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A theoretical study of amplitude (AM) and frequency (FM) modulation components of an optical
wave interacting resonantly with a homogeneously broadened two-level system is presented. It is
shown that the AM component is usually less attenuated than the FM component; however, under
conditions which depend on the modulation frequency, relaxation times, and the saturation parame-
ter, the reverse may occur. In strongly saturated media the AM component can be amplified, a pro-
cess limited by the depletion of the carrier intensity as the wave propagates in the absorber. The
two- and three-wave cases of unidirectional saturation spectroscopy are considered and the effects
of depletion are discussed. In the two-wave (single-probe) case a third wave is generated which sub-
stantially modifies the absorption profile for the probe. An analysis is included of the sideband evo-
lution in a laser with an intracavity saturable absorber. By analyzing the problem in the frequency
domain, some new insights concerning the role of the saturable absorber in passively mode-locked

lasers are presented.

I. INTRODUCTION

When a modulated light wave resonantly interacts with
a two-level system, the population difference between
these levels can follow the modulation if it involves fre-
quencies which are not much greater than the inverse of
the relaxation times of the system. At high intensities,
when saturation is manifested, the induced nonlinear
modulated polarization can significantly depart from that
which is expected just from the saturation effect. The in-
teraction is then better described in terms of frequency
mixing between the Fourier components of the light wave:
Each sideband (SB) interacts with the carrier to force a
modulation in the population difference at the beat fre-
quency; the modulated part of the population difference
then interacts with the carrier to drive a coherent contri-
bution to the SB polarization . As a result, the SB absorp-
tion coefficient can change dramatically and may even re-
verse its sign which, in a saturable absorber (SA) implies
SB amplifcation' or amplification of slow intensity fluc-
tuations.> SB amplification was first observed by Senitzky
et al.! using millimeter waves, and later observed by Gor-
don et al.} in the infrared.

Frequency mixing of this type occurs in unidirectional
saturation spectroscopy.*~® Here a weak probe wave (fre-
quency w;) propagates collinearly with a strong or satura-
tor wave (frequency wg) in a resonant medium. The popu-
lation difference becomes modulated at the beat frequency
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| 01 —ap | modifying the absorption profile for the probe.
A homogeneously broadened SA exhibits a profile charac-
teristic of hole burning,”® with “holes” which may
penetrate the region of negative absorption leading to
probe amplification.’~'? In addition, a third wave at the
“image band” frequency w_;=2wo—w; is generated in
the medium and, eventually, as the waves propagate, the
presence of this third wave can no longer be ignored since
it interacts with both the carrier and the population pulsa-
tions to give an additional contribution to the probe.

.Thus, the absorption for the probe depends on the sample

length; a dependence which is more pronounced for opti-
cally thick samples. In another configuration of unidirec-
tional saturation spectroscopy, the third wave is initially
present as a sideband of a pure amplitude modulated
(AM) or pure frequency modulated (FM) field. This is the
three-wave or two-probe case, where the absorption coeffi-
cient for the probes depends on the type of modulation.*—®

Physically, one can understand SB generation and am-
plification with a simple argument. The transmittance of
each slab of a saturable medium depends on the intensity
of the wave; thus, the transmittance for a modulated wave
is also modulated. A saturable absorber then acts as a
“modulator”® which produces further modulation on the
wave and puts sidebands on both sides of the saturator
carrier. One can also interpret SB interactions in terms of
four-wave mixing,!® transitions among dressed states>!® or
still in terms of Raman scattering with the SB’s being
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Stokes and anti-Stokes waves.

SB and probe amplification have been studied theoreti-
cally using several approaches such as the quasimono-
chromatic wave approximation,’! Bloch equations,? pertur-
bation theory,'* the dressed atom model,'” and strong sig-
nal laser theory.*~% Sargent III (Ref. 6) has reviewed the
collinear cases of saturation spectroscopy in both homo-
geneously and inhomogeneously broadened two-level sys-
tems. Boyd et al.!® considered noncollinear propagation
in homogeneously broadened systems. In these works,
however, the problem of the propagation of the probes in
the saturable absorber has been relagated or considered
without taking into account the depletion of the saturator
wave.!> As we shall show, when SB amplification and
generation are significant, the absorption from the carrier
cannot be neglecteted and depletion is important in both
modifying the absorption profile for the probe or probes,
and limiting the maximum amplification factor for the
sidebands with a given initial carrier intensity.

In the present paper we consider a modulated wave
composed of a strong carrier (frequency w,, amplitude E)
and two weak sidebands (frequencies w+=wy*+@, ampli-
tudes E.; <<E() interacting in resonance with a homo-
geneously broadened saturable absorber. The SB amplifi-
cation conditions and the propagation of the three Fourier
components are studied. We assume that the depletion of
the carrier is due only to absorption; the transfer of energy
from this component to the sidebands (and vice versa) is
neglected in the propagation equation for the pump since
it contributes with terms of higher order in EL;/E,. In
our analysis we allow for arbitrary phases and amplitudes
among the SB’s (but retain the condition that E; << Ej);
we thus include the cases of pure AM and pure FM
modulations, as well as other intermediate cases and, in
particular, that of a single SB, where we study the evolu-
tion of the single-probe into the two-probe case by image
band generation as the waves propagate in the absorber. It
is shown that for slow modulation the resultant field
approaches—but strictly never reaches—a state of pure
amplitude modulation.

We consider in greater detail the case of the resonant
carrier where the response of the medium to the sidebands
is symmetric and the AM and FM components of the
field evolve independently, a fact that simplifies the
analysis. The extension to more general cases such as out
of resonance carrier and inhomogeneously broadening is
straightforward.

The paper is organized as follows. In Sec. II we derive
the coupled equations which govern the steady-state in-
teractions of any number of equidistant Fourier com-
ponents of a light field with a homogeneously broadened
two-level system. These formulas do not involve small
perturbation approximations and are thus valid for any
value of the Fourier amplitudes. In Sec. III we apply
these equations to the case of two weak SB’s and a strong
carrier. The dependence of the SB’s absorption coefficient
on the beat frequency and saturation parameter and the
conditions for SB amplification are then studied. In order
to show explicitly the effects of depletion on the SB’s evo-
lution in a saturable absorber, the propagation equations
for the three waves are solved numerically in the limit of
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slow modulation (Sec. IV) and, finally, in Sec. V we
analyze the evolution of three running modes of a laser
with an intracavity SA cell. Though the model here used
for the laser is oversimplified, we find that, passing to the
frequency domain, one obtains useful insights concerning
the role played by the SA in the passive model locking of
lasers.

II. GENERAL EQUATIONS

The equations for the macroscopic polarization P asso-
ciated with the transition, and the population difference
per unit volume AN of a two-level system interacting with
a radiation field E at optical frequencies are!®

3*P 2 dP 20*QE
L2 0P EANL , 2.1
a2 7T, ar 3 @D
E)AN+ AN—AN®  2E 3P
ot T, T #Q ot

where T'| and T, are the longitudinal (recovery time) and
transversal (inverse of linewidth) relaxation times, respec-
tively; Q is the central frequency of the homogeneously
broadened absorption line; u is the electric dipole moment
of the transition; AN is the equilibrium value of AN (i.e.,
in the absence of the field) and L =(9*42)*/9 is a
Lorentz local field correction factor (7 is a background in-
dex of refraction).

We consider a radiation field composed by a superposi-
tion of linearly polarized plane monochromatic waves
copropagating in the z direction:

E(z,t)= 3 E,cos(w,t —knz+¢,) .

(2.2)

(2.3)

Here »,, and ¢, are frequency (rad/sec) and phase, respec-
tively, of the nth Fourier component, and k, =7, /c (c is

the speed of light).
We shall assume that the frequency separations are all

multiples of the quantity @:

Oy 1— @y =0, n=0,+1,+2,.... (2.4)

This form of the field is adequate to describe a multimode
laser or a modulated wave with beat frequency @. We ex-
press the polarization as
P(z,t)=7 3 Pyexpli(w,t —k,z +¢,)]+c.c. (2.5)
On the right-hand side of Eq. (2.2) there will appear
terms such as
ﬁ(‘)n £ . .
—Z—Q—P,, E, expli(w,, —w,)t—ilk, —k,)z
+i(Py —Pn )]+c.c.,

which force a modulation in the population difference at
the beating frequency |m —n|@. It is convenient to
separate the modulated and nonmodulated parts of AN:

AN=Ny+ |3 3 N,expligit)+c.c. (2.6)

g>1
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The steady-state solutions are then

T,

No=AN°—i (E*P,—E,P%)o 2.7)
Zﬁﬂ % n n n n n
iT, = = =, =
Ny=—————S(E,P}_,0p_q—EWP , ,0,4,)
q ﬁQ(l—i—ianl)? nt" n—q@n—q nt n+q@n+q
(2.8)
2
= ipT,L | = = =
n— 3ﬁa,, EnN0+;2(En+qu+En—qu) ’
q
(2.9)
where
ap =022 4+ 2w, /T)(T,/i2Q)~1—iT,(Q—w,)
(2.10)
P,=P,exp(—ik,z+id,) ,
(2.11)

E,=E,exp(—ik,z+id,) .

The propagation law for the nth mode is, from the
Maxwell equations,
9 i¢ i, i¢
—(E,e ")=———P,e "
az( ne ) 2n€xc né "
where €, is the dielectric permissivity of vacuum. From
this equation we obtain the absorption coefficient for the
nth mode

(2.12)

1 JE,
E} 3z  2nexcE,

i
On (2.13)

alw,)=— (P,—P}) .

This completes the set of coupled mode equations
which describes the evolution of the modes as the wave
propagates through the resonant medium in the steady
state. The population pulsations at the frequency g&
combine with the fields at », _, and w, ;, to give a con-
tribution to the polarization at w,, but all modes contri-
bute to N, so that all modes are coupled in an intricate
way.

Neglecting the population pulsations one obtains

iu*T,L AN°E,
P,=

3%a, |1+ (LT T,/3#0%) 3 Ejo/ | a, | *
n

and in that case the polarization at w, depends on the am-
plitudes of all modes but not on the relative phases
¢, —¢,,. On the other hand, when the population pulsa-
tions are taken into account, the sum term in the rhs of
Eq. (2.9) gives a contribution to P, which explicitly de-
pends on the relative phases among the modes. Following
Sargent III (Ref. 6) we shall call these two types of contri-
butions incoherent (phase independent, associated to the
dc value of the population difference) and coherent (asso-
ciated to the population pulsations) polarizations. While
the incoherent part of the polarization always represents
absorption at o, (depending naturally on the sign of AN®),
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the coherent contribution can lead to an increase or de-
crease of the absorption and even amplification for that
mode, depending on the amplitudes and phases of all the
modes.

Some of the modes can actually be amplified in the ab-
sorber. However, the energy is not supplied by the medi-
um. The power absorbed per unit volume is E3P /9dt, and
for the coherent part of the polarization this quantity
averages to zero in a time long compared with the beat
periods. Thus, the amplification of the favored modes is
at the expense of the increased attenuation of others. If
Eq. (2.3) represents a light pulse (or a train of light pulses)
then the parametric processes described by the coherent
polarizations have the effect of redistributing the available
energy among the modes. In the time domain this results
in pulse reshaping.

We also note that even if a given mode is initially ab-
sent (for example, E, =0 at z=0) it will be created and
will grow as the wave propagates in the absorber, driven
by the coherent part of the polarization at w,. Further-
more, the induced polarization at w, has a definite phase;
thus, the coherent effects tend to broaden the spectra and
to correlate the phases which, in the time domain, means
pulse compression. This action of the SA as a mode ex-
pander!” is precisely the key for understanding, from the
frequency domain point of view, the generation of ul-
trashort pulses in passively mode-locked lasers. In princi-
ple, only two adjacent modes are necessary to generate all
the others in the SA. During the transient response of a
two-level system, however, a single mode can evolve into a
modulated wave, with the generated sidebands beating at
the Rabi frequency. This last effect (optical nutation)
does not occur in the steady state and will not be con-
sidered here, but one can expect some type of resonance
when the interacting modes beat at a frequency close to
the Rabi flopping frequency.®

The relative importance of the modulated to the non-
modulated field-dependent parts of the population differ-
ence can be expressed by the quotients

| $N,/(No—AN®) | .

If all the modes under the wings of the resonance curve
have equal amplitudes and phases, then these quotients are
of the order of

1/[1+(g@T;)*]'2.

Thus, pulsations—and with them, the coherent effects—
can be neglected only if @7 >>1. In a laser cavity with
mirror separation of 1 m, the longitudinal modes beat at
about 9.4 10® rad/sec, and if these modes interact in a
SA with a recovery time of 10 psec (as is typical in dyes
used for passive mode locking of solid-state lasers) we
have

1/[1+(g@aT;)*11"?=99.99%

for g =1, and 50% for ¢ =184. This means not only that
the coherent effects are important, but also that the cou-
pling between modes n and n+q is as important as the
coupling between adjacent modes (n and n+1), where ¢
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can have values surprisingly high. Hundreds, and even
thousands'® of modes couple simultaneously in pulsed—
passively mode-locked—solid-state lasers; thus, when ap-
plied to these devices, frequency domain theories, where
only a few oscillating modes'® or only adjacent coupling
are considered,”®~?® are not expected to give accurate
descriptions of the pulse narrowing effect.

III. SIDEBAND INTERACTIONS

In this section we consider a field composed by a strong
carrier at a frequency wy and two weak sidebands at fre-
quencies w+=wot@. The mode coupled equations of
Sec. II, solved to all orders in the carrier amplitude but to
first order in the SB’s amplitudes E . |, give

No=AN*/(1+7), (3.1)
Ny =2ANTO DESE +XCF 0 DEE 11, (32
Po=egXoNoEo/AN® (3.3)
Py =(eX1/AN)NoE, +LN,Ep) (3.4)
P_ =(eX_1/AN)NoE_,++N1E,), (3.5)
where we introduced the linear susceptibilities
Xn=—iu’T,LAN®/(3eptia, ) , (3.6

in terms of which we define the saturation parameter
y =iT 1woE5€)(Xo—X06)/(2AQAN®) ,
and the “third-order susceptibility”
X (@)X —oXs)/(1+7)E]

(3.7)

X =
(3.8)

X is obtained from this expression by changing the sign
of the subindices of w, and X,. The saturation field is

E,=E,/V7y .

The coherent contribution to the carrier polarization
does not appear in Eq. (3.3) since it is of second order in
E . That contribution is necessary to preserve the ener-
gy balance of the parametric process. Thus, in the above
equations energy is not conserved, the small energy unbal-
ance being of the order of (E+/E,)>. In this approxima-
tion the carrier propagates as if it solely saturates the
medium. As a consequence of the homogeneous broaden-
ing, the carrier also saturates the response of the medium
to the sidebands. The incoherent polarization can be
described in terms of an effective first-order susceptibility

(3.9

X\ =x,/(1+7) . (3.10)

The term “susceptibility” applied to X!’ and X® is used
here in an extended sense, for they are quantities which
depend on the intensity of the carrier.

The polarizations at the sideband frequencies are given

by

’)/(O)_IX:I —601)(1)—}-60()()(8 “XO)( 1 +ia)1T1 —ia)oT,) .
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Piy= X NE s+ XRIEGESE 1,
+€0X(£}*(Xi1/x*:;:1)E-()E_0E—::1 .

The coherent contributions represent Raman-type fre-
quency mixing processes in which the carrier is scattered
at the SB’s frequencies by the population pulsations. The
second term in Eq. (3.11) represents a self-phase matched
process, while the third term depends on the phase
mismatch A¢ defined below. These two coherent contri-
butions are not, in general, in phase, and they interfere in
sucy a way that the absorption coefficient for each SB
may either increase or decrease with respect to that given
by the imaginary part of X o, depending on the frequen-
cies and amplitudes of the three Fourier components and
on the phase mismatch

Ap=2do—(d1+¢_1) .

The absorption coefficients for the three Fourier com-
ponents are readily obtained after substituting (3.3) and
(3.11) into (2.13). To investigate the conditions for SB
amplification we shall assume the carrier to be in reso-
nance |wo—Q| <<1/T,. For wy=Q, X, is purely ima-
ginary and as the wave propagates in the absorber the sa-
turation parameter decreases according to [see Eq. (2.13)]

(3.13)

(3.11)

(3.12)

oy /0z=—agy/(1+7),

where ay=iwoX/7c is the linear absorption coefficient at

resonance.
For & << wy=% Eq. (3.11) reduces to

Pyy=€X\E+;+ X (EJE 4 +EJE1e™%) 3.14)
and the third-order susceptibility simplifies to
x=—xCF
=—X{"(1+irB/2)/E]ly +(1+iB)1+irB)] , (3.15)
where
B=oT,
and (3.16)
r=T,/T;.

The main features of SB evolution will be better appre-
ciated if we look at the modulation components of the
field. Equation (2.3) can for (n)<2 be recast into the
form

E(z,t)=Ey(z,t)cos[wot —koz +¢'(2,t)] , (3.17)
where the slowly varying amplitude and phase are given
by

Eb :[ (E0+E1COSA1 +E_ICOSA_1)2

+(E;sind, —E _,sind _,)*]'/?,

EISinAl ——E_lsinA_l
Ey+Ecosd,+E_qcosd_; |’

(3.18)

¢'=do+tan~!

where
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Ap=o(t—mz/c)xdiFody -

To first order in E.;/Ey, (3.17) represents a wave
which is harmonically modulated at @ both in amplitude
(AM) and phase or frequency (FM):

' 1 io(t—
E0=‘2‘Eo+%EAMe'w(t "””—{—c.c. ,

- (3.18)
Eo¢'=3Eopo— 5iEpme™ ="/ tc.c.

The (complex) amplitudes of the AM and FM components
are

i(¢,—o) o~ 1$_1=0)

EAM :Ele
EFM =E‘ei(¢1—¢°)—E 1e_i(¢"'—¢°) B

From (2.12) and (3.14) we see that the AM and FM
components evolve independently following the propaga-
tion equations

+E_
' (3.19)

aEAM i(t)o

= —En—C(X(l”+2X‘13)E(2,)EAM ,

aEFM _ iwo X(”E (3'20)
9z 2 ' TPM

Thus, the coherent effects act only on the AM component,
which may then suffer increased or reduced attenuation
(with respect to the FM com?onent) depending on the sign
of the imaginary part of X\>. The real and imaginary

parts of X¥=x"4ix®" are

X3 =+ Dﬁ:’;z B2 +3r+yr+r3pY) ,
(3.21)
X3 = Daa?ZEcg (20 + D)+ (pri—3rB—rp']
where
D=2y + D(1+rB[(1+yP+ (147 —2yr)B*+rB] .
(3.22)

If X" 0 the saturable absorber favors the amplitude
modulations, i.e., the AM component is less attenuated in
the absorber than the FM component. From (3.21) we see
that this occurs if

v > (rB+3rB2—2)/(r’B*+2)
or, equivalently, if
& <(1/V2Ty){yr —3+[(yr—3)*+8r(y +1)]'/2}172 .
(3.23)

In the short dipole lifetime limit (r=0) the AM com-
ponent is favored regardless of the value of the saturation
parameter, and if 740 saturation extends the interval of
modulation frequencies where the AM component is
favored from

@ <(1/V2T,)[(9+8r)172—-3]1/2

to that given in (3.23). If X'V 4+2Y¥®E}3>0 then the
AM component (and thus the SB’s of an AM wave) are
amplified in the medium, i.e., the modulation depth of the

(3.23)
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field amplitude increases with distance. From (3.21),

(3.22), and (3.6) we have
. . 2agmc

PULpIVED E%:—B%?-—(l+r232)[y2——1—~(1+7/r)32]
0

(3.24)
and the condition for AM amplification comes to be
v > 5[rB+ (4448241697 .

Only if y > 1 is there a beat frequency interval where AM
amplification can occur:

&< (1/T)(y*—1)/(1+yr)]/2.

In unidirectional saturation spectroscopy® two cases are
of interest: In the first the SB’s have equal amplitudes
and are phased to give pure amplitude or pure frequency
modulation; this is the two-probe or three-wave case. In
the second or two-wave case, a single probe is used. Con-
sider first the three-wave case with E;=E_;=Egsg and
with arbitrary phase relationship A¢. From (3.14) we
have

i i .
LB = — L+ B 4e9)]
oz 2nc

(3.25)

X Egge’ %1 . (3.26)
For A¢=+7 we have pure FM (E )\ =0), the coherent
contributions interfere destructively, and the three waves
propagate as if there were no interactions between them.
If Ap=0,+27 we have pure AM (Egy=0), and the
coherent contributions interfere constructively minimizing
the absorption coefficient for the SB’s:

@ 2 5 ”
as(AM) = -—;f(x“’ F2EZX) (3.27)

where the quantity in parentheses was given in (3.24). If
(3.25) is satisfied the SB’s are amplified.

It is interesting to observe that since the SB’s suffer
equal but opposite dispersion (X{!'=—x 1 and X
=—X (_3),'), an initially pure AM or FM wave conserves its
character, i.e., the phase relationship is maintained. From
(3.26) we have

984 _ 20 g2y sinad .
oz nc

Thus, if A¢g=0,27 (AM), or if A¢=+m (FM), then A is
a constant of propagation. Furthermore, for other values
of A¢ the SB’s attenuate at different rates, and it may
occur that only one of the SB’s experiences gain. To illus-
trate this fact consider the case » =0 and A¢=w/2; from
(3.26) we obtain

a1=ag B4y +1FyB) /(1 +y)B+7v*+2y+1)

and if y(B—1)> B2+ 1 then one of the sidebands is ampli-
fied while the other is attenuated.
Consider now the single probe case. At z=0 only one
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SB is present, for example, E,5£0 and E_,=0. The ab-
sorption coefficient for the probe is given (at z=0) by
ay=— 2 (V" L B ) (3.28)
nC
and has been discussed by several authors.>~!* We shall
concern ourselves here with another aspect of the problem.
From (3.19) we have, at z =0, E y=ZFEry; however, as
the waves propagate, these modulation components suffer
different attenuations, and at z=%0 the probe absorption
coefficient is no longer given by (3.28). It is clear from
(3.14) that even when E _(0)=0, there is an induced po-
larization at the image band frequency w_1=2w¢—w:

P_i=eX B3R,

which is responsible for the generation of the image band
at a rate given by
i
—EXEe
27c

In order to see what the effects are of this third wave let
us analyze them in the slow modulation limit (8—0)
where there is no dispersion. The probe is initially at-
tenuated with an absorption coefficient ay/(1+7y)% the
carrier with ay/(1+7%), and the image band grows at a
rate

O (g _ety=— 29=40) (329
az

dE_, gy
= ~E,
oz 2(1+4y)

and phase ¢_;=2¢o—¢;, which is proper for amplitude
modulation. After a propagation distance of the order of

201+y)/agy

the amplitude of the generated SB reaches the order of
magnitude of that of the probe and the total field ap-
proaches that of a pure AM wave. If the carrier intensity
has not been depleted too much so that the saturation pa-
rameter is still greater than one, then both SB’s are ampli-
fied (we shall see in Sec. IV that this occurs if at z=0,
¥ >7). This shows that there is a substantial modification
of the probe absorption coefficient as the waves propagate.

In general, beyond the slow modulation limit, the phase
of the generated band will be different from that for AM,
and it will change with distance. If (3.23) is not satisfied,
for example, the FM component is less attenuated than
the AM one, and the two waves evolve into three waves
phased for FM. If (3.23') is satisfied but

B> [(9+8r)2 312 V2T, ,

then the waves will tend initially to AM but, after some
distance, due to depletion, the saturation parameter will
not satisfy (3.23) and the field will tend to a FM wave.
One can see that the field may approach a state of pure
AM or FM modulation, but it will never reach such
states. This is because a pure AM or FM character is
preserved during propagation; thus, if at some point one
of the modulation components vanishes, it must also van-
ish for all subsequent and precedent positions. Further-
more, there is a limit for the relative growth of the image
band, i.e., the ratio
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EFM(Z)/EAM(Z)
does not tend to zero. One can solve Eq. (3.20) as a func-
tion of ¥ and, using (3.13), obtain
Jzﬁ/z

Esm(2)= Eam(0) [“@
0

1+iB+ ;’}/(Z) (1+4)/2

1+iB+y,
/2

(3.30)

’

y(z)

EFM(Z)ZEFM(O)
Yo

where ¥=1/(1+irf3) and y, is the saturation parameter
at z=0. From this equation we have

14+iB+9y(z)
1+iB+vy,

For z— o we have y(z)—0 so that the ratio (3.31)
tends to a nonvanishing value. For example, in the slow
modulation case considered by Senitzky et al.,! =0 and

lim [Eam(2)/Epm(2)]=[Eam(0)/Epm(0)](1+70) .

Z—

(1+9)/2
(3.31)

In the single probe case where E p(0)=Egy(0), the
AM component becomes (1+7y,) times the FM com-
ponent for z— oo.

The probe absorption profile in the two-wave case is
thus a complicated function of the sample length; a depen-
dence which is more pronounced for optically thick sam-
ples where depletion is important. Unfortunately, the
easier it is to detect absorption differences, the higher the
effects of depletion are; this is because the probe absorp-
tion coefficient is proportional to a, In the three-wave
case the z dependence is only through the saturation pa-
rameter so that the probes absorption coefficient is always
given by (3.27), and (3.24). An additional obvious advan-
tage of the three-wave configuration is that only one laser
is required. Both methods give the same information
about the two-level system. A disadvantage of the three-
wave configuration may arise in systems with short relax-
ation times where one would need to modulate the laser at
rather high frequencies.

Similar effects due to population modulations also
occur in the counter propagation configuration of satura-
tion spectroscopy, where the probe and saturator waves
propagate in opposite directions but have the same fre-
quency. The population difference is spatially modulated
and the saturated wave is back scattered to give a coherent
contribution to the probe. For a review on this subject see
(Ref. 24) and for the analogies between temporal and spa-
tial modulations see (Ref. 5).

IV. SIDEBAND PROPAGATION

The propagation equations for the carrier and the two
side bands are coupled differential equations with coeffi-
cients which are functions of distance to account for de-
pletion. Some remarks on the evolution of the SB’s have
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been discussed in Sec. III. Here we shall solve these equa-
tions numerically for some representative cases in the slow
modulation limit (8=0). We shall consider SB’s phased
for AM (A¢=0); in the B=0 limit this phase relationship
is a constant of propagation. If an arbitrary phase
mismatch would be considered, an additional equation for
A¢ should be included. We emphasize that, in spite of
our assumption (A¢=0), the total field may have a FM
component since this vanishes only if A¢=0 and
E 1 =E —1-
For A¢=0 the propagation equations for the SB’s are

OE 4,
oz

2 (Esi—7Es1)
= 21 +7/)2 +1—YEx1
and for the carrier or, equivalently, for the saturation pa-
rameter we have Eq. (3.13). After a redefinition of the
time origin we can write the AM and FM components as
real amplitudes,

4.1)

Esm=E+E_,,

4.2)
Epm=E,—E_;,
which evolve according to
O0Eam  aoly—1)
8 a1 M 4.3)
0Erm ap
3z 2y+1) Erm -

A pure FM wave can be represented in this formalism
by allowing negative values for the amplitude of one of
the SB’s (thus having E ,5;=0). This case however, does
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not show interesting features since the coherent contribu-
tions vanish.

According to (4.3) the FM component attenuates with
the same absorption coefficient as the carrier, while if
v > 1 the AM component is amplified. Significant ampli-
fication occurs along an interaction path of the order of

2y +1)*/agly—1) .
We have also seen in Sec. III that the process of SB gen-
eration has a characteristic length

27 +1%/ayy .

At these propagation distances in the absorber the de-
pletion of the carrier intensity is not negligible and, conse-
quently, the exponential (Beer’s) law does not apply. We
can express the solutions of (4.3) in terms of the saturation
parameter y=¥(z) and the initial values [yo=7(0)].
From (3.30)

Esm(Z2)=E OV y/volyo+ 1)/ (y+1),
Epm(2)=Epm(OV7Y 774 -

Integration of Eq. (3.13) gives an implicit equation for
y(2):

4.4)

o 4.5)
With the help of these equations the general behavior of
the SB’s evolution can be analyzed. We shall refer to Figs.
1 and 2 and discuss separately the cases of AM and SB
generation.

AM waves. If, initially, E_;=E;=Egg, then the FM

yel=yoe %~

Yo= 2

SIDEBAND AMPLITUDE
o
)
|

SATURATION PARAMETER,y (Z)

1 |

5 10 5 10 5 10

a, Z

15 20 25 5 10

15 20 25 30 35
a, Z

FIG. 1. Propagation of an AM wave. Arrows indicate scale readouts for SB amplitude («—) and saturation parameter (— ).
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FIG. 2. Sideband generation (curves starting at the origin) and evolution of the initially present SB.

component vanishes for all z and the wave continues to be
pure AM. (This is also true even for rapid modulations,
as was shown in Sec. III) In Fig.1 we plotted the SB
amplitudes normalized to their initial value [i.e,
Egg(z)/Egg(0)] while for the carrier we plotted y(z),
which is proportional to E3(z).

The SB’s are amplified if ¥¢> 1 and amplification con-
tinues until a point z, is reached where y(zy)=1. After
that point the SB’s are attenuated. From the above equa-
tions we deduce

zg=(yo—1+Inyo)/ao

provided that y,>1. At this point the SB’s reach the
maximum amplitude

ET* = Eqp(z0)=Esp(0)(yo+1)/vV 4y, .

A large value of y, leads to a high amplification factor
E3*/Egp(0) but to a slow rate of growth
(1/Esg)(QEgg /9z). This rate of growth is a measure of
the rapidity of the SB amplification process and is max-
imum for y=3.

SB generation. Here at z=0 only one SB is present and
we have, initially, equal AM and FM components:
E sm(0)=Egyq(0). In Fig. 2 we plotted the evolution of
the two sidebands for several values of the initial satura-
tion parameters. Both SB amplitudes are normalized to
the initial value of the preexistent band.

The image SB is generated and amplified even for y < 1,
while the preexistent sideband is initially attenuated; but
after some point it can start to grow. This behavior can
be understood as follows: The new SB grows at the ex-
penses of the energy of both the carrier and the other SB,
so that this last is always initially attenuated; however, as

the new SB grows the total field tends to a pure AM wave,
and if y is still greater than one then both SB’s can be am-
plified. From Egs. (4.1)—(4.5) we can see that this would
occur if ¥o> 7, and in this case the preexistent SB (probe)
attains a minimum at zt and a maximum at z~, where
z%t and z~ are given by

@) =3(ro—Dx3[(ro—1*—4y,—8]1"2.

The amplitude of the generated SB is maximum at a point
z=2z', when

y(z")=—5(vo+3)++(y5+10yo+9)"/2.

The characterization of these extremal points (z, z¥
and z’) can be of help in the design of experiments on SB
amplification and/or SB generation. For a given initial
saturation parameter, one can optimize the product ay/
(varying the concentration or the SA cell length /) so that
SB amplification is maximum and, thus, easier to mea-
sure. To be specific, consider experiments with y,=3,
then the best choices are as follows: for SB amplification
of AM waves z,=1 gives ay/~3.1; for SB generation z’'=/
gives agl~4.4. Probe amplification requires y,> 7; thus,
if 79=10 the best choice to observe the effect is /=z~ or
aol ~10.2.

V. SIDEBAND EVOLUTION IN A LASER CAVITY

The amplification of sidebands in a saturable absorber
is limited—for a given initial saturation parameter—by
the depletion of the carrier intensity. If a cell with the SA
is placed inside a laser cavity, the gain of the laser medi-
um can compensate the loss in the absorber in each round
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trip, and the SB amplitudes grow due to both the
parametric amplification in the SA and to the laser gain.
A quantitative analysis of SB generation and amplifica-
tion in this case may be of help in understanding the pas-
sive mode-locking mechanism in the frequency domain.
The SA used for passive mode locking of giant pulse
solid-state lasers, for example, is a broadband-fast bleach-
able dye in solution in a solvent which exhibits negligible
dispersion to the laser modes. For most purposes the dye
is well described by a homogeneously broadened two-level
system'®?° with a recovery time which is small compared
with the inverse of the beat frequency between the modes,
and the slow modulation limit is sufficient to describe the
steady-state interactions between the modes in the dye.

We have performed calculations for a thin absorption
cell with small signal transmission 1/e per pass, which is
about the typical values used in pulsed solid-state lasers.
Only one mode (traveling wave) has been assumed to be
present with enough amplitude to act as the saturator
wave; and two weak modes, symmetrically spaced in fre-
quency with respect to the first, were assumed to act as
sidebands phased for amplitude modulation. We used the
equations of Sec. IV to describe the propagation in the ab-
sorber and assumed that the action of the laser medium
was that of multiplying the amplitude of the three waves
by the same amplification factor G in each round trip (G
includes stimulated emission and all losses in the cavity
other than that due to the SA). All frequency depen-
dences have been ignored, as well as any intensity depen-
dence (saturation) of the laser gain. A constant loop gain
is a good approximation®® in pulsed solid-state lasers at
least while the total energy of the pulse cannot significant-
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ly deplete the number of active atoms. If G would over-
compensate the loss in the SA, the sidebands will grow
without limit; eventually, the SB amplitudes would reach
values comparable to that of the carrier and our equations
would not be applicable. Consequently, we have limited
ourselves to values of G a little less than the SA loss. The
case of exact compensation is treatable analytically and
will be presented at the end of this section.

SB generation. (See Fig. 3.) In Fig. 3(a) the loop gain G
is too low to compensate the depletion of the carrier, but
is nevertheless enough to allow amplification of both SB’s
(recall that, in contrast to Sec. IV, in the absence of laser
gain the preexistent SB is amplified only if y> 7). When
the SA loss is almost compensated [Figs. 3(b) and 3(c)] the
sideband amplitudes are equalized in few round trips, in-
dicating a nearly pure amplitude modulation.

AM waves. (See Fig. 4.) In Figs. 4(a) and 4(b) we have
the same initial conditions as that of Figs. 3(c) and 3(b),
respectively, except that now the SB amplitudes are equal
from the beginning. The corresponding curves are very
similar, with the only difference in the scales for the SB
amplitudes, which are now almost doubled.

Comparing the curves for yo=1 and y,=35 we note that
the SB amplitudes reach lower values for higher values of
the saturation parameter. At large values of 7, the ampli-
fication process in the absorber is less efficient and, since
the absorption for the carrier is reduced by the strong sa-
turation, the laser gain factor necessary to compensate the
losses is also reduced. In fact, note that for yy=1 we have
only reduced attenuation for the sidebands in the SA but
not amplification; thus, the SB amplification observed in
Fig. 4(a) is due only to the laser gain.

(a) (b) (c)
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FIG. 3. Sideband generation and evolution of the initially present sideband inside a laser cavity. For the scales used in (b) and (c)
the differences in amplitude of the two sidebands are not resolved, indicating a rapid evolution into a pure AM wave.
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FIG. 4. Evolution of the sidebands of a pure AM wave inside the laser cavity. Compare with Figs. 3(b) and 3(c).

Case of exact compensation of the losses

We call E,{(N) and y(N) the SB amplitudes and the
saturation parameter which enter the SA cell (length J)
after N round trips (Fig. 5). E{(N) and y'(N) are the
same parameters after two passages through the SA cell.
After two passages through the laser medium we have

E4 (N+1)=GE';,(N) ,
Y(N+1)=G¥'(N).

The primed parameters are related to the unprimed ones
by [see Egs. (4.2), (4.4), and (4.5)]

(5.1

' — L. 172 Jil(_&

E' ((N)=5[7(N)/y(N)]'* | Eam(N) T+7/(V)
*Em(N) |, (5.2)
y'(N)=y(N)exp[ —2aol +y(N)—y'(N)] . (5.3)

To solve these equations we need to express ¥'(N) as a
function of ¥(N). Unfortunately, Eq. (5.3) is implicit and
transcendental, and can solved only within some approxi-
mations. On the other hand, if the laser gain exactly com-
pensates the depletion of the carrier,

Y(N+1)=y(N)=const=v,,
we then have
y'(N)=7(N)/G?

and the equations can be solved exactly:

E o ((N+1)=5[ EaM(N)GX1470)/(G*+7,)

TEm(N)] . (5.4)

From this equation one can see that while the FM com-
ponent remains constant in each round trip, the AM com-
ponent grows in a geometrical progression:

Esm(N)=[G*(14+y0)/(G*+7x)1VE sm(0) .

The ratio of this geometric progression is maximum—and
consequently the sidebands grow faster—if G=y, or,
equivalently, if the transmission of the SA cell is such that
the saturation parameter falls to 1/, in two passages (one
round trip) through the cell. Under this optimum condi-
tion the SA amplifies the SB’s of AM waves in one transit
and attenuates by the same factor in the next, thus the SA
has no overall effect on the SB amplitudes, which then
grow due to the laser gain.

This oversimplified model of a laser with an intracavity
SA, constant loop gain, and only three modes, is of course
a poor approximation of real devices, where the parame-
ters are frequency and time dependent and a huge number

LASER MEDIUM Y(N+1) Y (N)

TR

FIG. 5. Definition of the values of the saturation parameter
inside the laser cavity. The mirror to the right is a total reflec-

tor.
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of modes may oscillate. Nevertheless, we can obtain some
ideas on how the coherent mode interactions work in the
SA of passively mode-locked lasers and regenerative am-
plifiers. In frequency domain theories of passive mode
locking, the role of the SA is described as that of the SB
generator and phase-difference “locker” (see Ref. 17 for
background discussions on these lines). These effects have
been explained as a result of adjacent mode coupling
through a third-order nonlinear polarization.?’=2? As dis-
cussed in Sec. II, the hypothesis of only adjacent coupling
is susceptible to severe criticism, but even in this case our
simple analysis with depletion taken into account seems to
indicate that the SA may play an important role as a
selective mode filter; at some stage of pulse formation in
the laser cavity, during the nonlinear loss regime, the
stronger modes, which do not enjoy the coherent contribu-
tions from population pulsations, are strongly attenuated
in the SA; while the weaker modes (generated in part in
the SA by frequency mixing) are much less attenuated,
and even slightly amplified in the SA, and can then grow
due to the laser gain. The net effect is a smoothing of the
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envelope of the pulse spectra. The selectivity is against
stronger modes and also against weaker modes which do
not have the proper phase for amplitude modulations.

This selective filter action of the SA would be of help in
compensating both the differences in the mode losses of
the cavity and, in homogeneously broadened lasers, the
gain reduction due to gain saturation caused by the dom-
inant mode.

If the main features remain the same when the extrapo-
lation to real devices is made, one expects that efficient
mode locking in lasers will be dictated by the ability of the
system in prolonging the duration of the nonlinear loss re-
gime, where the selective filter action of the SA is more
efficient.
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