)

26[(b, —a, a)~+[(b, —a, a)u+baco J I

(35)

By graphical analysis similar to Fig. 2, we can find a
set of parameters which yield optical bistability. Numeri-
cal determinations of solutions Ap and Aq show that opti-
cal bistability in such a configuration is strongly depen-
dent on z, z&, R, f, and especiallly on coo. The results are
shown in Figs. 5(a) and 5(b). The parameters we used for
the calculation are m=0.02 cm, A, =5145 A, R=1000 cm,
z=12.5 cm, z~ ——17 cm, and f=10 cm, which are identi
cal to the experimental situation in which bistability is ob
serued.

EXPERIMENT

We have performed a quantitative experiment of inten-
sity distribution bistability using nematic film as a non
linear medium in conjunction with a cw argon ion laser.
The experimental setup is depicted in Fig. 1. The mirror
used has a reflectivity R= 99%. The size of the pin-hole
(0.04 mm) relative to the beam diameter is 1:14 at the
detector plane. The size, and radial location of this
pinhole (besides other parameters), decides to a large ex-
tent the output and/or input curve (e.g., powers at
switch-up and down, size of the hysteresis, multiple
switchings, etc.). The liquid-crystal film used is a homeo-
tropically aligned (room temperature) PCB (pentyl-
cyano-biphenly) film about 50 pm thick oriented such
that the director axis makes an angle of 22. 5' (an air to
glass-slides angle of 45') with the optical propagation
direction. The Ar+ laser used is linearly polarized. For
this geometry, n2 [as defined in (2)] is estimated to be
3X10 (W/cm ) '. The power of the incident laser is
varied from 0 to 1 W, a complete scan takes about 10 min.
(i.e., a very slow one). This is because for the 50-pm
liquid crystal used, the reorientation response time is on
the order of 2 sec. As a result of this slow response time,
one can uisually see the dynamics of the switching process
by observing the laser intensity just before the pinhole. In
general, when switching occurs, the central portion of the
beam is highly intensified, and one or two rings begin to
appear (cf. Fig. 1 photo before the pinhole).

Figure 6 shows a typical output versus input curve
when the pinhole is located on-axis, with a relative size
(pinhole diameter:beam waist) of 1:14. This pinhole size
collects all the light at the visibly intensified central area.
Switch-up was observed at an input power of 1 W. The
spot size of the incident laser was estimated to be 0.3 mm,
which is also roughly the size of the reflected (feedback)
beam. This corresponds to a switch-up intensity of 500
W/cm . The switch-up time is observed to be about 3 sec.
Switch-down occurred at an incident power of 0.6 W (in-
tensity of 300 W/cm ). This switching behavior agrees re-
markably with the theoretically predicted behavior for the
same set of parameters used (z=12.5 cm, z&

——12.5 cm).
More importantly, the calculated (based on the acutal ex-
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FIG. 6. Experimentally measured output vs input power
showing bistability switching.

FIG. 7. Experimentally measured output vs input power for
the pinhole located at where the dark ring {in the Fig. 1 photo)
will occur, showing reverse switchings.

perimental parameters) switching powers agree to within a
factor of 6 of the experimental values (theoretical switch-
up intensity is lower and is 80 W/cm ). The slightly
higher experimental values for the switching power can be
attributed to several factors. For example, because the
liquid-crystal film is sandwiched between two microscope
slides, there are at least 8%%uo of the incident as well as the
reflected (feedback) laser that is lost. The liquid-crystal
film itself introduced some further scattering loss.
Nevertheless, the overall shape and size of the hysteresis
curve agrees well with the theoretiml results.

When switch-up occurs at the on-axis region, dark. rings
appear at the rim of the central bright spot (cf. Fig. 1).
Visually, one can see a gradual decrease in the optiml in-
tensity in this region, while the center spot intensifies, i.e.,
a transfer or redistribution of the optical energy at the
detector plane. This behavior mn also be theoretically de-
duced from Eqs. (37) and (38). To investigate this, we
move the pinhole to where the dark ring occurs and moni-
tor the intensity here as a function of the incident laser
power. Figure 7 depicts a typical observed trace. The
switch-down occurs at exactly the power for switch-up at
the on-axis, and vice versa.

The success of the transverse bistability switching de-
pends critically on the alignment. If the feedback is not
exactly back on the spot illuminated by the incident laser,
then the transmitted intensity distribution is no longer ra-
dially symmetric. Occasionally, one can see two bright
near axis spots which collapse into a single one or break
up into several spots at higher laser power. For this con-
figuration, the output and/or input curve exhibits very
complicated hysteresis effects with (or without) multiple
"switching" behavior.

The intensity distribution is extremely dependent on the
parameter z for a fixed focal length of the lens, and also
on z&. Bistability switchings occur only for a range of

va»es of z near z=12 cm. In general, if the feedback
beam spot size is much larger than the incident beam, we
do not observe any switching.

CONCLUSION

We have presented a theory of transverse intensity dis-
tribution bistability in the transmission of a cw Gaussian
laser beam through a nonlinear thin film. Experimental
results are obtained for the case where the nonlinear film
is a homeotropically aligned nematic liquid crystal and
the nonlinearity is the optically induced refractive index
change associated with director axis reorientation. Good
agreement is obtained between theoretical predictions and
experiment. The theory is generally applicable for thin
films with an intensity dependent refractive index. The
experiments demonstrate that such "weak" or "external"
self-focusing optical intensity distribution bistability can
be quantitatively described and thus the phenomenon will
be an interesting candidate for device application, if faster
response media are used. It is important to note here,
nevertheless, that further extensive calculations of the
switching curves have shown that they are, in general,
very sensitive to the parameters co, z, z~. For example, if
co changes by a few percent, the switching curves (powers,
etc.) change considerably. There are, however, clearly de-
fined ranges of values for these parameters where the
switching curves fall unambiguously into the differential
gain mode, the bistable mode, the power limiting mode,
etc. A complete theoretical analysis of these effects and
their experimental verifications will be published later.
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APPENDIX

We consider in this section the effect of including the total phase shift associated with the incident laser, while retain-
ing the first two terms in the feedback, i.e., Eq. (14) now becomes

5$ =n2dIoexp +n2dR~(AO+A2r )
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The intensity I(rp,z) is now given by, after some algebra.
2

k oo p
2

p
2

I(rp z) = Ip dr rJp(krrp/z)exp ' ik— + +n2Ipd exp
z 0 2z 2R

This gives
2

2I'

N
—n2dR A2

2

(A2)

2
oo

( 1)nDn
I(rp, z) = — Ip exp

z „p 2n!(8 +Gn )

where

k rp/4z

8+Gn

D =)knpIpd, G =2/co

8=1/co +ik(1/2z+1/2R —n2dR~A2) .
(A3)

The output I(
k

A 0 z

k
A 2 z

rp, z) from (A2) gives a near axis intensity of the form
2 2

oo
( 1)nDn

Ip
p 2n!(8 +Gn )

oo
( 1 )1ID ll oo

( 1 )llDo ll oo
( 1 )llDo 8 oo

( 1 )JIBED m

p 2n!(8+Gn) ~ p 2m!(8*+Gm) „p 2n!(8'+Gn) p 2m!(8+6m)

(A4)

(A5)

where

oo ( 1)n Dn

p n!(8+Gn)

~in —inn /2D e

n=0
~

2n+1 . 1 1
nf +ik + — —nzdR A2

N 2z 2R
~ +~ in —m.i /2 '+nD e e

1/2
ll =0

nf

I2
2n+1 2 1 1

2 m 2

y„=—tan-'

r

ken + —n2dR2 1 1

2z 2R

D'=n2Ipdk .

Similarly,

oo
( 1 )mDo1ll

p m!(8"+Gm) m=0

~im i(n/2)m ' ~me e

2
2n +1m!

2N

r 2

+k + —n, dRmA,2 1 1

2z 2R

where if we now define a variable of

u =ken (1/2z+1/2R n2dR —A2),

we again obtain a transcendental equation after some
lengthy algebra:

D'" i s(n$2„=~n /2)

n![(2n+1) +u ]

y„=—tan
—'

(2n +1)

(AS)

pj p2u ( Y] Y3 + Y2 Y4 )D

where
D'"cos(P„—em /2)

Y( ——

p n![(2n +1) +u ]'i
'Dsi (Pn„~n /2)

p n![(2n+1) +u ]'

(A7) B'=n2Ipdk,

4z

8z4

k 4''R

(1/z+ 1/k),

'"Dc(o2s$„nn /2)—
Y =

n![(2n+1) +u ]

The lhs of Eq. (A7) depends on u and the physical param-
eters like R, z, R, co (but not on zp) while the rhs depends
on u and Ip (in particular). We have, again, a transcen-
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FIG. 8. Theoretical plot of y =(Y~ F3+ T& F4)D' and
y=8~ —82V for various values of n2 I,p, when the total phase
shift due to the input beam is taken into account.

dental equat1on 1nvolvlng a stfa1ght 11ne and a bell-shaped
function. Figure 8 is a plot of the Eq. (A7) for values of
Io corresponding to An =3.28 & 10, 2.68 g 10
2.08X10, and 1.45&&10 for the same set of parame-
ters used in Fig. 2. Notice that as a result of the different
defintion for u here [Eq. (A6)] and u in the text [Eq.
(19)], the slope and the intercept of the straight line does
not change with I0, while it is the bell-shaped function

FIG. 9. Corresponding output vs input power bistability
switching showing much resemblance to Fig. 3 where only thc
near-axis phase shift is included in the calculation.

that varies both in amplitude and in width with Io. How-
ever, when the values obtained from these intersections in
Fig. 8 are used to plot the power at the pinhole versus the
input (in terms of b, n) as shown in Fig. 9, we notice that
there is very little difference in the bistability switching
curves for the same set of parameters compared to Fig. 3
obtained in the text. One conclusion that one may make,
therefore, is that the major contribution to the first bista-
bility switching loop is from the near axis optical intensi-
ty.
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