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Nondegenerate two-photon optical bistability in a Fabry-Perot cavity
filled with large-permanent-dipole molecules
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A semiclassical theoretical model is described under the plane-wave and mean-field approxima-
tions on the transmission characteristics of a system of two-level atoms with large permanent dipole
moments contained in a Fabry-Perot cavity and driven by two coherent two-photon resonant fields.
In the steady-state situation, the coupled field equations are solved by eliminating one of the field

variables to obtain the state equation. This state equation is numerically analyzed in detail, thus

providing the regions on two-dimensional maps corresponding to one, three, and five stationary
states of the system. The linear stability analysis is also carried out for the case when the length of
the cavity is such that the medium-relaxation times are much shorter than the cavity-photon life
times for both the waves. The simple stability criterion that the negative-slope regions of the
transmission curves are unstable holds, but only the lowest positive-slope branches show stability in

all of the cases we tested numerically.

I. INTRODUCTION

The phenomenon of optical bistability, in which under
appropriate conditions the light intensity transmitting
nonlinear interferometer exhibits hysteresis cycle, has been
proposed and observed experimentally. ' Great deal of
attention has been paid by a number of scientific groups
on this subject due to its potential device applications to
optical computers and transistors. Also, from the theoret-
ical viewpoint this phenomenon constitutes an interesting
example of a system driven far from equilibrium which
exhibits a first-order phase transition. A number of dif-
ferent optical systems have been suggested which could
exhibit bistable behavior under certain excitation condi-
tions and some sets of the system parameters. Walls
et al. have reviewed the bistable systems in nonlinear op-
tics, and irradiated Josephson junctions have been con-
sidered by Agarwal and Shenoy. A paper by Toyozawa
predicts bistability in exciton-photon interaction, whereas
Hanamura's theoretical model on CuCI provides a possi-
ble picosecond switching time by considering an off-
resonant excitation under the purely virtual dispersive
process which has the response time of the order of trans-
verse relaxation time, in a micrometer size cavity.

It has been shown' ' that a two-photon resonant sys-
tem placed inside the cavity can also display optical bista-
bility or multistability under certain circumstances due to
the interaction of two fields at different frequencies with
each other. The degenerate two-photon system is also
shown to exhibit tristable features. '5' The two-photon
dispersive optical bistability in rubidium vapor was ob-
served experimentally by Giacobino et a/. ' The effect of
Stark shift on two-photon tristability is discussed by
Parigger et al. , ' and possibilities of self-pulsing, period
doubling, and optical chaos have been discussed in Ref.
19.

Recently, we have described a model on degenerate

two-photon bistability in a Fabry-Perot cavity filled with
molecules having large permanent dipole moments. It was
shown that for a large-permanent-dipole molecule, the
two-photon optical bistability can result in a
submicrometer-sized Fabry-Perot cavity. The importance
of the analysis was stressed in its possible application in
constructing optical bistable devices of submicrometer di-
rnensions. In this paper we discuss the nondegenerate
case, and obtain the corresponding state equation for
steady-state conditions treating one of the beam intensities
as a controlling parameter. The state equation is analyzed
numerically to obtain different regions corresponding to
one, three, and five stationary states of the system. Linear
stability analysis is also carried out for some simplifying
conditions.

II. THEORY

%e consider a system of X molecules with two levels

~

a ) (ground level) and
~

b ) (excited level) which are con-
tained in the Fabry-Perot cavity. The excited level

~

b ) is
connected with the ground level

~

a ) by electric dipolar
interaction pb, E(t) with inte—rnal radiation field E(t),
composed of two different frequencies. The levels

~

a )
and

~

b) have mixed parities with permanent dipole mo-
rnents p„and pbb. The two-photon transition between
two levels is allowed if at least either one of the two levels
has the mixed parity, in which case the diagonal element
of the dipole is nonvanishing ' (permanent dipole mo-
rnent). The Hamiltonian of the system may be written as
follows:

1
—l Coif —E CO2f

pb (Ete +E2e— +c.c.)=H $,
1

—
1 Coif

—l CO2t

Htb = ebb(Ete +E—2e +c c )

II~ = —,'Is„(E)e —'+E2e '+c.c. ) .
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PD (pij ) =«
I Pba I PD2

X +1 1 1

D $JD0 DJ D3 J
l iripb = H—bapD + irl(Carbo —l /Tp )pba

+ (Hbb H„—)pb, ,

t+D 2(HbaPob PbaHob ) t ~~1 (PD PD

PD =Pbb Paa

(2 )
wltll

Dj = TP +l (Nba Sj )—,

Do = T~ +i [pic —(aii+aiz)](2c)

Here coi and coz are frequencies of two different incident
waves, E~ and E2 being their slowly varying envelopes.
The density matrix elements obey the following equations
of motion in the mean-field approximations: E IE (8)

where cob, is the energy gap between the two levels
I

a }
and

I
b), Tz is the transverse relaxation time, Ti is the

longitudinal relaxation time, and pD' is the equilibrium.
population difference between the two levels in the ab-
sence of a radiation field. The temperature-dependent
term in Eq. (2b) has been ignored. In what follows, we
shall assume T& ', T2 '&~co&,co2. For the incident field
—,
' [(Eioe '+Elope ' )e'""+c.c.], the envelope func-

tions Ej(t), j=1,2 relax to Ejplv T in the empty cavity
and the effect of the cavity is described by

cT0J c0J
pj — +l, (9J =2kL —2m J 'IT

2I nJ 2LnJ

where?'pj are the transmittance coefficients of the mirrors
for two waves j =1 and 2, mJ are integers, c is the light
velocity in vacuum, and nj are the linear refractive indices
of the medium for the two waves. For simplicity,
Ejp/~T are replaced by Ejp. Then the equations of
motion for field amplitudes Ej (t) may be written as

Ej(t) = yj [Ej(t) E—jp]—
2ncoJ N

[PhaPba (j ) +PaaPaa (j ) +P bbpbb (~j )]~

V

(4)

where pb„p„, and pbb are the amplitudes of the terms os-
cillating with frequencies coj in pb„paa, and pbb, respec-
tively. We shall be interested in the transmission charac-
teristics of the system under the steady-state conditions.
Hence the stationary solutions of Eqs. (2) and (4) would
constitute the basic mathematical analysis. As was done
in the degenerate case, we follow the perturbation ap-
proach to the problem and expand pb, and pD as follows:

n,(1) ~(3)
Pba ( ~j ) Pba (~j ) +P ha ( —j ) ~

pD(p~, )=pD'(pi, ) . (5)

For the two-photon nondegenerate resonant condition
(coba coi+cop, an-d 2coj —coba ))

I
coi+Np —coba

I
), alld

for pp/pb, »1 where pp
——(jt,« ebb)/2, we ha—ve, for the

steady-state situation,

~($) . ] I ba (0) 1
pba (COj ) = —lirl EjpD2 DJ

ir~jN
I Pba I jjo 1 18 = +

~y ~3D D D
(0)

pD
V

If we write Eqs. (9) for j= 1 and 2 separately, we have

Eip ——(I+~i)Ei(t)+BiEi(t) IE&(t)
I

', (12a)

E/p =(

1+Ay�

)E/(t)+B/Ei (t)
I
Ei (t)

I
(12b)

From Eqs. (12), we eliminate
I
Ez(t) I, and obtain the

state equation for
I
Eip

I

in terms of
I
Ei(t)

I
and

I
Eip I

as follows:

e22

2+ 2 21 —5xi+xi (1—5xi+xi)
(13)

where we have normalized the field powers by defining

Xi = I Eio
I

I
~i+ 1

I

'
I
~~+ 1

I

(14)

I
~ i+ 1

I

'
I
~~+ 1

I

Re[(A i + 1)Bi ]
Re[(A &+ 1)Bz ]

5=- 2 Re[(A g +1)Bp]

I
(Ap+1)Bp

I

(17)

D) =T) —lMJ J

When Eqs. (5)—(8) are substituted in Eqs. (4), we have
the following equations for steady-state conditions

[Ej(t)=0]:

Ejo——(1+Aj)Ej(t)+BjEj(t) I
E3 j(t) I, j=1,2

where

1TcojN
I Pb I ( i

AJ
—— PD

(3) —3 I ba 2 (0)
Pba (&j)=lR PPPD2

1 1 1

DD D D
(7)

Re[(~v+1)Bz ]
'

I
B,

I

'
I
~, + I

Re[(~i+1)Bi] IB2I I~2+1
(18)

Here, the parameter 5 plays a similar role as that of the
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parameter c in the Bonifacio-t. ugiato model of mean-
field absorptive optical bistability in a ring cavity. The
parameter a may be called the nondegeneracy parameter,
as a&l corresponds to the nondegenerate case where the
cavity is driven by two distinct coherent fields, whereas

a =1 produces degeneracy in the frequencies of the driv-
ing fields.

For two-photon resonant condition co~+co2 ——~b„a in
expression (18}can be written in terms of system parame-
ters as follows:

21.

2

'2

IVY I PD
2 (0)

VTo) Acu2

~znz+
I Nba I PD

2 (o)

VTo2 Ac@)

C6I2

2L T02

'2

It can be easily verified that for the two-photon resonant
condition and for duo/pb, »1, we have

(Aq*+ 1)8J+ (AJ + 1)81*&0, j.= 1,2 (20)

which imply that 5&0. Also, the straightforward obser-
vation of Eq. (13) suggests that, for a &1 we must have
5 & 21 a and for a & 1 we must have 5 & 2 in order to have

yi positive finite. The state equation (13) is the fifth-order
polynomial equation for the internal field power

I
Ei

I
in

terms « inp« field po~e~s IEio I, IEzo I
and other

system parameters. It has five roots, and hence displays
either one, three, or five stationary branches depending on
which whether it has one, three, or five positive real roots,
respectively. The degenerate case results [coi ——coz ——co and
Ei /2 = Ez/2 =E in Eqs. (1)] of Ref. 20 can be obtained by

substituting a =1 with yz ——yi ——y and xi ——x in Eq. (13)
and taking Ai ——Az ——3 and 8, /2=8z/2=8 in Eqs. (10)
and (11).

III. NUMERICAL CALCULATIONS

In this section we present a detailed numerical analysis
in order to investigate the different stationary regions cor-
responding to one, three, and five stationary branches of
the state equation (13) between the input-output variables

y& and x~. The numerical calculations have been per-
formed with many sets of the parameters a, 6, and y2. To
obtain the maps of different regions on the yz-5 plane, the
following method was used.

We express the state equation (13) in the form of a
fifth-order polynomial equation for xi as

x i
—(25+y i )x i + (2—5yz+5 +25y i )x i + (5 yz —26 —2y i —5 y i )x i + (ay z

—5yz+ 25y i + 1)x i —y i
——0 . (21)

We make a simple transformation by replacing x i with x i +5/2 for mathematical convenience, and obtain the following
equation:

xi+ —yi xi+(2v —5yz)xi+5 & 4

2

5(2v —5yz) z

2
- —2vyi xi+(~—5vyz+e 2)xi+ (v' —5vyz+e 2) vyi

2

(22a)

v=1 —(5 /4) . (22b)

lowing two equations by simple but lengthy algebraic ma-
nipulations, where the parameters p, i), and yi are totally
eliminated:

The triply degenerate roots of Eq. (22a), say
o.

~
——a2 ——a3 ——a, correspond to the boundary between the

regions of one, three, and five stationary branches in the
y2-5 plane, since slight deviations from the relationship
(x J

—(x2 —cx3 give rise to three- or five- branch behavior of
the system from either one- or three-branch behavior.
Hence to obtain the different regions, we compare the
coefficients of Eq. (22a) with the coefficients of the fol-
lowing equation:

(xi —a) (x i —px i +g) =0 . (23)

The five coupled equations thus obtained in terms of a,
P, il, a, 5, yi, and yz can be shown to reduce into the fol-

a(v+3az)yz —(5v +3a 5+2a 5 )yz

+(v+a ) (v —Sa )=0, (24)

2(v+a ) [v(6a+5) —6a —Sa 5]
(v—3a )[v(6a+5)—2a —3a 5]+16a' (2S)

By changing a from 0 to 1.1, Eqs. (24) and (2S) were
solved numerically to obtain y2 and 5 for different values
of the parameter a. For a&1.1, no (yz, 5) pair was ob-
tained for the values of the parameter a chosen. Each
(yz, 5) pair corresponds to a point on the yz-5 map, which
falls either on the curve or on the line. In Fig. 1, we show
several y2-5 maps for the different values of a. The mean-
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ingful region of the yz-5 plane is restricted by the condi-
tion y2&0 and 5&2 for a ~1 or 5&2@a for a &1, as
mentioned in Sec. II. The regions denoted in Fig. 1 by I,
II, and III show the regions corresponding to one, three,
and five stationary states of the system, respectively. The
region III has two different types of transmission charac-
teristics. I11 type ollc, tllc flist maximum VRlllc g ii ls
smaller than the second minimum value yI2'", whereas in
type two, yii'" is larger than ypz" (see Fig. 2). The
transmission curves of types one and two exhibit similar
characteristics as those of the double bistability and trista-
bility curves, respectively, obtained by FUli.

In Figs. 3(a)—3(d), we show several input-output (y, -x, )

plots for a different set of parameters a, 5, and y2. It may
be noticed that one has an active control on the switching
energies by varying the field intensity of the second beam
(y2), as the transmission curves differ significantly from
each other when g2 ls changed.

Here, one should note that to obtain curves in Figs.
1—3, wc have Used thc values of xj Up to about 2 1n Eq.
(13). We numerically estimated the contributions of fifth
and higher-order nonlinear terms for these values of xj
(field Intensities) and the other parameters chosen in this
paper and in Ref. 20. We found that these contributions
can be neglected in comparison with the third-order non-
linear term for two-photon resonant conditions. Hence

Eqs. (12) are accurate for the treatment presented in this
PRPCf.

IV. LINEAR STABILITY ANALYSIS

0

Ez=yzEzo —yz(1+~&)EI —y2&IEI IEi I'. (26b)

With y, =y2 —y and r=yt, Eqs. (26a) and (26b) can be
wrIttcn as

I
Ei

I

'=2
I Eio I I Ei

I
coski —2

I
Ei

I

'

—2&i IEi I

'
I Ez I

' (27a)

Ill tllls section wc perform thc lillcal stability RIlalysls
of the stationary solutions of the state equation (13). In
its most general form a linear stability analysis is quite
complicated, and hence we simplify the problem by im-
posing some restrictions: (i) We consider the case when

T~, T2 ++/~, f2 . ThUs wc nccd to coQsidcr only thc
field cqllatlolls. (11) Wc Rssllnlc perfect cavl'ty Rnd Rto1111c

tuning. This means that 81 and 82 are real (negative)
quantttICS, whereas A

&
and Az are purely imaginary quan-

tities. (iii) We take yi ——y2
——y and define r=yt. The two

field equations for Ei and Ez are given as

Ei =yiEio —yi(I+~ i)Ei —yPIEI I EI I
', (26R)

I
Eio I

dr IEi I

+
I
AI

I

= — sin@i,

167 min in
11 'l2

I I

max max

] double bistabiiitV
@~COAX g fAIA

8 -0 9 I $ — 1, /99
tristabiiity
„A18X pqjp

t

1-0 0

2.0

1-0 0

I

0.2 5
yl

I

max 0.5

FIG. 1. y2-5 maps for six different values of the parameter a.
The regions denoted by I, II, and III show the regions corre-
sponding to onc, three, and five stationary states of the system,
respectively. The values of 5=1.67, 1.90, and 1.99 are the
5=2V a values for a =0.7, 0.9, and 0.99, respectively.

FIG. 2. x~-yl plots showing five stationary states correspond-
ing to region III of Fig. 1 for a=0.9. Curve 1 is of type one,
and is similar to the double bistability curves of Ref. 23, whereas
curve 2 is of type two, and is similar to the tristabihty curves of
thc saGlc rcfcrcncc (scc thc text for' thc mcamngs of types OIlc

and two characteristics).
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'5 ~=i.2, g=~.8865

0
0 0.25

Y)

05

a=0.5, g=1.40073
l y&

-1

0.25 0.5 0.005 Q.Ql

FIG. 3. x&-y& plots for different set of parameters a, 5, and y2. (a) Curve 1 corresponds to three stationary states of the system,
whereas curves 2 and 3 show the single stationary state. (b) Curves 1 and 2 correspond to five stationary states of the system (type
one; see the text). They are similar to the double bistability curves obtained in Ref. 23 . Curves 3, 4, and S show three stationary
states of the system. (c) Curve 1 corresponds to five stationary states of the system. The lower two stationary states are not resolved.
The curves 2 and 3 show three stationary states. The lower portions of all the curves are expanded in (d). (d) Expansion of the lower

portion of (c).

d7 IEz
I

=2IEzo
I IEz

I
coskz —2 IEz I

—2&z
I
Ei

I

'
I
Ez

I

'

diaz I Ezo I

IEz I

+ IAz f

= — -stncPz,

(27c)

xz= IEz lz
fez+1

f

(28)

With assumption (ii) kept in mind, we obtain the follow-

0

where E~ =
I Ei

I
e ' Ez =

I
Ez

I
e, and the input fields

E~o and E2o are assumed to be real. Here, we need to de-
fine x2 as follows:
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ing expressions for y1, x1, y2, x2, 6, and a, which are al-
ready defined in Eqs. (14)—(18) and (28):

yl = &10 (29)

Xl ——— /EI /'— (30)

(31)
(1+ [W, [')(1+ [a, [')'" '

x, = /E, /' (32)

1+ A1a= 27 (33)
1+ /A, /'

where
1/2

2 ayJ s 4 scosfj —2+ x I
xJ

Qj= (a—yjxj')' j sinpj,
1/2

1 ayJ 1 . s
Sing j

xJ XJ

1/2
2 ayJ

COSfj
xJ

1 621—
4aSing 1

=—

The steady-state values of Pj can be written as
1/2

(42)

(45)

(46a)

6= 2

(1+ ~g
~

2)I/I (34)
s 1/2

X1
cosg 1

——(5/2 —x 2 )
ay 1

Using the above normalizing parameters, one can easily
obtain the following equations: Slnfp =— x2

1 ——
ay2 4

1/2

(46c)

dX1 1/2 4=—(ax,y, )
' cospl —2xl+ —xlx2,

1/2 1/2
2 ay1

6 X1
Sin/ 1,

dX2
(axzy2 ) cosf2 —2x2+ x lx2

(35)

(36)

(37)

1/2
2 ay2

5 X2
sin/2 .

xj xj+ ix), Pj P—j+bPj, j——1&2 (40)

where
~
hxj

~

((xj',
~ APj ((

~ Pj ~, and xj' and Pj are
the steady-state values of xj and Pj, respectively. Substi-
tuting the solutions (40) into Eqs. (3~)—(38), and lineariz-
ing the equations, we obtain

Since 81 and 82 are real negative for perfect atomic and
cavity tuning, the last terms in Eqs. (35) and (37) have the
change in sign. Under the steady-state conditions, the
state equation (13) can be very easily recovered after elim-
inating x2. It can be shown that for steady-state condi-
tions, the variable x2 is given as

ay 2X2= 4

j. —5x1+x 1

Now, we carry out the linear stability analysis of Eqs.
(35)—(38). We assume the following solutions for these
equations:

M1)0,
M2 )M3/M 1,

MI )M IM4/(M IM2 —M3 ),
M4) 0,

where

(47a)

(47b)

Ml ——4 1 ——(x', +x~)
6

4a y1 y2 SM2 —— + +4 1 ——(xl+x2)
5 x' x 5

16» Sa y1
X 1X2— — —1

5 6 x'

16 s s 8a y2
1 2

2x2

6
—1

16 2 y1y2
M4 ——- a —x'lx 2(2x'1 —5)(2x 2

—5) . (48d)
5 x'x'

1/2

cosgz ——(5/2 —x 1 )
ay2

Applying the extended Routh-Hurwitz criterion, we ob-
tain the following stability conditions:

—xz 0 P2 Q2
AX2

I

0 0 82 S2

PI Ql —x 1 0
1

R 1 SI 0 0
(41)

For all possible steady-state solutions of Eq. (13), one
should test conditions (47) to determine the stability of the
stationary branches. It can be verified that the condition
(47d) is equivalent to (dyl/dx'1) ~0, which explains that
the negative slope regions of the steady-state transmission
curves are unstable. We have tested the conditions (47)
numerically for many sets of the parameters a, 5, and y2.
The results suggest that only the lowest positive differen-
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tial gain branches are stable in all the cases when Eq. (13)
exhibits bistable or tristable behaviox. This means that
possibly the best situations may occur (the higher positive
differential gain branches also showing stability) when the
cavity size is of the order of a micrometer to a submi-
crometcr dimension. In such cases, onc should test thc
stability of diffferent branches by developing pro~er sta-
bility criterion for the case when Ti, T2, ))yi, y2

V. DISCUSSION AND CONCLUSIONS

In the present papex' we have shown that a Fabry-Perot
cavity filled with molecules having large permanent dipole
moments and driven by two distinct coherent two-photon
resonant fields can exhibit bistable behavior. Earlier, we
had described the degenerate case, and shown that for a
lax'gc pcrmancIlt dipole molecule, thc two-photoIl optical
bIstablllty can result In a submlcromcter-SIzed Fabry-
Perot cavity We.have also proposed some class of materi-
als, mainly organic and polymeric crystals and films,
which can have potential nonlinear device applications.
In these organic and polymeric crystals, the high values of
X' ' arise from delocalized conjugated m bonds. Some of
the specific examples of these organic and polymeric
class of materials with large permanent dipole moments
are (1) 4-dim ethylamino-4'-cyanostilbene (DC S) with

p„=6.1 D and pbb ——29 D; (2) 4-dimethylamino-4'-
nitrostilbene (DNS) with p„=7.6 D and ebb =32 D; (3)
2-amino-7-nitrofluorene (ANF) with p« ——7 D and

pub =25 D. VAth px'oper design and choosing thc proper

group of organic and polymeric thin films of submicrome-
ter dixnension, switching times of the picosecond ordex

may be possible because of large electronic contributions
to nonlinearities in the case of molecules having short
longitudinal relaxation time Ti of the picosecond order,
and because of the submicrometer size of the cavity. In
the nondcgenerate case, the stabihty analysis carried out
for the case when Ti, T2 «yl-l, y2-' suggests that higher
positive slope branches are unstable, thus the system can-
not be used as a bistable device when thc cavity size is
large enough such that the above condition is satisfied.
For a cavity size of the order of a micrometer to a submi-
crometer dimension, one is within the xange such that
T&, T2 ~gy& ',y2 '. In such cases, one should test the sta-
bility of different branches by developing proper stability
criterion. The active control on the switching energies by
varying the field intensity of the second beam is evident
fmm the numerical analysis presented in the paper Th. e
detailed calculations on minimum holding power density
are not given in the present analysis, but few MW/cm
power densities would be required to experimentally ob-
serve the predicted bistability.
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