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The pair-correlation function g (r) of the Kr-type model fluid with only pair interactions was cal-
culated using the Rosenfeld-Ashcroft modification of the hypernetted-chain (HNC) equation which
includes bridge diagrams, and gave results in excellent agreement with Monte Carlo g(r) data.
These bridge functions and the known pair potential were used to analyze the neutron-diffraction
structure-factor data of Teitsma and Egelstaff, to determine the effective strength of the three-body
potential as a function of the density assuming it to be of the Axilrod-Teller (AT) form. The
strength of the effective three-body contribution s =v/Vipeor, Where vy, is the theoretical value, de-
creases for higher densities, suggesting that the many-body terms (beyond the Axilrod-Teller form)
screen the AT interaction as the density increases. The results are very sensitive to the uncertainties
in the structure factor S (k) for small k if parameter optimization is used to determine the effective
pair potential. However, prediction of the compressibility using s=1 allows us to conclude that
Vineor 1S consistent with the experimental data for low densities, to within the uncertainties in the
presently available pair potentials and in the structure-factor data.
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I. INTRODUCTION

The study of rare-gas fluids' has proved to be very use-
ful both as a testing ground for theories of the fluid state
and in the theory of interatomic potentials. Many proper-
ties of dilute gases (e.g., virial-coefficient data, viscosity,
thermal conductivity and diffusion, spectroscopic and
scattering data) have been used in extracting a pair poten-
tial>3 which may be accepted with a high degree of confi-
dence. However, attempts to use the structure factor
S(k) for the determination of interatomic potentials®>
have been much less successful and open to considerable
doubt.® This is partly due to the approximate nature of
the usual theories of liquids based on the hypernetted-
chain (HNC) and Percus-Yevick (PY) type integral equa-
tions. Another practical difficulty arises from the fact
that S(k) values are experimentally available only for a
limited window of k values, while the integral-equations
formalism relies heavily on sensitive Fourier transforma-
tion techniques which require a full range of r or k
values. The lack of a reliable integral equation can be
overcome by resorting to machine simulation methods, as
has been done in the recent study of the structure factor
of Kr by Egelstaff and collaborators.””® However, their
methods still require the extension of the data before
Fourier techniques could be used.

The objective of the present paper is to use the
Rosenfeld-Ashcroft modification’ of the HNC equation,
viz., modified hypernetted chain (MHNC), to analyze the
experimental structure factor of Kr. The simple HNC
equation!® provides the pair-correlation function g(r) of a
fluid with pair interactions U(r), under the assumption
that the so-called bridge-diagram contributions B (r) are
zero. The Rosenfeld-Ashcroft modification may be
looked upon as a procedure for substituting the true B(r)
by an equivalent hard sphere B(r) using a self-
consistently determined hard-sphere interaction. The di-
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mensionless hard-sphere parameter 7 is self-consistently
determined by choosing the value which best satisfies the
compressibility sum rule. Thus the MHNC provides a
simple, accurate theory of the fluid state and, unlike
machine-simulation methods, yields g(r), S(k), and c (k)
for the full range of values of r and k. The method has
already been used by the present authors!! in a detailed
analysis of the experimental structure factor of liquid Al.
Both the experimental and theoretical problems are
presumed to be simpler in the case of a rare-gas fluid.
Since the pair potential for Kr is known with a high de-
gree of confidence, the present study can be directed to
the determination of the effective three-body potential
which is consistent with the experimental structure factor,
[S (k )]expt'

The present study also demonstrates that, although it is
true that the qualitative form of the structure factor is in-
sensitive to the form of the potential, any attempts to get
detailed agreement with the [.S (k)]ey,, while at the same
time demanding thermodynamic consistency, etc., re-
quires that the detailed form of the potential should be
correct. For example, the S (k) of the pair fluid calculat-
ed from the Aziz? potential is slightly but distinguishably
different from that of the pair potential of Barker et al.3

In Sec. II we discuss the model Kr-pair fluid with only
pair interactions, and determine the parametrization of
the bridge contributions. In Sec. III we discuss the in-
clusion of the three-body term in the MHNC equation.
Finally, in Sec. IV we analyze the experimental data for
S (k) for Kr and determine the effective strength of the
three-body potential as a function of the density.

II. BRIDGE CORRECTIONS
IN THE Kr-PAIR FLUID

In this section we shall use the Kr-Kr pair potentials
(Fig. 1) of Aziz,? viz., Ua,,(r) and that of Barker, Watts,
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FIG. 1. Comparison of the Aziz (dashed curve) and the
BWLSL (solid curve) pair potentials for Kr, in units of
rm=7.5715687 a.u. Note that the Aziz potential is softer for
small r and shallower at the minimum, with the minimum at
r/rm=1.001323.

Lee, Schafer, and Lee® (BWLSL), viz., Ugwyst(7), within
the modified HNC scheme of Rosenfeld and Ashcroft,’ to
generate the Kr-pair fluid structure factor S(k). This
also determines the bridge contribution B(r) in terms of
the hard-sphere parameter 7, as a function of the density
p. We shall show that the MHNC recovers the Monte
Carlo results to well within the uncertainties of the simu-
lation data. We also demonstrate that the direct use of
the HNC equation to invert S (k) does not yield the initial
pair potential.

The failure of the HNC and similar equations is a
consequence of the approximations inherent in them. The
diagrammatic analysis of the pair-distribution function
g(r) leads to the form

g(r)=exp[—BU(r)+N(r)+B(r)], B=1/kgT,

where N (r) and B(r) are the so-called nodal and bridge-
diagram contributions. The HNC approximation con-
sists of neglecting the bridge terms. Then the Orstein-
Zernike equation can be coupled with (2.1) to give the set
of closed equations:

(2.1

g(r)=exp[-BU(r)+N ()], (2.2)
N(r)=h(r)—c(r),

h(r)=g(r)—1,
c(f’)=h(f’)—pfh([f’—f”[)c(f")df”, (2.3)
Stk)=1+p [ h(DIe' ¥ Tdr . (2.4)

The self-consistent solution of these equations for a
given U (r) constitutes the solution of the HNC equation
to obtain an S(k). On the other hand, given an S(k),
Eqgs. (2.2)—(2.4) can be used to determine U (k), thus de-
fining the HNC-inversion procedure. Now, the solution
of the HNC equation from a given U(r) does not usually
provide a good S(k) or g(r) which agrees with machine
simulations. Hence it is not surprising that HNC inver-
sion will not provide a good U (r), unless there is reason
to believe that the bridge terms are negligible.
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For a given hard-sphere parameter 7, the bridge contri-
bution can be written’ in terms of the Percus-Yevick

hard-sphere solution as
—cpy(r,n)—1—In[ —cpy(r,n)], r <o

Bpy(r,m)=
gPY("ﬂ])'— 1 _lngPY(r’Tl); r>o

(2.52)
with
n=mpa’/6 . (2.5b)
Now 7 is chosen such that the compressibility deter-
mined from the k—0 limit of S (k) agrees with that from
the pressure. Thus, in the low-density or weak-coupling
limit the MHNC reduces to the ordinary HNC equation
with 7—0. At higher densities, both the HNC and the
PY equations fail to satisfy the compressibility sum rule,
while the MHNC does so by the way it is formulated.
The values of 7 determined as a function of the density
p from the BWLSL potential Ugwys(7) and the Aziz po-
tential Uy,,;,(r) are shown in Fig. 2. For later use, we
have taken the same range of densities and the same tem-
perature (297 K) as those used in Ref. 8 for [S(k)]expt-
The densities, to be denoted by p, are expressed as the
number of atoms per unit of reduced volume,
V,,=4mr) /3, where r,, is arbitrarily chosen to be the
minimum of the BWLSL pair potential (7,,=7.5715687
a.u.). The value of 5 obtained is found to be linear in the
range of densities studied and is well represented by

7=0.0826p

for both U g,;,(7) and Ugwysy (7).

Since Eq. (2.5b) becomes 7 =p(0 /2r,,)* when written in
reduced units, the linearity of Eq. (2.6) implies that the
hard-sphere radius of o/r,, is constant (=0.871) for this
range of p.

As can be seen from Fig. 2, the values of 7 were essen-
tially the same for both BWLSL and Aziz potentials.
However the S(0) for the Uy, (r) and Ugwisi(r) were
slightly different, as will be shown later.

The hard-sphere radius o defined by Eq. (2.5b) and

0.2

(2.6)
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FIG. 2. Values of 7 obtained from the Rosenfeld-Ashcroft
method for the BWLSL pair potential and the Aziz potential
are shown as crosses and circles, respectively, together with the
best linear fit (solid line). The triangles indicate the values of 7
which fit [ S (k)]exp if the three-body term is neglected (dashed
line is an aid to the eye).
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modeled by Eq. (2.6) for the Kr fluid is a parametrization
of the bridge contributions to the potential of mean force.
This should be distinguished from the commonly used
modeling procedure in which a structure factor generated
from a hard-sphere potential is used to get a best fit to a
given S(k). The values of 1 (or o) obtained by these dif-
ferent procedures are likely to be similar but not identical
except for the hard-sphere fluid. Egelstaff et al.'> use
o/r, =0.88 as a compromise best fit to two sets of experi-
mental S(k). This compares with o /r,, =0.896 and 0.839
if the hard-sphere criterion is chosen to be Ugwygr(7)=0
and Upgwist(r)=(3/2)kgT, respectively. On the other
hand, the hard-sphere radius o/r,, obtained by the
Rosenfeld-Ashcroft procedure for the bridge terms used
here is about 0.87, for the range of densities studied here
[see Eq. (2.6)]. Although o is about the same in all these
methods, the MHNC procedure used here reproduces
S (k)expt to very high accuracy for the available range of k
values, whereas simple fitting of a hard-sphere potential
reproduces at best only the region about the first peak.

In Fig. 3 we show a typical comparison of the pair dis-
tribution g(r) obtained using the MHNC procedure and
the BWLSL potential with the Monte Carlo generated
g (r) at the same density, and from the same potential, due
to Egelstaff, Teitsma, and Wang.” Agreement with the
machine-simulation (MS) results is excellent when MHNC
is used; however, if the simple HNC equation is used
(9=0), the resulting g(r) has a higher peak than that of
the MS or MHNC generated g (7).

In Fig. 4 we have shown (dashed line) the pair potential
obtained by direct inversion, viz.,

BU(r)=N(r)—In[g(r)]

using the simple HNC (i.e., 7=0) equation. It is clear
that the original potential (solid line) is not reproduced. It
is accurately reproduced only when the bridge contribu-
tions are included. The inversion can also be done by fit-
ting a parametrized form of the potential. Thus if the

(2.7)
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FIG. 3. Comparison of pair fluid g () from MS and MHNC
(both using the BWLSL potential) (7=0.133) at p=1.616 atoms
per reduced volume. The chained line is the raw MS data of
Ref. 7; the solid line is the MS data corrected as in Ref. 7. The
dashed line is the g(7) from MHNC. The inset shows the first
peak in g(r): solid line—corrected MS data; crosses—MHNC;
squares—simple HNC with 7 =0.
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FIG. 4. Potentials obtained by inversion of the pair fluid g (r)
for Kr (see solid line in Fig. 3). Dashed line: result of direct
HNC inversion as in Eq. (2.7); squares: HNC inversion with
Aziz parametrization; crosses: MHNC inversion with Aziz
parametrization; solid line: BWLSL pair potential.

same g(r) is inverted with the Aziz parametrization of
the pair potential, using the HNC and MHNC equations,
the results obtained are shown as squares and crosses,
respectively, in Fig. 4. This confirms the parametrization
approach to inverting structure factors proposed in Ref.
11.

Having concluded that HNC (i.e., =0) or PY inver-
sion is unreliable due to the lack of bridge terms, we also
note that inversion of experimental data, [S(k)]exp is
open to another source of error. The results are very sen-
sitive to the manner in which the experimental data
[S (K)]expt> available in a limited range of k values, viz.,
Kmin <k <kpna, are extended to small-k and large-k
values. We have found that this must be done self-
consistently, using the MHNC equation, and not just the
HNC or PY equations, even at the lower densities of in-
terest, if consistent results are to be obtained. An impor-
tant conclusion from this discussion is that previous at-
tempts to derive effective pair potentials, etc., by HNC or
PY extension and inversion of structure-factor data could
contain significant errors (see also Ref. 6).

III. THREE-BODY TERMS AND THE EFFECTIVE
TWO-BODY POTENTIAL

In real Kr fluid the configurational energy E contains
contributions beyond the pair potential. It is generally as-
sumed that E can be written as

E=3 U2+ 3 U(1,23)+ ,

i<?2 1<2<3

(3.1

where the higher terms would depend on the coordinates
of four, five, or more atoms. The triple or three-body po-
tential U;(1,2,3) is the interaction energy of just three
krypton atoms and can be analyzed!® into a number of
terms

U;(1,2,3)—vi11(14-3c1ch¢3) /ririrs

34 4
+viafualeieacs)/rirsrs

455
+vinfilcicaes) /riryrs

+vaafon /rirr i+, (3.2)
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where v;; is the coefficient of the triple-dipole term and
€1,€2,C3,7,r3,r3 are the cosines and sides of the triangle
formed by the three atoms. f;,, etc., are various func-
tions of the angles. Of these contributions we assume, as
usual, that the triple-dipole term (Axilrod-Teller potential)
is the dominant contribution and write

Us(rirars)=v(143cic,63)/(rirars)? (3.3)

for the three-body potential. If v is treated as a disposable
parameter to be determined from experiment it will
represent an “effective” three-body coefficient.

The inclusion of the three-body potential in the HNC
or MHNC equation needs to be reviewed in view of the
strong interplay between the bridge function B(r), intro-
duced using a hard-sphere repulsive interaction, and the
effects of the three-body potential, which is also repulsive
for our case. A diagrammatic analysis of the HNC equa-
tion in the presence of three-body potentials'*!® has been
given by Rushbrooke and Silbert'* who show that the
triplet potentials are discarded together with what we
have called the bridge contributions, in constructing the
HNC approximation. The leading elementary graphs
which are discarded in HNC are shown in Fig. 5, where
Fig. 5(a) has the standard structure with two-field points,
while Fig. 5(b) contains a shaded triangle which arises
from the irreducible three-body potential (see Ref. 14 for
more details). In the pure pair fluid, diagrams like Fig.
5(a) are approximated by the Rosenfeld-Ashcroft pro-
cedure. When three-body terms are included, Fig. 5(a)
and similar higher-order terms are still evaluated using
the Rosenfeld-Ashcroft hard-sphere technique. However,
Fig. 5(b) is treated as a contribution to the simple two-
body potential to yield an effective potential U(r). Thus,

following Rushbrooke and Silbert,'*
Ur=Un—pB~" [ e(1,3)/(1,2,3)e(2,3)d3, (3.4)

where the coordinates of the third atom are integrated
out. In (3.4)

f(1’2y3)=e(1,2;3)_ 1
’—"—VB(1+3C102C3)(7'17'2"3)_3 s (3.5)
e(1,3)=exp[— U(1,3)8] . (3.6)

Because of the approximation in (3.5) the effective po-
tential depends linearly on v. Such an approximation is
justified when the triple potential is much weaker than
kpT. At 297 K, and for ry=r,=r;=r,,, where r,, is the
minimum in the pair potential, the approximation is valid.
But it fails for close-approach configurations which are in
any case given a lower weight through the e(1,3),e(2,3)
factors. A partial resummation of diagrams can be used

(a) (b)
FIG. 5. The leading elementary graphs discarded in the sim-
ple HNC approximation. Dashed line: e(1,2); solid line:
e(1,2)+1; shaded triangle: f(1,2,3). See Egs. (3.5) and (3.6).

to write a renormalized form of the effective potential
Wr=U(r—pB~" [ g(1,3)/(1,2,3)2(2,3)d3. (3.7

However, for simplicity we have used the simpler form
(3.4) together with the linearization approximation of
(3.5). These simplifications are valid for p<1 and prob-
ably reasonable for all the densities studied here.

The inclusion of the three-body term to generate an ef-
fective pair potential does not change the relationship be-
tween the compressibility and the k—0 limit of S(k).
However, the compressibility derived directly from the
pressure rquires the evaluation of

2
P=ka—% [ r(1,2)U(1,2)2(1,2,9)d 1d2

3 rid rd rid
_L 1 2 3
d1+d2+d3l

X U;(1,2,3)g(1,2,3,m)d 1d2d 3 (3.8)

and its density derivative.

In this expression g(1,2,7) is the pair correlation func-
tion calculated using the effective potential (3.4) for a
given bridge parameter 7. We also need the triplet func-
tion g(1,2,3,1). Hence, a determination of n by match-
ing the two compressibilities, as was done for the pure
pair potential, would be quite difficult. However, we note
that when the BWLSL potential was replaced by the Aziz
potential, the matching 1 was not affected (see Fig. 2).
Since the difference between the BWLSL and Aziz poten-
tials is of the same order as that between the pair potential
and the effective pair potential, a new determination of 7
would seem to be superfluous. Thus the values of 7 deter-
mined from the pair fluid for each density (Fig. 2) were
used in analyzing the experimental data.

IV. ANALYSIS OF THE EXPERIMENTAL
STRUCTURE FACTOR OF Kr

The static structure factor of Kr in the density range of
0.1<p < 1.7 atoms per unit volume (in reduced volume
units), taken from Ref. 8, were used in the present study.
The trial potential inclusive of the three-body term was
taken as

U(1,2)=U(1,2)+sp{Us) , (4.1)

where
(Us(r) = [ =PV =BV, (1,2,3)d3

and
U3(1,2,3) =wpeor( 1 +3c1c0¢3) /(ryrary)3 . 4.2)

Also U(1,2) is the pair potential of Barker et al. or of
Aziz, as the case may be. 5 =v/V, is the adjustable pa-
rameter representing the strength of the three-body term.
Viheor 1S the theoretical coefficient of the three-body poten-
tial given as 2.288 X 10™% ergcm® in Ref. 13. The third
atom averaged potential (Us(r)) and the effective pair
potential U(1,2) with s=1 and p=1 atom per unit re-
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duced volume, for the BWLSL potential, are shown in
Fig. 6.

The MHNC equation was now solved for each density
with the corresponding bridge function, defined by the 7
at that density given by Eq. (2.6). The value of s was op-
timized to give the best fit to the experimental data. (The
reader is referred to Ref. 11 for other details of the fitting
procedure.) The experimental data are claimed to be ac-
curate on the whole to better than 1%. The calculated
structure factor [S(k)].uc reproduced the experimental
data [S (k)]exp to high precision and was certainly within
the error bars of [ S(k)]ex. The higher quality of the ex-
perimental data for Kr produced fits which are an order
of magnitude better than those in Ref. 11. As discussed
in Ref. 11, the inversion is sensitive to data for the small-
k region and hence the percent change in s was also calcu-
lated with [S(0)]expy replaced by [S(0)]exp£0.5%. The
S(0) obtained from the fit agreed with the input [S(0)]exp
to five figures or better. The results obtained are given in
Table I and displayed in Fig. 7. The uncertainty of 0.5%
in [S(0)]expe Was chosen for convenience although the
compressibility determined from pressure-volume data
may be somewhat more accurate.

The effect of a slight (i.e., +0.5%) error in S(0),
displayed as “error bars” in Fig. 7, shows that the deter-
mination of § =v/Vy,r becomes very sensitive to the
quality of the data at lower densities. The value of s for
p=1.338 lies above the trend of the rest of the data. This
density corresponds to 5.15X 10*” atomsm™? in terms of
the units of Ref. 8. The S(Q) data for this density given
in Table I of Ref. 8 for Q=1.6 was taken to be 1.1395
(rather than 1.395) to be consistent with the data at the
two neighboring densities. Also, the quoted experimental
value [S(0)]exp for this density is seen to be somewhat
lower than the value predicted by the fit to the other data
points for [ $(0)]expt shown in Fig. 8. When this is taken
into account the apparent anomaly in the value of s (see
Fig. 7) for p=1.338 largely disappears.

In view of the extreme sensitivity of s =v/vy,.r deter-
mined by fitting to S (k) for a given [S(0)]cyp, We decid-
ed to reverse the procedure by setting s=1, i.e., V="4eop

2 1.0
&
1r 0.5 g
—
xm P«m
= X
(N "N
B =
o
or 0.0 Vv
" L . ; . 0.5
0.5 1.0 1.5 2.0 2.5 3.0

FIG. 6. Solid line: BWLSL pair potential; dashed line: third
atom averaged three-body potential { Us(r)). In the inset we
show the BWLSL potential and the effective pair potential
U(r), Eq. (4.1) for p=1 atom per reduced volume, s=1, and
T=297 K near r,,.
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TABLE 1. Analysis of experimental [S(k)]e for Kr to
determine the effective three-body strength parameter
S =V/Vineor Where vyeor is the theoretical value of 1618.64 a.u.
Sazz and spwisp are the values of s when the Aziz and the
BWLSL potentials are used as the pair potential. Also shown
with spwrse is the uncertainty in s when [S(0)]exy is replaced
by [S(0)]expt£0.5%. The temperature is 297 K. The density p
is the number of atoms per unit reduced volume V,, =4mr> /3,
7m=7.57157 a.u. of BWLSL. Thus the density 5=1.668 corre-

sponds to 6.19 X 10?7 atoms/m?, used in Ref. 8.

p Ui S(0) SBWLSL =V/Vtheor S Aziz
1.668 0.1382 1.419 0.5661+6% 0.8405
1.523 0.1262 1.490 0.7171 1.0280
1.388 0.1150 1.540 0.9658 1.3159
1.256 0.1041 1.594 0.8652+6% 1.2599
1.136 0.0942 1.601 0.8829 1.3258
1.028 0.0852 1.582 0.9649 1.4595
0.8514 0.0706 1.526 1.0461+11% 1.6518
0.6534 0.0542 1.425 1.1876 1.9846
0.5292 0.0439 1.348 1.2903 2.2783
0.4087 0.0339 1.269 1.4380+42% 2.7197
0.2153 0.0178 1.140 1.3159+200% 3.7516

and determining the compressibility ratio .S(0) which can
then be compared with [S(0)]e. These results are
shown in Table II. If we regard densities corresponding
to p> 1 as high densities, and p < 1, i.e., less than one par-
ticle per sphere of radius r,,, as low densities, then it is
clear that the theoretical three-body potential is in excel-
lent agreement with [S(0)]e,y, especially for the BWLSL
potential. The fluid from the Aziz potential inclusive of
the theoretical three-body potential tends to be more
compressible than the fluid from the BWLSL potential.
This is also the case with the pure Aziz pair potential, as
shown in Fig. 8. It may be conjectured that the higher
compressibility of the Aziz pair fluid is a result of the
softer inner wall of the Aziz potential. It should be noted
that the inner wall of the Aziz potential has been fitted to
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FIG. 7. Strength s =v/Vye, of the three-body contribution
as a function of p. Triangles are the points obtained by fitting
[S(k)]expt using MHNC and the BWLSL pair potential. The
circles were for the Aziz potential. The —-—- line is Eq. (4.4).
The extremities of the vertical dashed lines are obtained with
[S(k =0)]expt £0.5% used with the BWLSL potential (see Table
I). Similar uncertainties (not shown) are found with the Aziz
potential.
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FIG. 8. Values of S(k=0) for the Kr-pair fluid obtained
from the MHNC are shown as squares and circles, respectively,
for the BWLSL and Aziz potentials. The —-—- lines are to
guide the eye.) The values of experimental [S(k =0)].., used
in analyzing the experimental data are shown as crosses. The
dashed line is a smoothed fit to [ .S (k =0)Jexpt-

beam data, and also viscosity and thermal conductivity
data up to 2000 K. This corresponds to nearly 10 times
the well depth (0.01 a.u.) of the pair potential. This ener-
gy corresponds to r/r,,~0.78 and hence the inner wall
for values of 7 /r,, smaller than, say, 0.8 may be felt to be
less accurately known.

The strength parameter is expected to be relatively in-
dependent of the density if many-body effects [contribu-
tions beyond those of Fig. 5(b), etc.] are negligible. Since
s is the only fitting parameter used, the effect of the n-
body terms with n > 3 is to replace the three-body term by
an effective three-body term

Wi=Us+pUs+p°Us+ -+ ,

where pU, is, for example, the four-body contribution
averaged over the distribution of the fourth particle, and
the terms similar to Fig. 5(b) but one order higher, togeth-
er with the other three-body terms of Eq. (3.2) which were
neglected. The series (4.3) might be approximately
summed, using a geometrical Padé form:

(4.3)

TABLE II. Comparison of the compressibility ratios given by
S(k =0) with the experimental [ .S(0)]cx,: When the theoretical
value (V=) Of the three-body potential is used. S(0)pwrsr,
S(0)a,i, are from the BWLSL and Aziz potentials, respectively.

P [S(0)]expt [S(0)]swrsL [S(0)]aziz
1.668 1.419 1.337 1.388
1.523 1.490 1.440 1.495
1.388 1.540 1.534 1.593
1.256 1.594 1.575 1.632
1.136 1.601 1.587 1.641
1.028 1.582 1.579 1.628
0.8514 1.526 1.529 1.568
0.6534 1.425 1.431 1.458
0.5292 1.348 1.354 1.374
0.4087 1.269 1.274 1.287
0.2153 1.140 1.141 1.147
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Ts=Us 11 —p(Ty/T3)+pXTs/T3)+ - ] .

This suggests that we write the observed strength pa-
rameter s in the form

s=s°/(1—p1),

where s and ¢ are to be determined from the observed
value of s.

The data of Table II strongly suggest that s° is unity.
That is, at least for the low-density gas, the three-body
term has the theoretical value, irrespective of whether the
Aziz potential or the BWLSL potential were used for the
pair effects. Also, the data of Tables I and II for 5>2
show that a density-dependent screening of the strength
parameter is in fact observed. If we discount the p <1
data in Table I but use the p> 1 data as the latter is sub-
ject to smaller errors, the many-body screening parameter
t in (4.4) is found to be approximately —0.2 for the
BWLSL potential. The negative sign is in keeping with
expectations and its magnitude implies that the higher-
order terms are less important than the three-body poten-
tial. However, with the Aziz potential we see from Table
I that the value of v/vy.,, does not go below unity even at
p=1.5 and hence the form (4.4) is not appropriate.

However, the data for higher densities is open to errors
from the linearization approximation of Eq. (3.5), use of
(3.4) rather than (3.7), as well as the use of 7 determined
from the pair potential U (r) rather than from a procedure
involving Eq. (3.8) which contains the effect of U;(1,2,3).
These approximations become increasingly invalid for
p>1. Also, the Axilrod-Teller form is merely a con-
venient but not necessarily valid representation in lieu of
the true three-body interaction valid at all ry,7,,rs, in-
cluding small values of the arguments.

The experimental data, viz., [ .S (k)] can be fitted en-
tirely using only the BWLSL pair potential Ugwygp (7)
and a suitable hard-sphere parameter n which mimics
both the bridge terms and the effect of the many-body
terms. The corresponding values of 7 (for s=0 at all den-
sities) are shown in Fig. 2. Although these % values repro-
duce [S(k)]expt very well, the compressibility sum rule is
not satisfied.

Finally, we note that in Hoheisel’s molecular dynamics
study'® of the effect of the Axilrod-Teller (AT) potential
on a Lennard-Jones liquid, he found that the apparent
three-body contribution decreased with density, for the
range of densities studied. This is in agreement with our
results, but in Ref. 16 the many-body screening will arise
merely from the higher-order iterations of two- and
three-body clusters and will not involve terms correspond-
ing to Uy, Us, etc. Hoheisel does not give any quantita-
tive results for the effective three-body term.

(4.4)

V. CONCLUSION

We conclude that the experimental structure data, viz.
[S(K)]expts can be used within the Rosenfeld-Ashcroft
modified hypernetted-chain equation to unravel the influ-
ence of many-body effects. These effects change the pair
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potential to an effective pair potential, reducing the well
depth by about a degree (1 K), lowering the compressibili-
ty, and contributing repulsively at all ». We have shown
that the determination of parametrized potentials can be
extremely sensitive to the compressibility [S(0)]eyp: used
in the fitting process. When this uncertainty is taken into
account the strength of the AT-type three-body potential
obtained from [S(k)]ex, is consistent with quantum
theoretical estimates of the AT interaction parameter.
The higher-order (many-body) terms provide an attractive

interaction which acts to screen the three-body contribu-
tion.
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