PHYSICAL REVIEW A

VOLUME 29, NUMBER 5

MAY 1984

Diffusion on the Sierpiriski gaskets: A random walker on a fractally structured object
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The motion of a random walker on a Sierpiriski gasket is studied in d dimensions using a
renormalization-group approach. The relation §=d —2+w is established from the behavior of re-
cursion relations and is verified in numerical studies (here d is the fractal dimension, w describes
coupling-constant scaling, and § describes the distance-time relationship of a random walk). When
this relation is combined with 7=d —2+Z, an Einstein relation is derived.

I. INTRODUCTION

Because of the mapping of a variety of physical prob-
lems onto percolation models, the structure of percolation
clusters is a subject of considerable interest. Investigation
of the dynamics of these systems involves the question of
particle motion on a cluster, diffusive motion, motion
driven by a field, etc. At or near the percolation threshold
the clusters are believed to be structured like objects that
are properly characterized as fractals;! e.g., the Sierpiriski
gasket. Thus the investigation of particle motion at
threshold involves the assessment of the behavior of a ran-
dom walker, of a current, etc. on a fractally structured ob-
ject. An appreciation for these points has led to the
development of a number of results for this and related
problems. Gefen et al.! and Alexander and Orbach? have
emphasized scaling relationships among the parameters
that characterize the structure, the conductivity, etc. Ben-
Avraham and Havlin® have explored these relationships
with theoretical and numerical studies.

The purpose of this paper is to describe the motion of a
random walker on the Sierpiniski gaskets using a
renormalization-group treatment of the appropriate dif-
fusion equations.*~® In Sec. II the length-scale renormali-
zation (LSR) procedure for handling the diffusion equa-
tion is reviewed and extended to describe the Sierpinski
gaskets. From the form of the resulting recursion rela-
tions the relationship §=d —2+uw is established and the
Einstein relation is derived. In Sec. III the results of nu-
merical implementation of the recursion relations ap-
propriate to the Sierpifiski gaskets in d dimensions are
discussed. The relationship §=d —2+w is confirmed and
the physical content of the procedure is emphasized.

II. LSR AND §=d —2+w

In this section the behavior of the single-site probability
is examined using the LSR procedure and the relationship
6=d —2+4w established. We begin by recalling some of
the properties of the LSR procedure when applied to a
simple one-dimensional (1d).®

Consider the motion of a particle on a uniform 1d lat-
tice. This motion is described by

B P ()= — VP (O + WPy A(D+Pu (D], (1)

ot
where P,(¢) is the conditional probability that the particle
is at site n at time ¢ given that it was at site O at
t=0, P,(0)=34,0. Vand W are the rates at which a par-
ticle leaves a site and comes onto a site (from the near-
neighbor sites), respectively, usually ¥ =2W. Upon La-
place transforming Eq. (1) we have

Sﬁn=8n,0—Vﬁn+W(ﬁn+1+ﬁn_1). (2)
The LSR procedure employs the odd equations, those for

n=...,—3,—1,+1,+43,... in the even equations to

find a new set of equations for ﬁo,ﬁz, ... that have the
same form as Eq. (2) with renormalized coupling con-
stants given by
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FIG. 1. Evolution of ¥V and W for a homogeneous lattice 1d.
Values of ¥ and W from the recursion relations, Egs. (3), vs m,
the number of iterations, for s =1073,10~°.
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W'=WDW ,
(3)
=V =20,

where D =(s +¥V)~!

The new system of equations, when relabeled, is the
same as the old so that further changes in length scale
corresponds to iteration of Eq. (3). In Fig. 1 we show the
behavior of ¥ and W given by Egs. (3) upon carrying
through the iteration starting at W=1, V=2W, and
s=107%10"% Note that initially V'~W'~W/2,
V'~W"'~W/4. ... until at n>m(s), W0 and
y"_,pl=) At this point the system is being examined

on time scale t~s~! and on length scale 2"b and is
described by
sB,=8,,— V=P, . @

Thus Py(s)=(s + ¥V *))~!. The value of V' is estimat-
ed by arguing that on time scale z~s~! a particle can
move a distance of order

(r¥)s=W . (5)

Thus for n >m (s), where 2"Sb~V (r?)=V'W/S (here
b is the site-to-site separation), there should be no motion

between sites W—0 and VO tD=pW_phr+h_pn
We have (use b =1, W=1)
pie)~ ~Vs (6)

2m(s) -

and Py(s)~s 12 as s —0.

The two essential ingredients of this analysis are (1)
m (s) given by the distance-time relation (r?)s~W and
(2) the factor 5(V*+V~~ V") that measures the change
in the effective rate of leavmg a site that accompanies a
change of length scale. This effective rate accounts for
the reduction in the rate of leaving a site that occurs when
a particle returns from neighboring sites.

Let us combine these ingredients to obtain an estimate
of Py(s) on a fractal lattice of dimension d. We take the
distance-time relation to be

(r?) [W 2/(2438)

e i ™

and the coupling-constant scaling to initially be

V(n+1) kV

(To_ make contact with other work note 5=0,
24-8=H™Y). Then as s—0
1
Pyl(s)m— e , ®)

(o0) m(s) 1
pl=) T (4

ym (s)w

where w =InA/In(0.5) and V72=5~1/2+8=om®) from
Eq. (7) (again b =1, W=1). Thus

PO(S)':S —w/(2+8) . 9)

We compare this estimate of Py(s) to one made by taking

1 1
Py(t)~ ~ = 10
o= Gy = a7 (10)
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[here Q(¢) is the volume a particle can visit on time scale
7] and using {r2(¢))~t>/?*9 to find

Po(t)~t“;/‘2+s’
or

Py(s) ~s'—9/2+8) (11)
Thus from Egs. (9) and (11)

§=d—2+w. (12)

This equation involves 8, characterizing the distance-time
relation, d, the fractal dimension, and w a measure of
coupling-constant scaling. It is similar to the relations
t=d —2+¢ of Gefen et al. which involves £ (the resis-
tance scales as LY and 7 (the conductivity scales as L~ B,
Below we make application of the LSR procedure to the
Sierpiniski gaskets, find w from the structure of the recur-
sion relations, and $ from thelr numerical implementa-
tion, and establish d— 24+w= 8 w= § The relations
d—24+w=>5 and d — 2+§ =¢ can be combined to yield
the Einstein relation 7 —6=d —d.”

III. APPLICATION TO THE SIERPINSKI GASKETS

In this section we study the behavior of Py(s) on a
Sierpinski gasket in d dimensions. We use the phrase
Sierpinski gasket in d dimensions to denote the generali-
zation to d dimensions of the 2d gasket shown in Fig. 2.
To construct the d-dimensional gasket we employ the fol-
lowing procedure: (1) Near the initial site O construct d
sites so that there are d + 1 sites in total. (2) Form bonds
between the d +1 sites [d(d +1)/2 bonds are required].
At the midpoint of each bond construct a new site [there
are d +1 original sites and d(d +1)/2 new sites].
Form bonds among the d(d+1)/2 new sites
([d(d +1)/2][d(d +1)+1/2]/2 new bonds are re-
quired). These bonds divide the space into d +1 units
each of which contains d +1 bonds and is connected to
each other unit at only one site. (5) Within each unit car-
ry out steps (3)—(5) repeatedly. See Fig. 2 and the book
by Mandelbrot.> The gaskets so formed have fractal di-
mension d =In(d +1)/In2 (see Table I).

To carry out the LSR procedure the equations for ﬁ,, (s)
are written down (the connectivity is easily assessed from
Fig. 2 or as in the Appendix for d dimensions). Then,
certain of the sites are removed from the equations of

/\

FIG. 2. Sierpiriski gasket: d =2, d=1.585,.... The gasket
is formed by cutting out material, constructing the »n +1 unit
from the nth unit, by the rules in the Appendix, etc.
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TABLE 1. Scaling parameters as a function of d; (a) spatial dimension, (b) fractal dimension
d=In(d +1)/In2, (c) w=In[(d +3)/(d +1)]/1n%, (d) k from analysis of Py(s) vs s as in Fig. 5, (e)
8=(w/k)—2 using w from (c) and k from (d), (f) §=d —2+w using d from (b) and w from (c).

(a) (b) (©) (@ ( ®

d d w k 5=(w/k)—2 S=d—2+w
2 1.584963 0.736965 0.318 0.318 0.322
3 2.0 0.584 962 0.229 0.555 0.585
4 2321928 0.485426 0.173 0.806 0.807

10 3.459431 0.241 008 0.0655 1.679 1.700

motion (see Fig. 3 for illustration) and the remaining
equations cast in the same form as the original equations
with the new set of coupling constants given by

V=V —-2dW} (13)
and

W'=[142(d —1) DW]W1 , (14)
where

Wi=Wow ,

D l=s+V-2d-2)W,
and
Q '=s+V—(d—1)W(14+2DW) .

These equations are derived in the Appendix. Note that
W1, D, and Q are auxiliary functions; V,W determine
V,Ww'.

The results of iteration of Eqgs. (13) and (14) are shown
in Figs. 4 and 5. Let us begin the discussion of these re-
sults by examining the behavior of ¥ and W upon itera-
tion. This behavior is qualitatively like that shown above
for a 1d homogeneous lattice; ¥ and W decrease by a con-
stant factor as the renormalization proceeds until W—0

FIG. 3. The LSR procedure uses the equations for 1—3 sites
in the equation for 4—C to describe an object of reduced con-
ductivity. In d =3 the “gaskets” are tetrahedra.

and V saturates. Upon putting s =0, the recursion rela-
tions reduce to V*+tV=2pw+D apq Wit
=[(d+1)/(d +3)]W™. Thus in Egs. (8 and (9) the
coupling-constant scaling is A=(d +1)/(d +3) and

_ In[(d +1)/(d +3)]
In(0.5)

(15)

b

in agreement with Gefen et al. for £. The rate at which
V' decreases upon recursion becomes less and less as
d—+ . See Table I. This rate, a measure of the proba-
bility that a particle that initially leaves a site will not re-
turn, goes to 1 as d becomes large and the particle, mov-
ing in a system of more and more complex connectivity,
has lower probability of returning. From Fig. 4 we see
that as s decreases, V saturates at m(s) related to s as
suggested by the distance-time relation, Eq. (6) or (7); i.e.,
saturation occurs where the system is viewed on a length
scale beyond that accessible on time scale s —!. Thus the
qualitative behavior of the recursion relations contain
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FIG. 4. Evolution of ¥ and W for d =2, d=1.585, -+ - .
Values of ¥V and W from the recursion relations, Egs. (13) and
(14), vs m for s =10"%10"%,1078,0. Compare the qualitative
behavior to that in Fig. 1.



2754

100

pols)

k=0.0655 410
ol | I 1 =

1078 10”8 1074
FIG. 5. Py(s) vs 5. The single-site density Py(s) as a function
of s from Py(s)=(s +V'=)~1 V(=) js found from numerical
studies of the recursion relations. Values of k, Py(s)~s ¥, are
reported in Table I.

physical information. In Fig. 5 we show Py(s) calculated
from numerical analysis of the asymptotic form of the
equations of motion (Eq. (4), Py(s)=[s +V'*)(s)]"!) asa
function of s. From the asymptotic behavior of Py(s),
Py(s)~s ¥ for 1078 <5 <10™3, we find k and § reported
in Table I. Also shown in Table I is 8 from Eq. (12),
d=d—2+w, using w from Eq. (15). The excellent agree-
ment between & from analysis of Py(s) via the recursion
relations and & from Eq. (12) constitutes a demonstration
of the usefulness of the §,d,w relation in a new context; d,
the fractal dimension, § from the distance-time relation,
and w from the LSR recursion relation obey Eq. (12). In
addition the LSR procedure provides recursion relations
having qualitative behavior that embodies clear evidence
of important features of the physical process being stud-
ied.

A random walker on a percolation cluster near thresh-
old sees events on three time scales. At short times, large
s, he sees the local structure of the cluster [the contents of
the basic unit from which the cluster (gasket) is built].
An intermediate time scales he sees the factal structure of
the object on which he moves. At long time scales he sees
connected, fractally structured objects. In this paper we
have emphasized the intermediate process, motion on a
fractal. Suppose the size of the fractal is such that on the
time scale of interest the renormalization has not saturat-
ed. The LSR procedure transverses the fractal; the final
set of coupling constants can be usefully employed to
describe the bulk properties of the material.
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APPENDIX: DERIVATION OF THE RECURRENCE
RELATIONS

We do this for d =3 and argue for the general form for
these relations from the results shown here. See Fig. 6.
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FIG. 6. Connectivity for d =3 and d=2. Sites 1—3 are
first-neighbor sites of site A4; sites 4—6 are second-neighbor sites
of site 4. See Fig. 7.

The equation of motion for ﬁA (s) reads [P,(t =0)=3§, 4;
sites A—D remain after the first step of the LSR pro-
cedure in which sites 1—6 are removed]

SPy=1—VP,+W(P,+P,+P3+P| +Py+P}), (Al

sites 1—3 are the near neighbors of A in the tetrahedron
shown, and sites 1'—3’ are the near neighbors of A in the
tetrahedron not completely shown. The equations for
P,P,,P;. .. are, like the equation for P,,

SP1=-—'UP1+W(PA+PB+P1+P2+P4+P6), (A2)

coupled to A—D, to themselves, and to sites that are
second neighbors of site 4. Sites 1—3 act in concert as a
first-neighbor site and sites 4—6 act in concert as a
second-neighbor site. We have

(S+U)R1=W(3PA+PB+PC'+PD+2R1+2R2), (A3)
(s +UR,=W[2(Pg+Pc+Pp)+2R;+2R;], (A4)
where
3
Ri=3 P
i=1
and
6
R2= 2 P,' .
i=4
Thus

sPy=1—(V —6WQW)P,
+WQW (1+4DW)(Pg +Pc+Pp +Pg +Pc + Pp)
(AS5)

from which the recursion relations follow. In d dimen-
sions site A4 is coupled to d near-neighbor sites that act in
concert. The d near-neighbor sites are coupled by 1 bond
to B - - - Z, among themselves with d — 1 bonds each and
to d(d —1)/2 second-neighbor sites with d —1 bonds
each. The second-neighbor sites in turn coupleto B -+ - Z
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FIG. 7. Connectivity for d.

with 2 bonds each among themselves with 2(d —2) bonds
each and to the first-neighbor sites with 2 bonds each. See
Fig. 7. Then in place of (A3) and (A4) we have

+W(dPA+PB+"'+Pz), (A6)
(s +U)R,=(d —1)WR{+2(d —2)WR,
+(d—~1)(PB++Pz), (A7)

and for P,

where R refer to the set of near-neighbor sites in the
“tetrahedron” not completely shown, Fig. 6. Equations
(A6), (A7), and (A8) lead to the recursion relations in the
text.

Y. Gefen, A. Aharony, B. B. Mandelbrot, and S. Kirkpatrick,
Phys. Rev. Lett. 47, 1771 (1981).

28, Alexander and R. Orbach, J. Phys. (Paris) Lett. 43, 1625
(1982).

3D. Ben-Avraham and S. Havlin, J. Phys. A 15, L691 (1982).

4C. E. T. Concalves da Silva and B. Koiller, Solid State Com-
mun. 40, 215 (1981).

5A. M. S. Tremblay and B. W. Southern (unpublished).

6R. A. Guyer (unpublished).

7Y. Gefen, A. Aharony, and S. Alexander, Phys. Rev. Lett. 50,
77 (1983).

8B. B. Mandelbrot, Fractal Geometry of Nature (Freeman, San
Francisco, 1982).



