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Diffusion on the Sierpinski gaskets: A random walker on a fracta11y structured object
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The motion of a random walker on a Sierpinski gasket is studied in d dimensions using a
renormalization-group approach. The relation 6=d —2+m is established from the behavior of re-
cursion relations and is verified in numerical studies (here Z is the fractal dimension, w describes
coupling-constant scaling, and 5 describes the distance-time relationship of a random walk). When
this relation is combined with t =d —2+$, an Einstein relation is derived.

I. INTRODUCTION

Because of the mapping of a variety of physical prob-
lems onto percolation models, the structure of percolation
clusters is a subject of considerable interest. Investigation
of the dynamics of these systems involves the question of
particle motion on a cluster, diffusive motion, motion
driven by a field, etc. At or near the percolation threshold
the clusters are believed to be structured like objects that
are properly characterized as fractals e.g., the Sierpinski
gasket. Thus the investigation of particle motion at
threshold involves the assessment of the behavior of a ran-
dom walker, of a current, etc on a fr.actally structured ob-
ject. An appreciation for these points has led to the
development of a number of results for this and related
problems. Gefen et al. ' and Alexander and Orbach have
emphasized scaling relationships among the parameters
that characterize the structure, the conductivity, etc. Ben-
Avraham and Havlin have explored these relationships
with theoretical and numerical studies.

The purpose of this paper is to describe the motion of a
random walker on the Sierpinski gaskets using a
renormalization-group treatment of the appropriate dif-
fusion equations. In Sec. II the length-scale renormali-
zation (LSR) procedure for handling the diffusion equa-
tion is reviewed and extended to describe the Sierpinski
gaskets. From the form of the resulting recursion rela-
tions the relationship 5=d —2+w is established and the
Einstein relation is derived. In Sec. III the results of nu-
merical implementation of the recursion relations ap-
propriate to the Sierpinskigaskets in d dimensions are
discussed. The relationship 6=d —2+w is confirmed and
the physical content of the procedure is emphasized.

sPn=5, o —VP +~(Pn~i+Pn —i) . (2)

The LSR procedure employs the odd equations, those for
n=. . . , —3, —I, +1,+3, . . . in the even equations to
find a new set of equations for Po,P2, . . . that have the
same form as Eq. (2) with renormalized coupling con-
stants given by
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P„(t)=—VP„(t)+—W [P„+,(t)+P„,(t)j,
Bt

where P„(t) is the conditional probability that the particle
is at site n at time t given that it was at site 0 at
t =0, P„(0)=5„o. V and IV are the rates at which a par-
ticle leaves a site and comes onto a site (from the near-
neighbor sites), respectively, usually V=2IV. Upon La-
place transforming Eq. (1) we have

II. LSR AND 5=8—2+ w

In this section the behavior of the single-site probability
is examined using the LSR procedure and the relationship
6=d —2+w established. We begin by recalling some of
the properties of the LSR procedure when applied to a
simple one-dimensional (1d).

Consider the motion of a particle on a uniform ld lat-
tice. This motion is described by

to 4

lo

FIG. 1. Evolution of V and 8' for a homogeneous lattice 1d.
Values of V and 8' from the recursion relations, Eqs. (3), vs m,
the number of iterations, for s =10,10
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V'= V —28",
(3)

[here Q(t) is the volume a particle can visit on time scale
t] and using (r (t))=t + to find

P (t) t —d/(2+5)

Thus for n )m (s), where 2 "b="(/(r ) =V'W/S (here
b is the site-to-site separation), there should be no motion
between sites 8'—+0 and V'"+"=V'"' —2$'"+"=V'"'.
We have (use 5 = 1, IV = 1)

V'"'= =v s
1

2m (s)

and Pp(s)-s ' as s~O.
The two essential ingredients of this analysis are (1)

m(s) given by the distance-time relation (r )s=R' and
(2) the factor —,

'
( V'"+"=—,

' V'"') that measures the change
in the effective rate of leaving a site that accompanies a
change of length scale. This effective rate accounts for
the reduction in the rate of leaving a site that occurs when
a particle returns from neighboring sites.

Let us combine these ingredients to obtain an estimate
of Pp(s) on a fractal lattice of dimension d. We take the
distance-time relation to be

&/(&+ 5)

(7)& r')
b 2

and the coupling-constant scaling to initially be

V(n + 1) g V(n)

(To make contact with other work note 5=8,
2+5=H '). Then as s~O

1 1 1P()(s)-
V(m) gm(s) ( 1 )m(g)~

where w =in/(, /in(0. 5) and ~r=s ' ' + '—=2 " from
Eq. (7) (again 5 = 1, 8'= 1). Thus

P (s) s —w/(2+5)

We compare this estimate of Pp(s) to one made by taking

Pp(t)= 1 1

Q(t) (r2(t) )d/2
(10)

where D = (s + V)
The new system of equations, when relabeled, is the

same as the old so that further changes in length scale
corresponds to iteration of Eq. (3). In Fig. 1 we show the
behavior of V and 8' given by Eqs. (3) upon carrying
through the iteration starting at 8'=1, V=28', and
s =10,10 . Note that initially V'= 8"=8'/2,
V"=IV"=W/4. . . . until at n )m (s), W'"'~0 and
V'"'~ V'"'. At this point the system is being examined
on time scale t=s ' and on length scale 2"b and is
described by

sP„=5„p—V' 'P„.
Thus Pp(s)=(s+ V'"') '. The value of V'"' is estimat-
ed by arguing that on time scale t=s ' a particle can
move a distance of order

or

P (s) s) —Z/(&+5)

Thus from Eqs. (9) and (11)

5=d —2+w .

This equation involves 5, characterizing the distance-time
relation, d, the fractal dimension, and w a measure of
coupling-constant scaling. It is similar to the relations
t =d —2+( of Gefen et aI. which involves g (the resis-
tance scales as L ~) and t (the conductivity scales as L ').
Below we make application of the LSR procedure to the
Sierpinski gaskets, find w from the structure of the recur-
sion relations, and 5 from their numerical implementa-
tion, and establish d —2+w =5, w=g. The relations
d —2+w =5 and d 2+g=t c—an be combined to yield
the Einstein relation t —5=d —d.

III. APPLICATION TO THE SIERPINSKI GASKETS

In this section we study the behavior of Pp(s) on a
Sierpinski gasket in d dimensions. We use the phrase
Sierpinski gasket in d dimensions to denote the generali-
zation to d dimensions of the 2d gasket shown in Fig. 2.
To construct the d-dimensional gasket we employ the fol-
lowing procedure: (1) Near the initial site 0 construct d
sites so that there are d + 1 sites in total. (2) Form bonds
between the d + 1 sites [d (d + 1)/2 bonds are required].
At the midpoint of each bond construct a new site [there
are d+1 original sites and d(d+1)/2 new sites]. (4)
Form bonds among the d (d + 1)/2 new sites
([d (d + 1)/2][d (d +1)+ 1/2]/2 new bonds are re-
quired). These bonds divide the space into d + 1 units
each of which contains d +1 bonds and is connected to
each other unit at only one site. (5) Within each unit car-
ry out steps (3)—(5) repeatedly. See Fig. 2 and the book
by Mandelbrot. The gaskets so formed have fractal di-
mension d =ln(d+1)/ln2 (see Table I).

To carry out the LSR procedure the equations for P„(s)
are written down (the connectivity is easily assessed from
Fig. 2 or as in the Appendix for d dimensions). Then,
certain of the sites are removed from the equations of

FIG. 2. Sierpinski gasket: d =2, Z=1.585, . . . . The gasket
is formed by cutting out material, constructing the n +1 unit
from the nth unit, by the rules in the Appendix, etc.
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TABLE I. Scaling parameters as a function of d; {a) spatial dimension, {b) fractal dimension
Z=ln(d +1)/ln2, (c) w =ln[(d+3)/(d+1)]/1n2, (d) k from analysis of Po(s) vs s as in Fig. 5, (e)

6 =(w/k) —2 using w from (c) and k from (d), (f) 6=d —2+ w using d from (b) and w from {c).

(a)
d

(b)

1.584 963
2.0
2.321 928
3.459 431

(c)

0.736 965
0.584 962
0.485 426
0.241 008

(d)

0.318
0.229
0.173
0.0655

(e)
6=(w/k) —2

0.318
0.555
0.806
1.679

(f)
6=d —2+w

0.322
0.585
0.807
1.700

V'= V —2dWi (13)

motion (see Fig. 3 for illustration) and the remaining
equations cast in the same form as the original equations
with the new set of coupling constants given by

and V saturates. Upon putting s =0, the recursion rela-
tions reduce to V'"+"=2n 8""+" and 8'"+"
=[(2+1)/(d+3)]W'"'. Thus in Eqs. (8) and (9) the
coupling-constant scaling is 1,= (d + 1)/(d + 3) and

W'= [1+2(d —1)DW]W(, (14)

ln[(d +1)/(4+3)]
ln(0. 5)

(15)

where

W) ——WQ W,

D '=s+ V —2(d —2)W,

Q '=s+ V —(d —1)W(1+2DW) .

These equations are derived in the Appendix. Note that
W&, D, and Q are auxiliary functions; V, W determine
V', 8".

The results of iteration of Eqs. (13) and (14) are shown
in Figs. 4 and 5. Let us begin the discussion of these re-
sults by examining the behavior of V and W upon itera-
tion. This behavior is qualitatively like that shown above
for a 1 d homogeneous lattice; V and W decrease by a con-
stant factor as the renormalization proceeds until W~O

in agreement with Gefen et al. for g. The rate at which
V decreases upon recursion becomes less and less as
d~+ ec. See Table I. This rate, a measure of the proba-
bility that a particle that initially leaves a site will not re-
turn, goes to 1 as d becomes large and the particle, mov-
ing in a system of more and more complex connectivity,
has lower probability of returning. From Fig. 4 we see
that as s decreases, V saturates at m(s) related to s as
suggested by the distance-time relation, Eq. (6) or (7); i.e.,
saturation occurs where the system is viewed on a length
scale beyond that accessible on time scale s '. Thus the
qualitative behavior of the recursion relations contain

l.o

IO

10

0
0-8

=0

IO
10 20

FIG. 3. The LSR procedure uses the equations for 1—3 sites
in the equation for A —C to describe an object of reduced con-
ductivity. In d =3 the "gaskets" are tetrahedra.

FIG. 4. Evolution of V and 8 for d =2, d=l. 585,
Values of V and 8' from the recursion relations, Eqs. (13) and
(14), vs m for s =10,10,10,0. Compare the qualitative
behavior to that in Fig. 1.
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FIG. 7. Connectivity for d.

with 2 bonds each among themselves with 2(d —2) bonds
each and to the first-neighbor sites with 2 bonds each. See
Fig. 7. Then in place of (A3) and (A4) we have

(s+ U)R, =(d —1)WRI+2WR,

atld fol' Pg

st ——1 —VPg + W(R I +R I ),

+ W(dPg+PII+ . +Pz),

(s+ U)R2=(d —1)WRI+2(d —2)WR2

+(d —1)(PII+ +Pz),

(A6) where Rl refer to the set of near-neighbor sites in the
"tetrahedron" not completely shown, Fig. 6. Equations
(A6), (A7), and (AS) lead to the recursion relations in the
text.

~Y. Gefen, A. Aharony, B. B. Mandelbrot, and S. Kirkpatrick,
Phys. Rev. Lett. 47, 1771 (1981).

2S. Alexander and R. Orbach, J. Phys. (Paris) Lett. 43, L625
(1982).

30. Ben-Avraham and S. Havlin, j.Phys. A 15, L691 (1982).
4C. E. T. Concalves da Silva and B. Koiller, Solid State Com-

mun. 40, 215 (1981).

5A. M. S. Tremblay and B.W. Southern (unpublished).
6R. A. Guyer (unpublished).
7Y. Gefen, A. Aharony, and S. Alexander, Phys. Rev. Lett. 50,

77 (1983).
sB. B. Mandelbrot, Fractal Geometry of Xatttre (Freemall, San

Francisco, 1982).


