
PHYSICAL REVIEW A VOLUME 29, NUMBER 5 MAY 1984

Quasiperiodicity in lasers with saturable absorbers

Thomas Erneux
Department ofEngineering Sciences and Applied Mathematics, The Technological Institute,

Northwestern University, Evanston, Illinois 60201

Paul Mandel

B-2050 Bruxelles, Belgium

Jeronimo F. Magnan'
Department ofEngineering Sciences and Apph'ed Mathematics, The Technological Institute,

Northwestern University, Evanston, Illinois 60201
(Received 17 October 1983)

In this paper, we consider the mean-field equations for the laser with a saturable absorber {LSA)
and concentrate on the low-intensity solutions. We show that the LSA equations may admit two
successive bifurcations. The first bifurcation corresponds to the transition from the zero-intensity
state to time-periodic intensities and is a Hopf bifurcation. The second bifurcation corresponds to
the transition from these time-periodic intensities to quasiperiodic intensities which are character-
ized by two incommensurable frequencies. In order to describe these transitions, we investigate a
particular limit of the parameters and propose a new perturbation method for solving the LSA
equations. We give analytical conditions for the existence of both the primary and secondary bifur-
cations.

I. INTRODUCTION

The laser with saturable absorber (LSA) has recently
been studied both experimentally and theoretically.
Theoretical studies were mainly centered on the stationary
and time-periodic solutions, ' numerical analyses indi-
cated the occurrence of (unstable) quasiperiodic solu-
tions, and experiments have demonstrated the existence
of at least stationary and time-periodic behaviors. ' In
view of the possibility of realizing experimentally a LSA,
it is worth investigating in somewhat more detail the
properties of the semiclassical (i.e., deterministic) equa-
tions which describe the LSA. The purpose of this paper
is to study analytically the properties of the low-intensity
domain and to go beyond the usual description of the first
bifurcation. In particular, we establish the existence of a
domain in the parameter space where the LSA system un-
dergoes two successive Hopf bifurcations leading first to a
time-periodic solution, then to a quasiperiodic solution
(i.e., two incommensurate frequencies). Furthermore, we
prove analytically that this quasiperiodic solution has a
finite domain of stability.

The LSA presents several advantages compared to the
usual laser. First, it has two control parameters (called A
and A) corresponding to the pump parameters of the am-
plifying and absorbing atoms. From experimental and
theoretical works in related fields, ' ' it is known that
two parameters allow a clearer approach of complex insta-
bilities like those leading to chaotic regimes. Second, by
contrast to the simple laser, it has been shown ' that
when A is fixed and 2 is progressively varied, the zero-
intensity state may lose its stability through a Hopf bifur-

cation leading to time-periodic solutions.
With respect to the current trend in physics, the interest

of our results stems from the fact that they arise in a sys-
tem of ordinary differential equations. Indeed, quasi-
periodicity in dissipative systems has recently been studied
analytically by replacing the system of ordinary differen-
tial equations which is assumed to produce two successive
Hopf bifurcations by a set of finite-difference equations
modeling the Poincare map just after the second Hopf bi-
furcation. ' ' This transformation from the original
equations to the discrete equations presents, however,
many practical difficulties. On the contrary, we stick to
our original system of differential equations and systemat-
ically construct the time-periodic and quasiperiodic solu-
tions using a multitime perturbation procedure. A numer-
ical investigation of these equations reveals no further bi-
furcation in the vicinity of the secondary Hopf bifurca-
tion. As the bifurcation parameter is increased, the solu-
tion smoothly evolves from a nearly harmonic modulation
to a pulsed solution.

Besides the description of quasiperiodicity in the LSA,
our analysis has a second interest. Indeed, we show that
complex time-dependent behavior may be observed in the
low-intensity regime. This aspect has been frequently
neglected in the recent literature of the LSA principally
devoted to medium- or high-intensity regimes. '

Two aspects of the LSA will not be considered in this
paper. First, we assume perfect tuning. This means that
the state variables are real and we do not investigate the
possible destabilizing effects of the phases. Second, since
we concentrate on the low-intensity domain, we do not in-
vestigate the optically bistable character of the system
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and, in particular, the transition to the upper stable or un-
stable state.

The mean-field equations for the monomode, homo-
geneously broadened LSA corresponding to the class of
solutions with perfect tuning are given by

—+K E =Nv+N u,

—+yz v =g BE,
dt

—+yj u=g BE,-=-2-
dt

equations (1.1) must be solved with the initial conditions
for E, U, U, D, and D. They are suggested by the experi-
mental situations,

E(0)=E; «1,
U (0)=U(0) =D (0)—0 =D(0) —o =0 .

From numerical simulations of the LSA equations, it
is known that quite different behaviors can be observed
when the control parameters are slightly changed. More-
over, even if the parameters are fixed, bistability and
birythmicity (i.e., bistability between two time-periodic
solutions) are possible responses of the LSA. In order to
classify the possible solutions of the LSA equations and
describe their properties, asymptotic approximations are
particularly useful. Although these approximations are
generally valid in sufficiently small neighborhoods of crit-
ical values of the parameters, they reveal the principal
mechanisms leading to the existence of distinct solutions.
In Ref. 3 we concentrated on the case where the zero-
intensity state admits a double zero eigenvalue, i.e., when

2
g Ncr

Kfg
(1.2)

Here E is the electric field amplitude and U (U ) and D (D)
describe the polarization and the inversion of population
of the amplifying (absorbing) atoms. X (N) is the total
number of amplifying (absorbing) atoms; g (g ) measures
the strength of the interaction between the field and the
amplifying (absorbing) atoms. By scaling the time r with
the cavity decay rate v and defining new dependent vari-
ables, the number of independent parameters can be re-
duced to seven. They are (i) the two control parameters

(1.10)

with

I~/~~0, X(~/~=0(e) (1.12a)

This analysis indicated that when A~, and A~„
time-periodic solutions of large periods may exist in the
low-intensity regime. In this paper, we examine a dif-
ferent case: the limit

g¹.
Kgg

(1.3)

corresponding to the pump parameters for the amplifying
and absorbing atoms, respectively; (ii) the atomic decay
rates

(1.5)

and
d ='pi /K,

(1.6)

and (iii) the ratio of the saturation intensity of the absorb-

ing to the amplifying atoms

(1.8)
g XiV/f

Because of this large number of parameters, analytical in-

dications are necessary before a sensible scan of the pa-
rameter space is undertaken numerically. The evolution

d =O(1) and d=O(1) . (1.12b)

II. STEADY STATES

Equations (1.1) admit steady-state solutions given by
the following.

This limit is in agreement with the experimental estima-
tions of y~~ and ~ given in Ref. 12. Moreover, from the
theoretical point of view, this case enables us to analyze
the stability of time-periodic solutions in a simple way. In
particular, as we shall demonstrate, the secondary bifurca-
tion to quasiperiodic solutions can be described in detail.

The paper is organized as follows. In Sec. II we
describe the bifurcation possibilities of the zero-intensity
state (the basic state). In Sec. III, we analyze the bifurca-
tion from the basic state to a branch of time-periodic solu-
tions and show that it becomes singular when e ap-
proaches zero. %e then propose in Sec. IV a new expan-
sion of the time-periodic solutions for e near zero. This
analysis allows us to predict a secondary bifurcation point
to quasiperiodic solutions. These solutions are character-
ized by two incommensurable frequencies and are studied
in detail in Sec. V. Finally, Sec. VI gives a summary of
the results and discusses future problems in the bifurca-
tion analysis of the LSA equations.
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(1) The zero-intensity state:

E=v =v=0, D=o. , D=o . (2.1)

aI +I(a+1—aA —A)+1 —A —A =0,
with

(2.2)

(2) The nonzero intensity states. Defining the intensity
by I=SE, where S=—4g lyly~~, the nonzero intensity
states correspond to the real and positive roots I+ and l
of the following quadratic equation:

(2.6)N

The periodic solutions were constructed in Ref. 3 when A
is near A*. In Sec. III, we give the solution of the com-
plete time-dependent problem when ~A —A"

~

~0 and
show how the perturbation expansion becomes singular
when e~O. Then, in Sec. IV, we propose a new expansion
of the time-periodic solutions valid when e—+0.

(ii) If A &A„(2.1) is unstable when

g DE
U =

Xl
g DEU=

Vl

D=, D=1+I ' 1+aI '

(2.3)

A)A —= 1 —A. (2.7)

corresponds to the bifurcation from the basic state
(2.1) to either I+ or I . From (2.2), we find that the bi-
furcating solution is given by

We consider A as our bifurcation parameter. Then, from
the linear stability analysis, ' we find that the basic state
(2.1) becomes unstable under the following conditions: as-
suming that

(2.4)

+O((A —A')') .
1+A(a —1)

(2.8)

(2.9)

From the linear stability analysis, we find that (2.8) de-
scribes a stable steady state when

a & 1 or a ~ 1 and A & —(a —1)

there exist two distinct cases.
(i) If A &A„(2.1) is unstable when

(A —A, ) d~
=Ac 1+

d
(2.5)

[see Fig. 1(b)]. Otherwise, when A surpasses A, the sys-
tern presents a jurnp transition to a large-intensity regime
[see Fig. 1(c)]. This final regime can be a steady state or a
time-dependent state. We do not analyze these solutions
here.

III. TIME-PERIODIC SOLUTIONS

~ax Q)

/SS

(a)
SS A A A

~ax(I)
ss

(b)

A

A =A is a Hopf bifurcation to a branch of time-periodic
solutions [see Fig. 1(a)]. As A tends to A" from above, the
oscillations tend to zero in amplitude and the frequency
co(A) tends to the critical frequency co' of the linear
theory, i.e.,

x =col(E, U, U, D —o, D —o')

=x(T,r, 5)=x&(T,r)5+x2(T, r)5 + . . (3.2)

where T and r are defined by

From our previous analysis, we know that when A &A„
A =A is a bifurcation point to a branch of time-periodic
solutions. In this section we give the time-periodic solu-
tions of Eqs. (1.1) when A is near A*. Then we show how
our expansion of these solutions becomes singular when
E~O The . bifurcation analysis directly follows the
analysis given in Ref. 3. We shall use the same notation
and briefly describe the main results.

We first define the small parameter 5 by the following
relation:

NA-A*="' 5", (3 1)
Kfy

where c =+1 when A —2*&0. Then, we seek a solution

of the evolution equations (1.1) of the form

T =co(5)t =(co +co25 + )t,
~=t5

(3.3)

(3.4)

tcJ

ss A A

FIG. 1. The primary bifurcations. The bifurcation possibili-
ties of the zero-intensity state are represented in (a)—(c). SS and
TP in these figures correspond to steady and time-periodic
states, respectively. Solid and dashed lines represent stable and
unstable solutions. Arrows indicate the possible evolution of the
LSA system when A is slowly increasing in time.

E, =e,g+e,g'+ (3.5)

After introducing (3.1)—(3.5) into Eqs. (1.1) and equating
to zero the coefficients of each power of 5, we obtain a se-

quence of linear problems for x &,x2, . . . . Each problem is
solved by using the solvability and initial conditions. We
find that

We also assume a similar expansion of the initial condi-
tions (1.9) with
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x =[a(v)rle' +c c. ]5. + t [a (r)rle' +c.c.]+(a r2e ' +c.c.)+aa*roI5 +0(5')+y(T, v),

where y denotes a rapid, exponentially decaying function
of T. The characteristic relaxation times of y are given by

I

first approximation given by

(3.18}
Tl =CO/y~~, TI =CO/y~~, Tl =CO/(IC+yl+yl) .

Tllc vcctol's r I, r2, alld ro al'c defined by

(3.7)
g N (d —d) ec
dd 8(d+1)(d+1) (g /d —g /dkI)

r I
—col( l,p, q, 0,0),

r2 ——col(0,0,0,pl, ql ),
~r =col(0,0,0,po, qo),

where

(3.8)

K
p= 'A"(y, +ie)*) ', q= /I(yl+i~*) ', (39}

p2
———4p(y~~+2lhl ), ql= —4q(j ~~+21 )

(3.19)

and the phase 8 remains arbitrary. The e in {3.19) appears
because of (1.12a). From (3.6) and (3.14), we conclude
that (3.18) and (3.19) correspond to the basic state and the
time-periodic solutions of Eqs. (1.1), respectively. From
(3.16), it is also possible to study their linear stability; we
have found that (3.18) is stable if

{3.20}

and (3.19) represents stable solutions if c ~ 0 and

(3.10) g /d —g /dkl &0. (3.21)

a,=a(R +aa*S), II(0)=&;(el ), (3.12}

~here

R = icol+g—cp'*/(1+pp'*+qq' ),
S =[g'p" {pa+pl)+g 'q" (qo+q»]/{ I+pp" +qq'*»

pc= —4(p+p*}y~T' qo= —4{q+q'}y ~T'.

In (3.6) and (3.11),a*,p*, and q* denote the complex con-
jugates of a, p, and q. At the 0 (5 ) stage of the perturba-
tion analysis, a is obtained from the solvability conditions.
They require that a satisfy the following ordinary dif-
ferential equation:

Under condition (3.21},the bifurcation to the stable time-
periodic solutions is supercritical, as shown in Fig. 1(a).
On the other hand, if (3.21) is not satisfied, the bifurcation
is subcritical and the small-amplitude time-periodic solu-
tions are unstable. %"hen A surpasses A*, the system
jumps to a large-amplitude regime which cannot be
described by our analysis (see Fig. 2).

When e~O, we observe from (3.19) that the amplitude
of tllc tl111c-pcrlodlc sollltloIls ls p =0 (e' ). Mol.covcl. ,
from (1.12), (3.15},and (3.9)—(3.11), we note that p, q, pI,
and q2 are 0(1) quantities but po and qo are 0(e ').
Then, the analysis of the two first terms in the expansion
(3.6) as e~O indicates that the expansion becomes nonuni-
form when 5=0 (e'/ ) or equivalently when

P'=X(y& iso') ', —q'=N(yl i CO*)— /1 —2*=0(e) . (3.22)

and p'* and q" represent the complex conjugates ofp' and
q. Equation (3.12) is the bifurcation equation and its
steady-state solutions correspond to the time-periodic
solutions of Eqs. (1.1).

We now concentrate on the limit e—=y~~/I~~O. The
analysis is elementary but tedious, so that we only summa-
rize the results and omit all details of the calculations.
Defining p, 8, and k by

(3.14)

k (e) =y~(/y(~ =k 1+0(e), (3.15}

we find from (3.12) that the amplitude p and the phase 8
satisfy the following equations: ma, x(I)

/ ss

We also note that in this critical regime, two of the
characteristic relaxation times (3.7) become comparable to
the slow time (3.4). Thus, we must reexamine the com-
plete time-dependent problem when (3.22) is satisfied. In
Sec. IV we present a new expansion of the solutions of
(1.1) when e—+0 and iA —/I'

i
~0 and show the ex-

istence of both time-periodic and quasiperiodic solutions.

IV. qUASIPERIODIC SOLUTIONS

The analysis presented in Sec. III indicates that expan-
sion (3.6) of the time-periodic solutions becomes singular

p =p(R'+p'S'), p(0)=p;(el ),
p8,=p(R"+S"p ), 8(0)=8; „

(3.16)

A A

where R' and S' are complicated functions of the parame-
ters with the property that

R'=0(1) and S'=0(e ') . (3.17)

As e~O, the two steady-state solutions of (3.16) are in the

FIG. 2. Subcritical bifurcation of time-periodic solutions. In
this figure we assume that the branch of time-periodic solutions
admits a limit point and large-amplitude solutions. Then, when
A is slowly increasing in time and surpasses 2, the I.SA system
will jump to these large-amplitude solutions.
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x =x(T', ~', e) =ex'(T', r')+e x2(T', r')+ (4.1)

(4.2)

when (3.22) is satisfied. It also suggests that the appropri-
ate expansions of x and A —A in this critical regime are
given by

three equations of (4.8) are given by

g N 1 (d+1)
'Vx d

g'N 1 (d+1) G)0,
(4.9)

where T' and w' are defined by

T =(co +ecoi+ ' ' )r, T =et . (4.3)
8=-8—A, &0, C=-8—g, )P,

1V
(4.10)

The leading-order term in (4.1) must be 0(e) because
5a=0(e) in (3.6) when A —A'=0(e). Similarly, the
definitions of T' and r' are motivated by (3.3) and (3.4)
since 5 =0(e) when A —A*=0(e). As in Sec. III, we
find the different unknown vectors x~,x2, . . . by inserting
(4.1)—(4.3), (3.15), and (1.12) into Eqs. (1.1) and applying
the solvability conditions. We then obtain the following
results: p=P=P=o, (4.11)

where G is a complicated, positive function of the parame-
ters. It is not necessary to know its explicit form for find-
ing the possible solutions of Eqs. (4.8). Moreover, P2 and

Q2 only appear in (4.8d) and the determination of p, P,
and P by Eqs. (4.8a)—(4.8c) does not depend on them.

We now examine the steady-state solutions of Eqs. (4.8).
They are given by (i)

U =e a(r') p e' +c.c. +0(e ), (4.4)
which is the basic state solution of (1.1). From (4.8), we
find that it is stable if

q

P(r')
=e —,+0(e ),

o.) (0,
(4 5) which implies from (4.2) that A &A*; and (ii)

(4.12)

where p and q are defined by (3.9). The amplitudes a, P,
and P must satisfy a system of three ordinary differential
equations given by

P=Bp la, P=Cp /k, ~,

p = —[o iPizki l(PiBki+ Qi C)])0,
~i =P2ai+P2P+ Q2P,

(4.13)

(4.14)

a, =a( i co~+Pa—~+PP+ QP),

P, = aP+B—aa",

P, = —~k(P+Caa",

a(0) =a;, P(0) =P(0)=0,

(4.6)

where the initial conditions are obtained from (1.9) and an
expansion of E; in a power series of e. The coefficients P,
Q, B, and Care defined by

g P
1+pp' +qq

g q

1+pp'*+ qq'*

p~=p(Piai+PiP+QiP»

P, = aP+Bp—
P, = —~k&P+Cp

p(~ +~i P2oi »P QzP—) =o, — —

p(0) =p;, 8(0)=8;, P(0) =P(0)=0,

(4.8a)

(4.8b)

(4.8c)

(4.8d)

(4.8e)

where P =P~+iP2 and Q =Q, +iQ2 Equations (4. .8) are
the new bifurcation equations: corresponding to each
solution of (4.8), we obtain an asymptotic approximation
to a solution of the LSA equations (1.1) for small e. The
expressions of P&, Q&, B, and C which appear in the first

B = —4(p*+p), C = —4(q*+q),

where p' and q' are defined by (3.13). With the use of
(3.14), Eqs. (4.6) can be rewritten as

which corresponds to the time-periodic solutions of (1.1).
For example, E is obtained from (4.4) and is given by

(4.15)

where p is given by (4.13) and the frequency correction is
defined by (4.14). From (4.13), we note that the bifurca-
tion is supercritical (subcritical), i.e., p is defined in the re-
gions o.

& & 0 and cr& & 0 if, respectively,

P|Bk,+QiC &0,

PiBki+QiC) 0,
or, using (4.9) and (4.10), if

(4.16)

(4.17)

(4.18)

(4.19)

—& k)(1+k))+2p (P)B+Q(Ck)) &0. (4.20)

By using (4.9) and (4.10), we note that the coefficient of p
in (4.20) is positive if

kj) g (4.21)
g

g
g d

gki(
g d

Thus, if the state is supercritical (subcritical) then it exists
for A )A" (A &A ). The linear stability of these solutions
is found from Eqs. (4.8) and is determined by the Routh-
Hurwitz conditions. ' In addition to (4.16), they require
that
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If (4.18) and (4.21) are simultaneously satisfied, it can then
be shown that the solutions given by (4.13) and (4.14)
change stability at a critical amplitude defined by

For example, E is given by

E =e[p(~')e'""e'(" + ' ')'+c.c.]+O(e'), (4.28)

a.2ki(1+k, )

2(Pi8 +Qi Cki )
(4.22)

where p(~') and I"(~') are time-periodic functions of ~'.
As 3 approaches A**, they are characterized by a frequen-
cy close to co(2)/e.

2 (PiBki+QiC)
0'~ =0

&
= —

P& P(~k)
(4.23)

When A'*=A (oi'), where A**&A' is related to g.*,
"

by
(4.2), i.e.,

2
A*' =A" + [eo i*+0(e )],

Kfg
(4.24)

a Hopf bifurcation from the nontrivial steady states (4.13)
to time-periodic solutions of (4.8) is then possible. Thus,
it corresponds to a secondary bifurcation from the time-
periodic solutions of (1.1) to quasiperiodic solutions. In
Sec. V this bifurcation is shown to be supercritical and
thus exists for A &A"', as shown in Fig. 3. These quasi-
periodic solutions are characterized by two distinct fre-
quencies. As

~

A —A**
~

tends to zero, the first frequency
approaches the frequency of the time-periodic solutions,
evaluated at A =A'*, i.e.,

Using (4.22) and (4.13), we find the corresponding value of
0')'. V. NUMERICAL RESULTS

x, =x (pi —y +p2z),

A = —3'+& 2

Zg = —P3Z +X2

(5.1)

where x, y, z, and t are proportional to p, f3, P, and w',

respectively. The bifurcation equations now depend on
three parameters: p& which is proportional to —o.

&, p2,
and p3 which are given by

dgP2= 2 13=k& ~

dg
(5.2)

In this section, we analyze the time-periodic solutions
of the bifurcation equations (4.8a)—(4.8c) and describe nu-

merically the Hopf bifurcation. By defining new depen-
dent and independent variables, Eqs. (4.8a)—(4.8c) simpli-
fy considerably:

co(1)=co*+euii(0 i*)+O(e ) . (4.25)
Then, the nontrivial steady-state solutions of (5.1) are
given by

max (I)
QP

/

/
/

/
/

/
J»

/ss

SS A A A A

FIG. 3. Secondary bifurcation to quasiperiodic solutions. We
represent the two successive Hopf bifurcations leading to stable
quasiperiodic (QP) solutions.

On the other hand, the second frequency tends to the criti-
cal frequency associated with (4.22) and obtained by the
linear stability analysis of (4.13). It is given by

2p, (PiBki+QiC)
co(2) =e (4.26)

(1+ki )

In summary, our stability analysis of the steady-state
solutions of Eqs. (4.8) reveals the possibility of a Hopf bi-
furcation for these equations. This bifurcation appears if
(4.18) and (4.21) can simultaneously be satisfied. Since
[from (4.4) and (3.14)] the possible time-periodic solutions
of (4.8) correspond to quasiperiodic solutions of (1.1), we
can describe these quasiperiodic solutions by just studying
the time-periodic solutions of (4.8). This analysis is
presented in Sec. V. Assuming that such solutions exist
for the amplitudes p, P, and P, we then find from (4.8d)
the following expression for 8:

8(r') = co,v'+ I (~'), —
(4.27)

I (~') =P2017 + f [P2P(s)+Q2P(s)]ds .

y =x, z =x /p3, x =p, /(1 —p2/p3)&0 (5.3)

and the Hopf bifurcation is possible under the following
conditions:

—1

p3 &72 ~ 5'3 &12

The bifurcation equations (5.1) are analyzed numerical-
ly by a computer program which finds steady and
periodic solution branches using continuation methods,
and determines their stability properties. Typical parame-
ter values of p2-—-0.2 and pi ——6.0 are used in the compu-
tations. They satisfy conditions (5.4). The numerical
analysis finds the predicted Hopf bifurcation point at
pi ——pi, -101.5. A supercritical branch of periodic solu-
tions bifurcates from this point and is stable at least as far
as p]-5@~,. The bifurcation diagram is shown in Fig. 4
(see also Fig. 3), where the maximum value of x is plotted
against the bifurcation parameter pi. In this figure, the
lower and upper branches represent the steady and period-
ic solutions of (5.1), respectively. The periodic oscillations
are harmonic near p &, and tend to become pulsed as p ~ is
increased. This may be noticed by looking at Figs. 5 and
6(a), where x is plotted against cot (co is defined here as the
frequency of the periodic oscillations). In Fig. 6(b), we
represent the corresponding x-z phase plane. We observe
that for pi ——pi(3), the limit cycle is elliptical and the time
response is sinusoidal. By contrast, when pi ——pi(5), the
ellipse is largely deformed and the time response is sharp-
ly pulsed. From our numerical simulations, we also note
that the period of the oscillations does not increase signifi-
cantly along the periodic branch: from p i ——p i (1) to
pi ——pi(5) the period increases from 0.4808 to 0.5793.
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max (x} x
(5}

100-
75-

50-

25- p„(3}

i

400100
0-
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'
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(b} Z

200-

100-

2TC (dt
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I e I I I I~ T 1.50 (103)

1 .00

p(et) is obtained by solving Eqs. (4.8a)—(4.8c). As A ap-
proaches A", p and I' have the following asymptotic
behavior (see the Appendix}:

p(et) = + cos(co**et)
eI 1 eI 2

(6.7)

0.00
I (et) =etl 3+0([(A —A'")/e]'~'), (6.8)

1 .00 t s.oo

(1) When A =A' [A' refers to the primary Hopf bifur-
cation point and is defined by (2.5)], the LSA equations
(1.1) admit a bifurcation from the zero-intensity state to a
branch of time-periodic intensities given by

FIG. 8. Quasiperiodic pulsating intensities. As in Fig. 7, we
represent the intensity I =x (et)cos (t) as a function of t. x is
obtained from Eqs. (5.1) with p2 ——0.2, p3 ——6, p &

——170.2
[p~ =p~(3)], and @=0.013. At this larger value of the bifurca-
tion parameter p &, we observe a quasiperiodic pulsed behavior.

d =0(d)~Do (6.9)

where ro'*=to(2)/e and co(2) is defined by (4.26) and I'q
and I s are constant coefficients independent of A. The
numerical simulations of Sec. V, as well as the analytical
study presented in the Appendix, indicate that when
A &A", the LSA system may present a transition from
stable oscillations to stable quasiperiodic oscillations (see
Fig. 3).

In this paper, we have analyzed the limit (1.12) of the
LSA equations. The question remains open whether a dif-
ferent order of magnitude for d and d may qualitatively
change our bifurcation results. To answer this question,
we have examined the asymptotic behavior of the expan-
sion (4.1)—(4.3) when

I(t) =e — cos (ro*t)+0(e ),(A —A*)

r,
where

(6 1) and when

d =0(d)~0. (6.10)

(6.2)

1.e.,

g K g K )0" ~ll d
'V~~

then the zero-intensity state transfers its stability to time-
periodic solutions. Otherwise, i.e., when A g 3' but
I"1&0, the system jumps to large intensities as it is sug-
gested in Fig. 2.

(2) If, in addition to condition (6.3), the following con-
dition is satisfied:

g K g K (0 (6.4)

and I
&

is a constant coefficient independent of the bifur-
cation parameter A. The frequency co' of the time-
periodic oscillations is given by (2.6). When A &A* and if

(6.3)

In the first case, we observe that our perturbation analysis
remains valid for all values of d and d, i.e., the expansion
(4.1}of the solutions remains uniform even if d and d be-
come large. In the second case, however, we find that the
expansion (4.1) of the solutions become nonuniform when
d =0 (d ) =0 (e). In this critical regime, a new expansion
of the solutions is needed in order to give a correct
description of the solutions. This new regime will not be
investigated in this paper. In conclusion, our perturbation
analysis in the limit a~0 remains qualitatively valid for
all d and d in the range e & 0 (d) =0 (d ) & co.

The results of our analysis are limited by two major
points. First, we do not study the complete initial value
problem of the LSA equations. Therefore, we cannot dis-
cuss the chances that these low-intensity regimes can be
observed experimentally. In future work, we intend to ex-
plore in more detail this problem by numerical integration
of the LSA equations. Second, from conditions (6.3) and
(6.4), we observe that quasiperiodic solutions are possible
when e & 1 and A —A' =0 (e) only if

then when A =A'* [A" refers to the secondary bifurca-
tion point and is defined by (4.24)], the LSA equations
(1.1) admit a bifurcation from the time-periodic intensities
to quasiperiodic intensities given by

I(t)=e p (et)cos [ro't + I (et)]+0 (e'),
still with

A —A*=0(e}.

(6.5)

(6.6)

The function I (et) is defined by (4.27) with r'=et and

IC K
(6.11)

Antoranz et al. have concluded from their numerical
analysis that quasiperiodic solutions may also exist if
y~~/ir=y~~/z. In order to explain this different result, we
started a new perturbation analysis which investigates the
simultaneous limit @~0 and A —+A„where A, is defined
by (1.11). Moreover, we have directly studied the proper-
ties of the LSA equations by integrating numerically these
equations when y~~/x =y~~/~. The results will be present-
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ed elsewhere. They indicate the existence of three families
of periodic solutions with quite distinct properties. Thus,
the complexity of the time-dependent response, even in the
low-intensity conditions, is rather surprising and em-
phasizes the need for asymptotic theories to reveal the
principal mechanisms which are responsible.

Our study of the LSA equations in the low-intensity re-
gime has another interest: the LSA solutions exhibit mul-
tiple similarities with the solutions described for double-
diffusive convection. ' The latter problem also de-
pends on two control parameters and the conduction state
admits a bifurcation to time-periodic solutions as well as a
bifurcation to steady solutions. We hope that our analysis
of the mechanism leading to quasiperiodic solutions in the
LSA equations will suggest a new approach to obtain the
same type of solutions for the more complicated double-
diffusive convection equations.
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Equation (Al) admits a nontrivial steady-state solution
given by

P3 —P2
(A4)

p3+I p3

2(pzp3 —1)
(A6)

Moreover, as Ro tends to R„ the deviation R (t) Ro a—p-
proaches zero and the frequency o of the oscillations
tends to the critical frequency of the linear theory, given
by

' 1/2
2R, (p3 p2)—

1+p3

In order to study the time-periodic solutions, we first sim-
plify Eq. (Al) by defining the new variable

(A8)

and from the linear stability analysis of (A4) we observe
that a Hopf bifurcation is possible if and only if

p3 Qp2 and p3 )p2 (A5)

Under the conditions (A5), we expect a transition from
R =R11 to time-periodic solutions R =R(t) at a critical
amplitude defined by

APPENDIX: HOPF BIFURCATION IN EQS. {S.l)

In order to study Eqs. (5.1), it is mathematically con-
venient to analyze an equation for R=:x, only. This
equation can be obtained from (5.1) by decoupling the
variable y and z. We find that R must satisfy the follow-
ing equation:

R' R' R'
2R

' '+"+
2R

+R (p3 p2) plp3

w(T, q) = W —lm, =qw, (T)+q'w, (T)+ ~ . ~, (A10)

where T=at (cr is the frequency of the oscillations) and rI
is the "amplitude" of w, defined according to the
Poincare-Lindstedt method by

and by considering the following equation for 8':

W"'+(I+p3) W"+ W'[p3+2(1 —pz)e ]

+2(p3 p2)e —2p1p3 ——0 . (A9)

Then, we construct the time-periodic solutions by seeking
solutions of the form

where the prime denotes d/dt and y and z are related to R
by

=1 f [w (s, rI)e "]ds . (Al 1)

t
I

R'—P]P3+ 2R
+R (1—p2)

r

R'
3 =(1 p3) ' p3—

2R
In addition to (A10), we also expand the unknown fre-
quency cr and the bifurcation parameter Ro as

z = [p2(1 p3)]—R'
2R

)

R'—P&+ 2R
+R (1—p2)

(A2)

(A3)
l

o(q) cr, =g —o.2+2

Ro(rj) —R, =rj R2+ .
(A12)

(A13)

When (Al 1)—(A13) are substituted in (A9), we obtain a se-
quence of reduced problems, of which the first three are

I w1 =cr (w 1 +w1 )+cr ( 1+p3 )(w j~+ w1) =0,
Lw2= —2crcw1(1 p2)Rcw1 —(p3 p2—)Rcw1 ~—

1(1—p2)R, (w2+w1/2) —2cr, w2 (1 p2)R, w, —

2(p3 p2)Rg(w, w, +w', /6) —R2[2cr, w1(1 —p2)+2(p3 —p2)w1]

—cr, [3cr,'wI" +2(l+p3)cr, wI'+[p3+2(1 —p~)R, ]w1] .

The homogeneous problem (A14) has the solution

(A15)

(A16)
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N] =e +C.c. (A17)

where c.c. denotes complex conjugate. Problems (A15) and (A16) are inhomogeneous forms of (A14). In order to admit
bounded solutions in T, the right-hand sides of (A15) and (A16) must satisfy a solvability or orthogonality condition.
For Eq. (A15), this condition is always satisfied and the solution of (A15) is given by

N2 = —1+/pe +C.C.

where q2 is a complex coefficient defined by

Rc (a+i p)q2=
3o, (1+p3) +4o,

a=(1+p3)(p3 pp)+4o,'(1—p2),

P=2o, (1 p2p3—) .

(A18)

(A19)

We now substitute (A17) and (A18) into the right-hand side of (A16). Problem (A16) will have bounded solutions only if
the forcing term is orthogonal to e' . The orthogonality condition requires that

—o,2(1—p2)R, ( i +—iq2+i/2) —2(p3 —pz)R, ( —1+q2+ 2 )

—R, [2(1—p, )io, +2(p3 —p&)] —o,[—2io,' —(1+p3)2o', ]=0 . (A20)

Then, from the real and imaginary parts of (A20), we determine the unknown quantities R2 and cr2 Th.e time-periodic
solutions bifurcate supercritically if R2 & 0 and as a consequence are linearly stable solutions. We have verified that this
will be the case when p3 »1, pz ——O(l). Thus, we have shown analytically that Eqs. (5.1) admit stable time-periodic
solutions as suggested by our numerical simulations for pz ——0.2 and p3 ——6.
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