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A theory is presented for the transverse intensity distribution bistability of a Gaussian optical
beam after its passage through a nonlinear thin film. The equations governing the intensity distribu-
tion are cast in the form analogous to optical bistability in a longitudinal cavity (a Fabry-Perot in-
terferometer), i.e., into two coupled transcendental equations from which multiple solutions are ob-
tained. This formalism allows one to examine various physical approximations in obtaining the
equations, and to improve on these approximations. It also lucidly illustrates the mechanisms of
transverse intensity distribution bistability. The theoretical predictions are verified with quantitative
experimental results on thin films of nematic liquid crystals.

Optical bistability has been a subject of intensive inves-
tigation recently.!~> Optical bistability in a system arises
as a result of its nonlinear response to the input optical in-
tensity, owing to some feedback from the output of the
system. Intrinsic devices, where the feedback is purely
optical, are usually based upon the Fabry-Perot cavities,*®
where the transmission is governed by the longitudinal in-
tensity dependent phase shift. Depending on the relative
magnitude of the optical input time, the material response
time, and the cavity decay time, the behavior falls into a
transient, quasisteady state and cw regimes.” Optical bi-
stability has been shown to be an interesting phenomenon
for the study of chaos,* and passage to chaos, and other
fundamental as well as applied problems of optical
switching and processing. A review of some of these pro-
cesses has recently appeared.’

In this paper, we present the theory and experiment on
a fundamentally different form of optical bistability,
namely, bistability in the transverse intensity distribution
of a laser beam after its passage through a nonlinear thin
(nematic) film. Feedback is provided by a partially
transmitting mirror at the output end. The theory
developed here is generally applicable to other thin films.
Theory for this type of so-called “external” self-focusing
bistability® has been given before by Kaplan,> who essen-
tially treated the film as a nonlinear thin lens with a focal
length that is dependent on the optical intensity. In the
theory to be described below, we make a further refine-
ment by taking into account the total phase shift due to
the thin film, and compare and contrast the results with
expressions obtained under the lens approximation. More
interestingly, the transverse intensity distribution is
described by the solution to transcendental equations in a
manner analogous to the case involving longitudinal phase
shift. The occurrence of bistability switching (in the on-
axis power, e.g.) can then be clearly represented as some
switching back and forth between the on-axis intensity
and the intensity at the wing of the Gaussian beam.

Theory and experiment on the so-called “strong self-
focusing limit” bistability has been reported by Bjorkholm
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et al. In these studies, the nonlinear medium is rather
thick so that the incident optical beam undergoes substan-
tial wave-front reshaping within the nonlinear medium.
For thin films, the nonlinearity gives rise simply to a
phase factor in the otherwise undistorted wave front of
the optical beam following its passage through the medi-
um. Such a situation allows a more definitive imaging of
the output (by the feedback mirror) back on the film using
simple free space propagation description.

THEORY

Figure 1 depicts schematically the problem under study.
A cw transversely Gaussian laser beam is incident with a
radius of curvature R and beam waist ® on the nonlinear
thin film. For a nematic film, the reorientation requires
that the optical field be linearly polarized. The incident
laser electric field is given by Eop(?,O). A lens L with a
focal length f is situated a distance Z, from the thin film
and a mirror with reflectivity R,, is placed a distance
Z,/2 from the lens. A pinhole of radius @ and an identi-
cal lens of focal length f are placed a distance (Zy+Z,/2)
and Z,/2, respectively (for convenience in calculation)
behind the mirror. The output power (or intensity)
through the pinhole is studied as a function of the total
input power P;,.

The nonlinearity induced in the nematic film has been
calculated before. In the case of a homeotropically
aligned film of thickness d, with the incident optical wave
vector making an angle ¢ with the nematic director, the
induced refractive index change associated with the opti-
cally induced reorientation can be expressed in the form®

_ €'"X(Ae)’sin*(2¢)(dz —z?)E2,

An(z)=
167K
7€' Aesin®(2¢) Eop (dz—z2)
4 EL 42
_ €' ?Aesin’(2¢) | dz —z2 | Lop "
4 d? I, "’
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FIG. 1. Schematic of the transverse optical intensity distribu-
tion bistability experiment setup. Inset is an actual photo taken
of the intensity distribution just after switching-up. Before
switching, the intensity distribution is Gaussian.

where Egp is the square modulus of the optical electric
field in the nematic film and Ey, is the so-called optical
Fréedericksz transition threshold field:’

Egn=47K(Ae)~1d 2.

Notice that An(z) is dependent on the distance (z) into the
nematic film, a nonlocal optical nonlinearity.

It is interesting to note here that, peculiar to liquid
crystals, the response (i.e., the reorientation) of the nemat-
ic director axis is also nonlocal in the transverse direction
of the beam. Since the laser beam has a beam waist of
about wg, the problem should be solved for this transverse
direction subject to (approximately) the boundary condi-
tion that the reorientation is vanishing outside a region of
transverse dimension w,. With respect to molecules out-
side this region, the molecules undergo basically a splay
distortion. It suffices to note from (1), that the reorienta-
tion of the director axis is inversely proportional to the
square of thickness of the sample (for the longitudinal
boundary problem) and to w, for the transverse direction.
In the experiment, wy~0.3 mm (300 um) while d~50
um, so that the reorientation of the director axis is more
severely [by at least (3002/50)=36 times] limited by the
thickness of the sample, i.e., the transverse boundary ef-
fect is negligible, and thus a detailed calculation (which
would be extremely complicated if the transverse Gauss-
ian profile of the beam is explicitly accounted for) is not
necessary for the present treatment. (Nevertheless, we
have explicitly calculated this transverse nonlocal effect,
and the lengthy calculation, which will be published in 2}
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later paper, confirms the above observation.) From Eq.
(1) the induced refractive index change is of the familiar
form

An=n,(2)(r), (2)

where n, can be deduced from (1).
This refractive index change produces a transversely
dependent phase shift on the optical beam by an amount

27 pd 2m
8¢(r)==F [ my(@)l(rdz==Tmdl(r), (3)

where 7, denotes the average over the thickness of the
film. The total intensity in the sample is given by

I=£‘(E0+ER )2_)IO+IR > (4)
47

where the interference term due to E; and Ey (the reflect-
ed optical electric field) is neglected because the liquid
crystal undergoes vanishingly small reorientation for in-
terference on the order of optical wavelength. This is
slightly different from the usual third-order nonlinearity
X® EEE which results in a factor of 2 for I.

For the sake of simplicity, we shall first neglect the
presence of the lens in the following analysis. The effect
of the lens is included in the next section. Using
Huygen’s principle, the exit beam electric field at a dis-
tance z from the nematic film is given by

—ikr?
E(ro,z)zgiexp(ikz)exp 7o
iAz
@ —ikr? 2mrry
Xfo Ey(r,0)exp 2 Jo e ,
Xexp[ —idd(r))rdr , (5)

where ro=(x3+y3)"/? and r=(x2+p?'? and J, is the
zeroth-order Bessel function. The incident electric field
Ey(r,0) is given by

r*  ikr?

Ey(r,0)=1"Tyexp (_E SR (6)

Squaring both sides of (5) with (6) substituted from
E (r,0) yield the output intensity distribution at the plane

2
2 0
I(rg,z)= 7;1 I, fo dr rJo(2mrry /Az)exp( —r? /o))
2
o LS 2% | Ryl
X exp | —1i 22+-2E+n2 od exp | ——5 [+ R, dI(r,z) (7)

Equation (7) is an integral equation for the intensity distribution I(7,z) via the intensity-dependent phase shift factor
in the integrand. This implies the possibility of multiple solutions for I(ry,z). We remark here that in the case of zero
feedback (R,, =0) this expression allows one to calculate exactly the transmitted intensity distribution beam waist, effec-
tive focal distance, interference ring structure, etc. The calculation was performed for a nematic film and good quantita-
tive agreements are obtained between the theoretical and experimental results.!%!!

In the case of finite R,,, there is no closed form analytic solution for I(ry,z). However, by expanding the Bessel func-
tion in the integrand into an infinite series, some new insights can be gained and numerical solutions are possible. One
can also examine various approximations and refinements to these approximations and how they may be reflected in the

predicted bistability behaviors.
Writing
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Jo(2mrry/Az) = i =1y
s=0 s!

(mrro/Az)*

and inserting it into (7), one gets

I(ro,z)=(k /2)’I,

=(k/z)I,

(=1)
sP?

s=0

By inspection, I(rg,z) is of the form
I(rg,z)= 3, (—1) )" Ay 3" (10)
n=0

where we have

© 2
o=tk /270 | [ drrfir2) (an
and
I -] (-]
A=k /L | [ drrpr2) [ ar )
+ fowdrr3f*(r,z)fowdrrf(r,z)
(12)
where
f(r,z)=exp | —r?/w?

—ik [r2/2z+r2/2R —2n,1yd /*
+nydIgexp( —2r /o)
b ngdRy 3 AH RIS
n=0

The infinite coupled [via the integral over f(7,z) on the
right-hand side (rhs)] transcendental equations for A4,, in
general imply multiple solutions for the 4,, and therefore
for the output intensity distribution.

(i) “Near axis” approximation

We now make a simplifying approximation (which will
be partially removed in the Appendix) by including only
the first two terms (o« Ay and A4,) in the feedback I(rg,z)
and the incident intensity (I, exp—2r%/w?), i.e., the phase
shift due to the total intensity

—r2/*+7,dR,, Y, Agpr™
n=0

8¢ =r,dIpexp

is rewritten as

2

S8p=ri,dl, |1— +7,dR,,(Ag+Ayr?) . (14)

fowdrrzs“exp{(—r
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© 2
fo dr rJo(krry/z)exp{ —r?/w*—k[r*/2z+r%/2R +dIyexp( —2r/w?)+n,dR,, 1]}

2/0?) —ik[r2/2z +7r2/2R+ nydIgexp(—2r*/e?)

2

+n2dRmI]} (9)

This assumption is equivalent to the usual lens approxi-
mation, where the total phase shift is represented by the
quadratic (in ) phase shift associated with a spherical
lens. In this approximation, we have

f(r,z)=exp[ —r*/w?
—ik(r2/2z+1%/2R =27, Ior% /* +ydl

—ﬁ2dRmA2"2+ﬁ2dRmA0)]

=exp( —Br)explik(7,dR,, Ag—7,dl,)] ,
(15)
where
1 1 _
B=_2‘+lk 2R n2d10 -—-nzdRmA2 (16)
The integrals in (11) and (12) yield
2
k 1
Ao= |— | Iy |=—=
o=z | 2B
I,
- Tk 2,1 2
2| 1 1 <l
4z 2k + 22+2R_ e —n,dR,, A,
(17)
and
2
I L3 % I U S U
21z | 4 |2B?2B* ' 2B*2 2B
4
(R 1,1
z| 4 4/B|*|B B*
k'L 1 1/0?
0 @
== -2 18
+lz 8 181 | B|? e

Equation (17) for 4, shows that it is dependent via the re-
flectivity R on A,, i.e., the on-axis optical intensity is in-
fluenced by the intensity away from the axis, as a result of
the feedback. This indicates the possibility of energy
redistributions among the various radial positions. On the
other hand, Eq. (18) for 4, is a transcendental equation in
A,, clearly demonstrating the possibility of a multiple-
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valued solution for A, (and therefore for A4, via its
dependence on A,). More interestingly, if we introduce
the variable

u=wk(1/2z+1/2R —2n,1yd /0> —n,dR,,4,) (19)

we can rewrite Egs. (17) and (18) as

B,—Byu= m (20)
with
82%1/2z+1/2R —27,14d /w?)
= R, Ay Ipdok* @D
and
B—— 8 22)
R, i loda®k’

Equation (20) is a transcendental equation for u in a form
analogous to the Fabry-Perot bistability problem, i.e., the
solution(s) is (are) given by the intersection of a straight
line y=(B;—B,u) and a bell-shaped function
y=(1+u?"2 The slope of the straight line (B,) is in-
versely proportional to the magnitude of the incident inten-
sity, similar to that in the usual Fabry-Perot theory. The
difference is that in this case the intercept B also varies
with I 0- .

Figure 2 is a typical plot of Eq. (20) for values of y cor-
responding to experimental parameters close to those used
in the expg:riment (0=0.03 cm, R=1650 cm, R,, =0.99,
A=5145 A and z=30 cm, d=50 um, ¢$=22.5°). The
straight lines 1, 2, and 3 correspond to An=6X10"%
1.2x 1073 and 1.8X 1073, respectively. 7, can be es-
timated from (1)—(3) to be roughly given by 7,=3X10">
cm?>W~! for Ae=0.8 and K=10"7 cgs unit. So these
three values of Anm correspond to I,=20, 30, and 60
W/cm? The intersections of the two functions in Fig. 2
give the solutions for u (and therefore for A, and A,).
For the range of values of Ij such that n; < An<n,, there
are triple-valued solutions for u, where n; and n, denote
the value of Ar (and therefore I,;) for switch-down and
switch-up operation. The expressions for n; and n, can
be obtained from Eq. (20). More interestingly, Fig. 3
gives the output power (integrated over the pinhole with
a=0.005 cm) versus the input power for z=30, 35, and

FIG. 2. Theoretical plot of the functions y=B;—B,u and
y=(1+u?)"2 Intersection(s) give the solution(s) for u.
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FIG. 3. Plot of the detected output power at the pinhole vs
the change in refractive index An =,1.

40 cm. It clearly demonstrates the expected bistability
switching for some value of z.

Figure 4 depicts the results for various values of the
feedback mirror reflectivity R,, at z=30 cm. As expect-
ed, when R,, decreases, the switching powers increase.

As a refinement to the preceding analysis, we have tak-
en into account the total phase shift due to the input
beam, but still keep only the two leading terms in the con-
tribution from the feedback beam. As shown in the Ap-
pendix, one can again express the resulting equations in
transcendental equations. The multiple solutions (and
bistability) for the intensity distribution obtained by in-
cluding the total Gaussian phase shift is almost identical
to the one obtained before. This demonstrates that for the
first switching hysteresis loops, at least, the near axis ap-
proximation is quite good.

(ii) Bistability in the presence of a lens
between the thin film and the feeback mirror

We now consider the effect of the lens between the
liquid-crystal film and reflecting mirror M (cf. Fig. 1).
This corresponds to the actual experimental setup. We la-
bel the distance between the liquid-crystal film and lens
L, as z and distance between L, and reflecting mirror M
as z,/2 as shown in Fig. 5. Further, we let the output
beam field at L, be E;, the feedback beam field at L, be
E,, and the feedback beam field at liquid crystal be Ej;.
The Fresnel integral for the optical electric fields then
gives

1.5 2=30cm

0.0 1.2 2.4 3.6 4.8
Bn(1074)

FIG. 4. Similar plot for various values of Rm, the mirror re-
flectivity.
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E|(ro,2)= | = |V Toexpli¢(2)] fowdrrJo(krro/z)exp
exp( —k?2rl /4z°B)
= | % |V Texpligan 20 ,
z 2B
where
B=1/0>+ik(1/2z+1/2R —2,dly/w*— i, I4R,, A;)

(24)

and ¢(z) is a phase factor which is only a function of z.

From Fourier optics,'® we know that the effect of a lens
is to change the optical field by a phase factor
exp(ikr?/2f) with f being the focal length, so the field
right after L, is E, exp(ikr?/2f). An integral similar in
form to (23) is obtained for E, which is given by

k zi ‘\/I_oexp(id’l)

Ez(ro,z,zl)z -
1

exp(—k?r3/4z2B;)

, (25)

2B2B,

ON-AXIS OUTPUT POWER

3 6
An (104

FIG. 5. (a) Theoretical plot of the function y=B; — B,V and
y=(14+V?%"2 for the case where the lens between the sample
and the mirror is included in the calculation. Intersection(s) give
value(s) for V. Parameters used are identical to the experimen-
tal setup. (b) Theoretical plot of the output vs input power for
the parameters used in the experiment. Pinhole at the on-axis

location. Note: 7, is estimated to be 3X 10~ in the text.
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—r?/o*—ik Z+EE— e —n,dR,, A, rzl
(23)
I
where
B,=k2/4z’B —ik /2f +ik /2z, . (26)

Similarly, the field E, acquires a phase factor
exp(ikr?/2f) after E, just passed through L, and we find
that the field E; is given by, finally,

Exrozz= | % | | v
1
exp(—k?2r}/4z°B,)
] , 27
Xexplid) = 528,28, @
where
B,=k?/4z%B, —ik /2f +ik /2z . (28)
The feedback intensity, therefore, is given by
I(ro,z,z1)= | E3(ro,z,21) | 2
koI, [exp(—k%2/42B,) |
) 3 (29)
Z'Z 2 BB1B2

After a few mathematical steps we find

| exp(k?r} /42°B,) | ?

—2b%b 0%}
=P (by—aa)*+[(b—aa)u +abw?)?
2b%b,0%r3
=1- (b1—a1a)2+[(b11—a1(:1 Yu +w*ab]? +0(r?)
(30)
and
L - 2 31)
|BB\B,|* (by—a,a)*+[(b—a,a)u+abw?*]?
with
b=(k/2z)?, by=(k/2z,)*,
a=k/2z2—k/2R, ay=k/2z,—k/2f , (32)

u=w*k(1/2z+1/2R —2n,Id /0*—n,dR,, 4,) .

Substituting (30) into (29), we obtain the output on-axis
intensity distribution. (To simplify matters, we have as-
sumed that there is another lens with focal length f, iden-
tical to L,, that is placed at a distance z;,, measured
from the other side of M and the output intensity is mea-
sured right after that lens with a pinhole placed at a dis-
tance z from the lens.) The output near axis intensity dis-
tribution is therefore given by
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Kr,z,z,)=Ayg—A,r? (33)
with

A0=(k6/z4zf) . . Iow4 .

2°((by—aa) +[(b;—aa)u+baw*]"}
(34)
2b1b%°
Azz(k6/24z%)26{(b1—ala)2+[<11>1—ala)u+baw2]2}2 .
(35)

Further, by letting D;=b,—aa and introducing a new
variable v defined by

D abw?
N L (36)
D,
(34) and (35) can further be reduced to

LR (37)
T p14wy)
zb*b 3y
o (38)

2= DH1+ V)

(note: k6/z*22=2%7%/1%2*22=25b%b,). From definition
of v we have
d\V—abo?*
= ——Dl——— .
Further by the definition of u, we have
1 1 2mld

-272—4—%—- a)z —nzdR,,,A2=

u

Dv—abo?
.lea)2

b

(39)
1 1 2mled  gb v

MR A=, VR T T TkD, ket

Substituting (7) into (6) yields

1 D1 1,1 2mld

= -+
(1+U2)2 2b4b%10w6n2dRm 2z 2R a)z
4 ab v
kD, ?
_ D‘l‘ _l_ + —_]_ . 2n210d
"~ 2% 0n,dR,, |2z ' 2R >
ab
* %D,
Di (40)
_ v,
2b*b31yw%n,dk R,
i.e., we have
1 B, —Byv (41)

(1+0v2?
with

Bi=——- DZ “1_+L—‘2’ﬁ—2‘12£d‘+ ab >
2b1b*Iy0%nydR,, |2z 2R ® kD,
(42)
B, = Di . (43)
2b3b*Iow®n,dR,, k

By graphical analysis similar to Fig. 2, we can find a
set of parameters which yield optical bistability. Numeri-
cal determinations of solutions A, and 4, show that opti-
cal bistability in such a configuration is strongly depen-
dent on z, z;, R, f, and especiallly on w,. The results are
shown in Figs. 5(a) and 5(b). The parameters we used for
the calculation are ®=0.02 cm, A=5145 A, R=1000 cm,
z=12.5 cm, z; =17 cm, and f=10 cm, which are identi-
cal to the experimental situation in which bistability is ob-
served.

EXPERIMENT

We have performed a quantitative experiment of inten-
sity distribution bistability using nematic film as a non-
linear medium in conjunction with a cw argon ion laser.
The experimental setup is depicted in Fig. 1. The mirror
used has a reflectivity R=99%. The size of the pin-hole
(0.04 mm) relative to the beam diameter is 1:14 at the
detector plane. The size, and radial location of this
pinhole (besides other parameters), decides to a large ex-
tent the output and/or input curve (e.g., powers at
switch-up and down, size of the hysteresis, multiple
switchings, etc.). The liquid-crystal film used is a homeo-
tropically aligned (room temperature) PCB (pentyl-
cyano-biphenly) film about 50 pum thick oriented such
that the director axis makes an angle of 22.5° (an air to
glass-slides angle of 45°) with the optical propagation
direction. The Ar™ laser used is linearly polarized. For
this geometry, 7, [as defined in (2)] is estimated to be
3% 107° (W/cm?~!. The power of the incident laser is
varied from 0 to 1 W, a complete scan takes about 10 min.
(i.e., a very slow one). This is because for the 50-um
liquid crystal used, the reorientation response time is on
the order of 2 sec. As a result of this slow response time,
one can visually see the dynamics of the switching process
by observing the laser intensity just before the pinhole. In
general, when switching occurs, the central portion of the
beam is highly intensified, and one or two rings begin to
appear (cf. Fig. 1 photo before the pinhole).

Figure 6 shows a typical output versus input curve
when the pinhole is located on-axis, with a relative size
(pinhole diameter:beam waist) of 1:14. This pinhole size
collects all the light at the visibly intensified central area.
Switch-up was observed at an input power of 1 W. The
spot size of the incident laser was estimated to be 0.3 mm,
which is also roughly the size of the reflected (feedback)
beam. This corresponds to a switch-up intensity of 500
W/cm? The switch-up time is observed to be about 3 sec.
Switch-down occurred at an incident power of 0.6 W (in-
tensity of 300 W/cm?). This switching behavior agrees re-
markably with the theoretically predicted behavior for the
same set of parameters used (z=12.5 cm, z; =12.5 cm).
More importantly, the calculated (based on the acutal ex-
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FIG. 6. Experimentally measured output vs input power
showing bistability switching.

perimental parameters) switching powers agree to within a
factor of 6 of the experimental values (theoretical swiich-
up intensity is lower and is 80 W/cm?). The slightly
higher experimental values for the switching power can be
attributed to several factors. For example, because the
liquid-crystal film is sandwiched between two microscope
slides, there are at least 8% of the incident as well as the
reflected (feedback) laser that is lost. The liquid-crystal
film itself introduced some further scattering loss.
Nevertheless, the overall shape and size of the hysteresis
curve agrees well with the theoretical results.

When switch-up occurs at the on-axis region, dark rings
appear at the rim of the central bright spot (cf. Fig. 1).
Visually, one can see a gradual decrease in the optical in-
tensity in this region, while the center spot intensifies, i.e.,
a transfer or redistribution of the optical energy at the
detector plane. This behavior can also be theoretically de-
duced from Egs. (37) and (38). To investigate this, we
move the pinhole to where the dark ring occurs and moni-
tor the intensity here as a function of the incident laser
power. Figure 7 depicts a typical observed trace. The
switch-down occurs at exactly the power for switch-up at
the on-axis, and vice versa.

The success of the transverse bistability switching de-
pends critically on the alignment. If the feedback is not
exactly back on the spot illuminated by the incident laser,
then the transmitted intensity distribution is no longer ra-
dially symmetric. Occasionally, one can see two bright
near axis spots which collapse into a single one or break
up into several spots at higher laser power. For this con-
figuration, the output and/or input curve exhibits very
complicated hysteresis effects with (or without) multiple
“switching” behavior.

The intensity distribution is extremely dependent on the
parameter z for a fixed focal length of the lens, and also
on z;. Bistability switchings occur only for a range of
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FIG. 7. Experimentally measured output vs input power for
the pinhole located at where the dark ring (in the Fig. 1 photo)
will occur, showing reverse switchings.

values of z near z=12 cm. In general, if the feedback
beam spot size is much larger than the incident beam, we
do not observe any switching.

CONCLUSION

We have presented a theory of transverse intensity dis-
tribution bistability in the transmission of a cw Gaussian
laser beam through a nonlinear thin film. Experimental
results are obtained for the case where the nonlinear film
is a homeotropically aligned nematic liquid crystal and
the nonlinearity is the optically induced refractive index
change associated with director axis reorientation. Good
agreement is obtained between theoretical predictions and
experiment. The theory is generally applicable for thin
films with an intensity dependent refractive index. The
experiments demonstrate that such “weak” or “external”
self-focusing optical intensity distribution bistability can
be quantitatively described and thus the phenomenon will
be an interesting candidate for device application, if faster
response media are used. It is important to note here,
nevertheless, that further extensive calculations of the
switching curves have shown that they are, in general,
very sensitive to the parameters o, z, z;. For example, if
o changes by a few percent, the switching curves (powers,
etc.) change considerably. There are, however, clearly de-
fined ranges of values for these parameters where the
switching curves fall unambiguously into the differential
gain mode, the bistable mode, the power limiting mode,
etc. A complete theoretical analysis of these effects and
their experimental verifications will be published later.
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APPENDIX

We consider in this section the effect of including the total phase shift associated with the incident laser, while retain-
ing the first two terms in the feedback, i.e., Eq. (14) now becomes

2
8¢ =,dIoexp | — 5 +,dR,(Ag+ A7)
(0]

(A1)
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The intensity I(ry,z) is now given

by, after some algebra.
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2 o Sl r? 2r? ?
I(rg,z)= I, fo dr vJy(krry/z)exp { —ik ?Z-+51—2~+n210dexp ey —n,dR,, A, (A2)
This gives
2
2 2.2 442
k ©  (—1)"D" k*rg/4z
Hro,2)= 17 II" ,ZO m(B+Gn) P |T B1Gn ||’
where
D=ikn,Ilod, G=2/0", (A3)
B=1/0*+ik(1/2z+1/2R —n,dR,, A,) .
The output I(ry,z) from (A2) gives a near axis intensity of the form
2 2
k 00 (_l)nDn
Ao=|—= | I | A4
0 z] 0 ,ZO 2n!(B +Gn) (A9
4
k 0 (_l)nDn ) (_l)nD*n - ( l)nD*n 0 —l)m.Dm
Ay=|— |1 + (AS)
i Z’ Olzo 201(B +Gn) 2, 2mI(B* +Gm P 2 KB+ Gn) 2 2m (B + Gm)
where
© (_l)nDn © Drne—imr/Z
2 . =2
nl(B+Gn) 2n+l 1,1
n! ik |5+ 5 —12dRm A
w? 2z
® Dlne—ri/Ze’¢n
= 20 [ ; 177 »
"= 2n +1 2 1 1
n! —-;)2-— +k 22+§1—{ —n,dR,, A,
1 1
, k 2 +'§ nzdRmAz
¢n=—tan 2n +1 ’
D’=n210dk .
Similarly,
) (—1)mp*m ) Dlmei(ﬂ/Z)me—i2¢m
2= mi(B*+Gm)* <, 2 2]’
m! a)z + 2z +2R —ny m412
I
where if we now define a variable of i D"sin(2¢,, =mn /2)
u=koX1/22+1/2R —n,dR,, 4,) , (A6) S n[@n+124u?]
. . . (A8)
we again obtain a transcendental equation after some u
lengthy algebra: ¢, =—tan™! D |
—Bu=(Y,Y;+Y,Y,)D’", A7
Bi1—B; 1¥3+Xo1y (A7) D' =, ydk
where 4
= D"cos(d, —mn/2) Bi=|—2— |(1/z41/0),
Y, = 2, 2172 k’w°R,,
o n![(2n +1)*+u”]
Mas 8z4
»  D"sin(¢, —mn /2) =
-3 : P,

n=0
©  D"cos(2¢, —mn /2)
s nl[(2n41)24u?)

V3=

n[(2n +1)24+u?) 2’

>

The lhs of Eq. (A7) depends on u and the physical param-
eters like R, z, R, w (but not on z,) while the rhs depends

on u and I (in particular).

We have, again, a transcen-
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n,l
Of
25028 x 10

8,-B,Y,

2.68 x 107

2.08 x 1074

1.45 X 107*

FIG. 8. Theoretical plot of y=(Y,Y3+Y,Y,)D’ and
y=B{—B,V for various values of 7, I,,, when the total phase
shift due to the input beam is taken into account.

dental equation involving a straight line and a bell-shaped
function. Figure 8 is a plot of the Eq. (A7) for values of
I, corresponding to An=3.28X10"% 2.68x107%
2.08x 1074 and 1.45X 10~* for the same set of parame-
ters used in Fig. 2. Notice that as a result of the different
defintion for u here [Eq. (A6)] and u in the text [Eq.
(19)], the slope and the intercept of the straight line does
not change with I, while it is the bell-shaped function
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0.0 1.5 o k.5

3.
an (1074

FIG. 9. Corresponding output vs input power bistability
switching showing much resemblance to Fig. 3 where only the
near-axis phase shift is included in the calculation.

that varies both in amplitude and in width with 7,. How-
ever, when the values obtained from these intersections in
Fig. 8 are used to plot the power at the pinhole versus the
input (in terms of An) as shown in Fig. 9, we notice that
there is very little difference in the bistability switching
curves for the same set of parameters compared to Fig. 3
obtained in the text. One conclusion that one may make,
therefore, is that the major contribution to the first bista-
bility switching loop is from the near axis optical intensi-
ty.
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