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Generic behavior of coupled oscillators
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There exist a number of interesting physical problems, such as the ac-driven, dc SQUID (super-

conducting quantum interference device) or convection in conducting fluids, which can be described

by the dynamics of driven coupled oscillators. In order to study their behavior as a function of cou-

pling strength and nonlinearity, we have considered the dynamics of two coupled maps belonging to
the same universality class as the oscillators. We have analytically determined some of the parame-
ter values for which they exhibit locked states as well as bifurcations into aperiodic behavior.
Furthermore, we found a set of codimension-two bifurcations into quasiperiodic orbits near which
the rotation number becomes vanishingly small. These bifurcations are characterized by the ex-
istence of periodic regimes interrupted by episodes of phase slippage. Finally, we show the effect of
thermal fluctuations on the bifurcation diagram by computing the Lyapunov exponent in the pres-
ence of external and parametric noise.

I. INTRODUCTION

There exist a number of interesting physical problems,
such as ac-driven dc SQUIDS (superconducting quantum
interference devices), or convection in conducting fluids,
which can be described by the dynamics of driven coupled
oscillators. In particular, recent experiments on the mag-
netohydrodynamics of mercury in small-aspect-ratio Be-
nard cells show the existence of quasiperiodic motions in
addition to the now familiar repertoire of periodic and
chaotic phenomena. Since small-aspect-ratio experiments
are essentially probing the behavior of systems with very
few degrees of freedom, the appearance of irrationally re-
lated frequencies indicates the existence of locking-
unlocking transitions in simple nonlinear oscillators. This
problem is also relevant to neurodynamics and chemical
reactions, where it becomes important to understand the
global dynamics of coupled systems as a function of both
nonlinearity and coupling strength.

To address some of these issues, we have considered the
dynamics of two coupled maps belonging to the same
universality class as period-doubling oscillators. We have
analytically determined some of the parameter values for
which they exhibit locked states as well as their bifurca-
tions into aperiodic behavior. Furthermore, we found a
set of codimension-two bifurcations into quasiperiodic or-
bits near which the rotation number becomes vanishingly
small. These bifurcations are characterized by the ex-
istence of periodic regimes interrupted by episodes of
phase slippage. We also studied the effects of thermal
fluctuations on the transition to chaos by computing the
Lyapunov exponent in the presence of noise. We
discovered that the addition of external or parametric
noise leads to a blurring of the fine-scale locking-
unlocking bifurcation structure found in the absence of

noise. Finally, the universality of our results was tested by
examining other types of coupled maps exhibiting period-
doubling bifurcations.

II. COUPLED MAPS

In this section we first discuss techniques that can be
used to characterize orbits of discrete maps as periodic,
quasiperiodic, or chaotic. These methods are then applied
to investigate the effect of coupling two period-doubling
maps.

Consider the general vector mapping

x„+~——F(x„), n =0, 1, . . . (2. l)

where
~

D' '~
~

is the norm of the derivative matrix

DJ (x)= r)Fg ( x )

Bxj
(2.3)

This exponent measures how rapidly two nearby orbits in
an attracting region converge or diverge. It can be
evaluated by noting that D' (x )=oD ' (F(xc))D(xo);
so if xo, x &, x2, . . . are successive iterates of the map, then

D' '(xo)=D(x~ i) . D(Xi)D(xo) . (2.4)

In practice, A, is computed by initially iterating the map
many times to eliminate transient behavior and then using

and its Nth iterate F ' '( x )—:F ' "(F(x ) ) with
F"'(x )

—=F( x ). The asymptotic behavior of a series of
iterates of the map can be characterized by the largest
Lyapunov exponent which, for an initial point xo in an at-
tracting region, is defined to be

(2.2)
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x„+i
——rx„(1—x„)+e(y„—x„),

y»+i =ry. (1 —y. )+e(x.—y. ),
(2.Sa)

(2.5b)

where the nonlinearity parameter r is such that 0& r &4
and the coupling constant e satisfies 0(e& l. This map
displays a wide range of behavior as the parameters r and

are varied including periodic, quasiperiodic, and chaotic
motion. Note that the derivative matrix D of Eq. (2.S) at
the point (x,y) is given by

a large number X of successive points to compute the
derivative matrix as indicated in Eq. (2.4). Finally, the
quantity ln[~~D' '(xo)~~]/E is used as an approximate
value of the Lyapunov exponent for this attracting re-
gion.

This exponent provides a way to distinguish among
periodic, quasiperiodic, and chaotic motion. Specifically,
if xo is part of a stable periodic orbit of length E, then the
norm of the derivative matrix, ~jD'x'(x)~~, will be less
than one for every x in the E cycle. Thus the exponent
will be negative and characterize the rate at which small
perturbations from the fixed cycle decay. A zero value for
the exponent indicates quasiperiodic behavior in which
nearby paths maintain their distance on the average. And
finally, when A. becomes positive, nearby points in the at-
tracting region diverge from each other giving chaotic
motion. In general the exponent will depend on the initial
point used in the iteration because there may be several
stable attractors each with a separate basin of attraction.

%'e now use these techniques to examine the effect of
coupling two nonlinear maps that display period doubling.
In particular, consider the two-dimensional mapping

pled maps have multiple basins of attraction for some pa-
rameter values.

For nonzero values of the coupling constant, instead of
simple period doubling, successive periods can be separat-
ed by regions of quasiperiodic motion in which the fre-
quencies of the two oscillators are incommensurate.
These transition regions also contain various locked orbits
of high period, including asymmetric periods in which x
andy cycle over distinct sets of values.

A more detailed picture of this map can be obtained by
investigating the behavior along a cross section of the
phase diagram. Specifically, we chose the value @=0.06
which gives typical results for this map. A bifurcation di-
agram for a particular choice of initial conditions
(x =0.2,y =0.4) is given in Fig. 2. This figure was ob-
tained by starting with r=3 and incrementing in small
steps up to r=4. At each new r value the final (x,y)
iterate of the previous value was used as the initial point.
This corresponds to continuously changing the system's
parameters without restoring the original state of the sys-
tem. The behavior of the Lyapunov exponent for two dif-
ferent initial conditions is shown in Fig. 3 for r in the
range 3.0—3.7 and m=0.06. The value of the second
Lyapunov exponent for these parameters is so close to
that of the largest exponent that they are not distinguish-

D(x,y) =
r —e—2ry

(2.6)

1+2(1+@+a )' & r & 1+6 =3.449 (2.7)

with e& (3'~ —1)/2=0. 37. Similarly, the out-of-phase
case is stable for

3 —2e&r &1+(6—10@+4@)'i (2.8)

Note that these regions overlap, indicating that the cou-

Figure 1 shows some of the stable behaviors for various
r and e values. Along the horizontal axis, where @=0,one
sees the familiar period-doubling sequence of the one-
dimensional logistic map. The boundaries of the stable re-
gions for the low periods have been computed analytically
by determining where the norm of the corresponding
derivative matrix equals one. The quasiperiodic and
chaotic regions were determined by measuring the
Lyapunov exponent. In-phase periods mean x =y for the
fixed cycle. Out-of-phase period 2 is the case for which
(a, b) becomes (b, a) under a single iteration of the map
and returns to (a,b) after two iterations with a+b Simi-.
larly, the out-of-phase period 4 has (a,c)~(b,d)~(c,a)
~(d, b)~(a, c) under successive iterations of the map
with a~c and b&d.

In particular, the norm of the derivative matrix shows
that there is a stable fixed point for the region in which
r & 3—2e. The in-phase 2 cycle is stable for

0 '

FIG. 1. Some of the parameter domains where stable attrac-
tors exist for the coupled maps as a function of nonlinearity pa-
rameter r and coupling e. Regions are A, period I; B, in-phase,
period 2; C, out-of-phase, period 2; D, in-phase, period 4; E,
out-of-phase, period 4; and F, period 3. Dashed region is quasi-
periodic motion and the dotted one corresponds to chaotic
motion.
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able on the scale of the plot. Note that for some values of
the parameters the two attracting regions are not of the
same type. For instance, when r =3.38 and @=0.06 there
is both a periodic and a quasiperiodic attractor. Sudden
transitions between basins of attraction can be seen in the
plot of the exponent. We should note that the size of an
attracting region varies with the parameter values and be-
comes very small when near the stability boundary.

In addition to the periodic and chaotic behavior seen in
the uncoupled (e=O) case, the coupled map displays
quasiperiodic motion. In particular, the plot of the ex-
ponent in Fig. 3(b) shows that the transition from out-of-
phase period 2 to 4 is separated by a quasiperiodic region
in which the exponent is zero, as well as a chaotic region
with positive exponent. The detailed transition out of the
quasiperiodic region involves a complicated series of
periodic orbits as shown in Fig. 4 which shows the
behavior of the exponent in the transition region.

Many successive frequency lockings with high periods
appear before the period-4 orbits. Plots of the iterates of
the map and their power spectra for a locked periodic or-
bit and nearby quasiperiodic motion are given in Figs. 5
and 6, respectively. Note that the iterates of the map in
this region actually form two groups of points located
symmetrically around the diagonal x =y. For clarity,
only one of these groups is actually shown in the figure.
The fundamental frequency in Fig. 5 is 1.111X10 cor-
responding to a period-90 orbit. The appearance of addi-
tional frequencies, characteristic of quasiperiodic
behavior, can be seen in the power spectrum of Fig. 6(b).
Specifically, a set of fundamental frequencies is
1.087&10, 0.2554, and 0.5. It should also be pointed
out that the various ratios of these three frequencies
change continuously when r is changed slightly from the

Q. 38

-1.00
3.0 3.7

0.38- ——

(b)

value of 3.39 used in the figure. By comparison, Fig. 7
shows the iterates and the power spectrum of a particular
chaotic orbit. In this case the spectrum has a broadband
component and the iterates form four similar groups of
points, only one of which is shown in the figure.

This behavior is characteristic of a codimension-two bi-
furcation which displays different transitions in different
directions of parameter space. In particular, when

0
-%AlC

3.0 3.7

FIG. 2. Bifurcation diagram for the coupled maps with r
ranging from 3 to 4 and @=0.06. For each value of r, we used
the final point of the previous r value and 1500 iterates are plot-
ted. This shows the period-doubling sequence as well as quasi-
periodic and chaotic regions.

FIG. 3. Lyapunov exponent for the coupled maps as a func-
tion of r ranging from 3.0 to 3.7 and with @=0.06. Each point
was obtained by iterating many times from the initial condition
to eliminate transient behavior and then averaging over another
50000 iterations. Initial conditions: (a) x=0.2, y=0.25, with
200 r values; {b)x =0.2, y=0.4, with 1000 r values.
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FIG. 4. Detailed structure of the Lyapunov exponent for the
transition from quasiperiodic behavior to a 4 cycle. This is an
expanded version of Fig. 3(b) with r varying between 3.388 and
3.403. Plot consists of 501 r values each of which was obtained
by iterating 100000 times from the initial condition and then
averaging over another 50000 iterations.

Iog P

T —T~ rx. n
—2 (2.9)

r = 1+6' and &=0, an increase in r results in the period
2 to period 4 bifurcation of the uncoupled map. An in-
crease in e, on the other hand, produces quasiperiodic
motion. This behavior is also seen for the higher period
transitions. A further increase in the coupling strength
can lead to chaotic motion. Alternatively, an increase in
coupling strength reduces the nonlinearity value for the
onset of chaos.

For the particular case of the transition into chaos
through locking-unlocking transitions, Kaneko has shown
that the parameter values at which the lockin. gs take place
obey the same scaling relations as those found in circle
maps, i.e.,

1
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FIG. 5. Frequency locking during the quasiperiodic to 4 cycle
transition. for r=3.38932, @=0.06, and the initial point
x =0.2,y =0.4. (a) Plot of the iterates of the map (x„,y„); (b)

power spectrum of the x„computed by first iterating the map
20000 times to eliminate transients and then using 8192 sam-
ples. The dc term has been removed from the spectrum.

for large n, where r„ is the value of the nonlinearity pa-
rameter at which ihe period 8n —!appears and r is the
limit of r„as n~oo.

Before concluding this section, we mention an interest-
ing phenomenon that is observed near the transition into
quasiperiodic behavior, It consists of phase-locked
periodic behavior for some time, interrupted by episodes
of phase slips between the entrained states. This leads to
time sequences consisting of periodic oscillations, inter-
rupted by kinks in the phase of the systems. This
behavior, which has been observed in some chemical oscil-
lators, becomes more irregular with increasing e, leading
to the fully unlocked regime described above.

III. THE EFFECT OF FLUCTUATIONS

In this section we investigate the behavior of the cou-
pled maps in the presence of thermal fluctuations or other
noise. As has been shown in the case of uncoupled non-
linear oscillators, the addition af external or parametric
fluctuations has a pronounced effect on the dynamics of
such systems. ' In particular, the presence of noise intro-
duces a gap in the bifurcation sequence of period-doubling
systems and renormalizes the threshold for the appearance
of chaotic behavior. It is therefore of interest to investi-
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FIG. 6. Quasiperiodic motion for r=3.39, a=0.06, and initial
point x =0.2,y =0.4. (a) Plot of the iterates of the map (x„,y„);
(b) power spectrum of the x„with the dc term removed.

FIG. 7. Chaotic motion for r=3.615, @=0.06, and initial
point x =0.2,y =0.4. (a) Plot of the iterates of the map (x„,y„);
(b) power spectrum of the x„with the dc term removed.

gate the effects of noise on the locking-unlocking behavior
of coupled oscillators.

The effect of noise was modeled by adding uniformly
distributed random numbers to the map of Eq. (2.5).
Specifically, we considered the map

(3.1b)

x„+~
——rx„( 1 —x„)+e(y„—x„)+o 5„"', (3.1a)

yn+1= ryn (1 yn ) +~(xn y. )+~5'"— —
where 5„'" and 6„' ' are random numbers uniformly distri-
buted in the interval [—1, 1] and o is the amplitude of the
noise. These fluctuations destroy the fine scale detail of
the transitions and the quasiperiodic regions. Further-
more, the r value at which the exponent first becomes pos-
itive shifts downward. Figure 8 shows the effect of a

x„+i
——r„'"x„(1 —x„)+e(y„—x„), (3.2a)

y„+i
——r„' 'y„( 1 —y„)+e(x„—y„),

where r„" '=r(l+cr5„" ') and again the 5„"' and 5„' ' are

(3.2b)

small amount of noise on the fine scale structure of the
Lyapunov exponent for the same parameter values used in
Fig. 4, namely, 3.388(r (3.403, @=0.06, and the initial
point (0.2,0.4).

An additional case occurs when the parameters of the
oscillators have small, random variations due, for in-
stance, to external noise. These so-called parametric fluc-
tuations can be simulated by modulating the values of the
nonlinearity parameters by uniform random numbers in a
small interval. This gives the following map:
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independent random numbers uniformly distributed in

[—1,1]. The effect of such parametric variations is.simi-
lar to that of simple additive noise in that the fine details
of the transition are lost.

IV. GENERALIZATIONS

The preceding discussion considered the effect of cou-
pling two identical maps. However, it is also of interest to
examine the case in which the nonlinearity parameters are
unequal, corresponding to the coupling of two different
oscillators. Specifically, we considered the map

x„+~ rx„(1—x„)+e(y„———x„),(1) (4.1a)

y„+,=r'"y„(1 y„)+E(x„y„—)—
(&) (2)with r &r . The general kind of behavior seen is simi-

lar to the previous case, that is, the coupling produces a
new quasiperiodic motion and can lead to chaos. This can
be seen in the bifurcation diagram of Fig. 9 which
displays the behavior of Eqs. (4.1) for r'"=3.1, r
and with 0&a&0.5.

Finally, the behavior discussed in the previous sections
is not limited to the particular form of the map given by
Eq. (2.5). For instance, very similar behavior was seen for
the coupled system

(4.1b)

x„+,=r sin(mx„)+e(y„—x„),
y„+,=r sm(~y„) +e(x„—y„)

(4.2a)

(4.2b)

with r, x, and y in the interval [0,1]. This suggests that

FIG. 8. Effect of additive noise on the fine scale structure of
the Lyapunov exponent for the same parameter values as used in

Fig. 4. Here the noise amplitude is cr=0.00005. Plot consists
of 501 r values each of which was obtained by iterating 100000
times from the initial condition and then averaging over another
50 000 iterations.

FIG. 9. Bifurcation diagram for the map of Eqs. (4.1) with
( ) 3 1 (2). , r =2.4, and 0 & e & 0.5. For each value of e, the map

was iterated 500 times from the initial point x =0.4,y =0.2 to
eliminate transients, and the next 500 iterates were plotted.

the qualitative features of the behavior of Eq. (2.5) are
universal and will be seen in any map with a quadratic
maximum. Furthermore, other forms of coupling, such as
using ey and ex instead of e(y —x) and e(x —y), respec-
tively, in Eq. (2.5), also produce the behavior seen here.

V. CONCLUSION

he?.ave seen some general features of coupled maps
t at individually display period-doubling bifurcation cas-
cades into chaos. A new kind of behavior that is not seen
in the uncoupled case is quasiperiodic motion with corn-
plicated transitions which include period lockings. These
transitions are smoothed by additive or parametric noise.
The various types of behavior can be distinguished experi-
rnentally in the power spectra. In particular, new peaks
that come in halfway between old ones as parameters are
varied indicate period doubling. Quasiperiodic motion is
characterized by groups of irrationally related frequencies
that shift continuously with respect to each other for
small changes in the parameters. Finally, chaotic motion
has a broadband spectrum, which in many cases a1so con-
tains sharp superimposed peaks.

Finally we should note that the connection of this dis-
cussion to experimental results requires a careful con-
sideration of hysteresis effects. In actual experiments the
system's parameters are often adjusted continuously
without restoring the system to the same initial conditions
for each new parameter value. Thus transient behavior
can be important in relation to how fast the parameters
are varied during an experiment. Hysteresis will be espe-
cially important when the convergence of the system to
the attracting region is slow, i.e., when both exponents are
near zero, which is the case for the regions of quasiperiod-
ic motion displayed by the coupled maps. To investigate
these problems, we have computed the asymptotic
behavior of the coupled maps as parameters are varied by
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using the final point after a given number of iterations
with a particular parameter value as the initial point for
the next value.

We conclude by mentioning that the effects we have
discussed are hkely to be encountered in simulations of the
actual differential equations describing coupled oscillators.
In particular, our own experience with the equations
describing an ac-driven, dc SQUID showed that, in the
period-doubling regime, the phase diagrams obtained by
numerical integration of the coupled equations are in

qualitative agreement with those of the coupled maps. A
better test, of course, would be provided by actual experi-
ments on the real devices.
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