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Resonant self-focusing of a cw intense light beam
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A single pass of an intense cw light beam through a strongly absorbing medium can be character-
ized by two parameters, the input on-axis intensity normalized to the saturation value Ioo, and the
Fresnel number I' for an absorption length a '. For both large Io 0 and I', propagation can be di-

vided in two parts: At the very beginning, the transverse profile of the beam experiences an encod-

ing. For a beam tuned exactly on resonance, encoding reduces to a stripping of the profile from the
wings to the center, progressively, as the light beam goes further into the cell. For F»1 and

Ip 0 » 1, and both of the same order of magnitude, this stripping can be modeled by a circular aper-
ture placed at the end of the encoding region. Afterwards, the beam is assumed to propagate in free
space, its profile exhibits Fresnel interferences and on-axis enhancement. Using a perturbative treat-
ment, the width and the location of the aperture are analytically estimated, and the model is success-
fully compared with numerical predictions of on-resonance self-focusing. For Ioo (F, the stripping
and free-space propagation cannot be separated because near-axis stripping coexists with large dif-
fraction effects on the wings. This case, the best for observing cw on-resonance enhancement, would

gain in a more sophisticated model, taking into account diffraction by successive apertures.

I. INTRODUCTION

Numerical simulations of Boshier and Sandie on the
propagation of a cw light beam through a two-level
resonant medium have recently predicted spectacular
self-focusing effects. ' Such an on-resonance reshaping
was unexpected for an absorbing medium without non-
linear refractive index, ' since self-focusing was known to
result from a self-lensing effect of the coupled field plus
atoms system. This self-lensing effect first implies the ex-
istence of a refractive index and then a transverse gradient
of the refractive index. ' For a cw light beam, this re-
quires a detuning 5 between the atomic transition frequen-
cy and the carrier one. In a transient regime self-focusing
may happen even for vanishing 5 because the time varia-
tion of the phase of the electric field induces an instan-
taneous detuning giving rise to a refractive index. This
self-focusing of optical pulses, predicted and analyzed by
Newstein and colleagues ' was experimentally confirmed
by Gibbs and colleagues.

The purely absorptive cw self-focusing effect was inter-
preted as joint effects of nonlinear absorption changing
the transverse profile of the beam and diffraction acting
on the distorted shape. ' Boshier and Sandie' (BS) pointed
out that the distortions of the beam, followed through the
cell, look like near-field patterns of the diffraction of the
light by a circular aperture, formed by the absorbing
medium.

In this paper, we are dealing with an analytical descrip-
tion of the on-resonance enhancement taking the results
and comments of BS into account. In Sec. II, the pertur-
bation expansions ' ' ' ' successfully used for predicting

the cw off-resonance enhancement are extended to the BS
on-resonance case. The perturbation treatments of the
diffraction break down when diffraction becomes
relevant. Nevertheless, they give the focus point, just de-
fined by the penetration at which the intensity diverges.
In the on-resonance case, and for the range of parameters
considered by BS, the perturbation treatment exhibits the
divergence of the field amplitude on the wings of the
transverse profile: an enhancement is first reached out-
side the axis and the intensity profile exhibits a doughnut
shape. The perturbation treatment breaks down from this
focus and cannot simulate properly the diffraction carry-
ing away energy from the wings of the beam to its center.
This particular building of the on-axis enhancement, as
the beam propagates forward, requires a treatment of the
diffraction allowing an accurate communication between
the wings and the near-axis region of the beam profile.

Therefore, we are led, as in Ref. 8 (referred to as I), to
model the effects of the nonlinear absorption and the dif-
fraction, taking the on-resonance BS case particularly into
account. ' Typically, I displayed large reshaping effects
when both the on-axis input intensity normalized to the
saturation intensity for an atom Ip p and the Rayleigh
length zd normalized to the absorption length a ', are
much larger than unity, i.e.,

Ipp))1

I' =Qzd ))1
with

2
Zd =

z keep
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where k and wp are the wave number and the waist of the
amplitude profile, respectively. This is, too, the situation
described by BS. The differences between I and Ref. 1

essentially lie in the order of magnitude of Ioo with
respect to F:" In I, we were dealing with

F»Ip, p (3)

(and in a general manner for any detuning 5), whereas
on-resonance self-focusing (OSF) is found for F of magni-
tude of order Io0. Typically we will discuss two cases,
the first, or BS2 case, taken in Fig. 2 of Ref. 1,

F=60, Ip p ——100, (4a)

and, the second one, or BS3 case, taken in Fig. 3 of Ref. 1,

F=500, Ip p
——225 . (4b)

rp=
Wp

then for p such that Io(p) is much larger than az, the
medium looks transparent; for Io(p)=az, there are high
nonlinearities and the profile is strongly absorbed; finally,
for Ic(p) &&uz, the local intensity I(z,p) obeys the well-
known Beer's law.

As previously discussed in I and as it will be shown in
Sec. II, large diffraction effects require large nonlineari-
ties with respect to Ip 0 in the absorption process, i.e., for
the set of coordinates (z„,p„)such that

—2p
cxzst Ippe

with

(7a)

CXZst ((CXzd

or

zst Ip0
e ~ ((1.F (7b)

This latter relation allows one to distinguish the cases
studied in I from those found by BS and studied here. In
I, the ratio Io 0/I' is much smaller than unity, so that in-

equality (7b) is fulfilled for any p on the beam profile.
Here, it is not true for all values of p; inequality (7b) im-

BS2 and BS3 cases are actually contrary to the cases en-
countered in I. Nevertheless, the description of the distor-
tion of the light beam through the cell can be qualitatively
the same because of large Ioc. At the beginning of the
propagation through the cell, diffraction is negligible; the
beam undergoes only the absorption process which
displays a nonuniform behavior along its profile, because
of Io 0 ))1. The beam is said to experience an encoding
of both its amplitude and its phase (if 5&0). In a general
manner, at a given az &&E in order that diffraction may
be neglected, the intensity profile can undergo three dif-
ferent regimes, depending on the transverse variable. The
input intensity profile Io(p) is assumed to have a Gauss-
ian shape

—22
Ip(p) =Ip pe

with

plies a lower bound upon p in order to be satisfied.
In the model in I, the nonlinear absorption affects the

whole profile at the very beginning of propagation, so that
the cell can be roughly divided into two parts. The first
one goes from zero to an abscissa referred to in I as z~r,

ZNL Ip 0

zd F
where the whole profile experiences encoding of its phase
and of its amplitude. This latter is stripped on its whole
profile and, roughly speaking, exhibits a Gaussian shape
of width equal to Io ' . Afterward, from z~L, diffraction
works alone, revealing the encoding effect of the non-
linearities by the free-space propagation. This model has
been shown to have a range of validity by comparing it to
numerical simultations" and experiments.

In the on-resonance case, the encoding reduces to a
stripping of the wings of the beam profile, while the
near-axis region of the profile propagates as through a
transparent medium. Diffraction becomes important be-
fore the on-axis intensity is absorbed. Let us notice that
this circumstance leads to an on-axis enhancement. As in
I the cell can be divided into two parts. The first one
from zero to an abscissa z„where the beam profile under-
goes stripping of its wings. This stripped profile will be
approximated by a truncated Gaussian of full width Zp„,
related to z„bythe law (7a). From z„,the diffraction is
assumed to work alone, giving rise to Fresnel interferences
by a circular aperture. This model, which assumes that
the atomic medium behaves like a circular aperture, leads
to profiles which agree with the numerical profiles report-
ed by BS. As will be discussed in Sec. III Fresnel interfer-
ences from z„will be compared with the profiles resulting
from the free-space propagation of the stripped ampli-
tude.

In summary, the model that we propose to interpret the
BS calculations' is qualitatively identical to I. Neverthe-
less, if it is justified to neglect the effects due to nonlinear
absorption after z&L in the model in I, because the intensi-
ty is locally smaller than unity on the whole profile,
whereas it is more questionable here after z„,because the
near-axis intensity is still larger than unity. This problem
will be discussed in Sec. III. Two situations appear. For
F (Io o (BS2) the aperture is large enough in order that
az„is much smaller than Ip 0. Therefore, nonlinear ab-
sorption near the axis does not compete with the Fresnel
interferences. In the opposite case, F)IOO (BS3), the
aperture we define leads to az„not small enough with
Iespect to Ip 0. Nonlinear absorption of the on-axis inten-
sity can no longer be neglected after z„,and the present
model is too crude. This latter situation, as already seen
on the BS curves, will be shown to be the best one for very
large enhancement.

In Sec. II a perturbation expansion is developed and
leads to an estimate of z„andp„.In Sec. III diffraction
from a truncated Gaussian is discussed with respect to BS
calculations as a function of z„andp„.

II. PERTURBATION TREATMENT
We are dealing with a single pass of light beam through

a nonlinear medium such that the balance parameter F be-
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tween absorption and diffraction is very large. The re-
duced Maxwell equation can be written as

where ei, e2, . . . , are real functions. They are found to
obey the differential equations

V, +2 e(z,p) =
2F ' B(az)

' 1+
~

e(z,p)
~

2
(9)

where e(z,p) is the electric field amplitude normalized to
the square root of the saturation intensity:

—1

I, = T1T2 (lo)

At the very beginning of the propagation through the
cell, (z«&zd) diffraction may be neglected. Therefore
the field amplitude is a solution of the Maxwell equation
(9) without the diffraction term V, . It is the implicit solu-
tion first given by Icsevgi and Lamb' and referred to as
the encoded function here:

BZ ~ + inc
~1 = t inc

2
a = 2 ~1+ ~enc~0

az
~2 ~t ~1+~enc (1+e,„,)

21+~enc

(14a)

(14b)

s
e, (z,p)=e,„,(z,p) dz', V, e,„,(z',p),

eenc(z' p)
(15a)

e,„,(z,p) ~ 1+I,„,(z',p)
e2(z,p) = dz' —,V,e, (z',p)1+I,„,(z,p) o e,„,(z',p)

when putting Eq. (13) into Eq. (9). They lead to the in-

tegral equations

e,( zp)=eo(p) exp( ——,[az Io(p—)+I,„,(z,p)]I

with

eo(p)=[Io(p)]' ',
2I,„,(z,p)=e,„,(z,p) .

Equation (11) displays the nonuniform absorption. The
behavior of I,„,as a function of Io for given az was given
in I. At a given az, the profile may be generally distorted
in three different manners, depending on p:

(15b)+ 1+I.„,(z,p)

The expressions of ei(z,p) and V, ei(z,p) are given in the
Appendix.

In order to illustrate this perturbation treatment, we
have chosen a set of values for Io o and F, used by BS in
their Fig. 2, eo o——10 and F=60. In Fig. 1, the transverse
profiles of eo, ei, and e2 are plotted for four successive
penetrations. Both corrections 1/2Fei and (1/2F) et in-

(a) transparency for p « [—,
'

ln(Io o/az)]'
(b) nonlinear absorption for p- [ —,

' ln(Io o/az)]'
(c) uniform absorption for p » [ —,

'
ln(Io o/az)]'

(cI

l
e(z,p) =e,„,(z,p)+ ei(z,p)2F

I
e (z )+.

(2F)
(13)

Therefore, in the case we are dealing with, Io o »az the
three regimes exist successively on the beam profile. As
the beam propagates through the cell from the entrance,
the wings are progressively washed out, first uniformly
from p = ao, like e ~, then nonlinearly near
p=[ —,

' ln(Ioo/az)]', whereas the near-axis intensity is
almost not absorbed.

The nonlinear absorption implies a stripping of the
outer edges of the beam profile. This stripping causes the
similarity between the on-resonance enhancement and
Fresnel diffraction patterns from a circular aperture as
mentioned by BS.

This interpretation is different from the usual lensing
one: self-focusing in a dispersive medium can be predict-
ed by using a perturbation expansion of the nonlinearity
and diffraction interplay from the zeroth-order solution.
Such a treatment does not predict any on-axis on-
resonance enhancement that confirms the analysis of BS,
but it displays an off-axis divergence. The latter feature is
proving very useful in defining the circular aperture, by
its width and its location in the cell.

The perturbation expansion of the exact solution e(z,p)
in powers of the small parameter 1/2F is

~ ~ ~ ~ ~ ~ ~0 .... ~ ~ ~ 4
~ ~

~ ~

~ ~ ~ ~ ~ ~
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~ ~

~ ~ 0

~ ~
~ ~
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FIG. 1. Three first terms in perturbative expansion [Eq. (5)]
with Ip p= 100 F =60, as a function of p for various abscissa:
(a) z =0.22zd, (b) z =0.26z~, (c) z =0.33zd, (d) z =0.44zd. Solid
lines correspond to the encoded field e,„„dashedlines to the
first-order correction ei/2I', and dotted lines to the second-order
correction e2/(2F) .
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inc
ap

= —2p (I+Io)(1—I, , ) .
(1+I,„,)' (16)

This expression displays an extremum on the transverse
profile of the absorption kernel, for

I,„,(z,p)=1 . (17)

This identity defines a set of coordinates p„,z„related via
the implicit equation (11) such that

1/2az„+1+p„—ln( lo o)p„= ——1 (18a)st
Io,o

or

p„=[—,
'

ln(IO o/az„)]'~

At location z„,p =p„is the radius for which the profile is
affected the most by the nonlinear absorption. At z„,
does the diffraction work'? On the whole profile or only
on the neighborhood of p„'? The effect of the diffraction
can be roughly estimated with the help of V', e,„,:

crease with z. The latter exhibits a peak around p=1, the
height of which increases with z, until it diverges at
z=0.33zd. Thus the perturbation treatment displays an
off-axis enhancement near z=0.33zd, from which diffrac-
tion is no longer properly described by a perturbation ex-
pansion. The penetration z =0.22zd, where the perturba-
tion is still valid, corresponds to the beginning of the wing
stripping.

The emergence of a divergence on the wing profile can
be understood when looking for the behavior of the non-
linear absorption together with the role of the diffraction
on e,„,. The p derivative of the absorption term is easily
calculated as

imum, diffraction effects suddenly increase as Ip(p„).
Diffraction will prevail on stripping when (I/2F)Vte, „,
becomes of the order of magnitude of the absorption term,
or

2 +incVet enc t z ttp t 1 ~ I,z ttp &+ enc

i.e., by using Eq. (19) together with I,„,(z„,p„)
1 —2 2

I
1 —2p't I

e
Ioo

(22)

pst= 1, zst =0.22zd, (24)

in agreement with the location of the off-axis divergence
shown in Fig. 1.

This description for encoding is valid only if Ip(p„)is
much greater than unity in order that strong nonlinear ab-
sorption works at p„(seeI). This implies z„»a '. On
the other hand, stripping of the beam requires that dif-
fraction is negligible up to z„,i.e., z„«z~.In summary,
the conditions of stripping are

st «—1 (25)

This latter relation does exhibit two regimes depending on
the ratio F/Ip p. Roughly speaking, for any F/2IOO&1,
Eq. (22) implies p&1/v 2, and for F &2Ipp, it needs
p„&1/W2. The aperture width decreases as F/Io p in-
creases. This feature will be shown to be in agreement
with the numerical results in Sec. III. A larger Ip p needs
a smaller aperture giving rise to more oscillations of the
on-axis intensity as the light propagates.

These two regimes correspond to BS2 and BS3, respec-
tively. More precisely, for BS2 (F=60 and Ip p

——100),
Eq. (22) together with Eq. (18b) leads to

4e,„,
~t ~enc =

+ enc

2 (Ip I,„,)——(1—p )(1+Ip)+p 1+I,„,
The usefulness of the perturbation expansion stops at

z„.Afterwards diffraction dominates the absorption pro-
cess and it must be taken fully into account, via the opera-

—iz/4zdV, 14tor e

1 —IpI,„,
X 1+Ip+2 1+I,„, (19)

In both limiting cases of transparency and uniform ab-
sorption, V, e,„canbe approximated by —4e,„,(1—p2).
Now let us consider the variation of V, e,„,with respect to
z on the ring of radius p„.Before z„,there is almost
complete transparency; at z„,defined by Eqs. (17) and
(18) V, t.',„,becomes proportional to Ip,

V, e,„,I~, =—2e,„go(l—2p ) I~,
=—2Ip(1 —2p ) Ip (20)

l st' st

After I,„,reaches unity, encoding (11) shows that a small
increment Mst of magnitude of order —,

' (M„/z„)
—[Ip(p„)] ' leads to a decreasing of I,„,of approximate-
ly 1/e. Then V,e,„,becomes proportional to Ip.

2 2 2V t ~m
I p. . .+M p tI0 (p t)—(21)

Therefore, just after nonlinear absorption reaches its max-

III. DIFFRACTION FROM STRIPPED BEAM

+zst « Io,p ~

a(zst+ZM) ((Io 0 .

(26a)

(26b)

(iz!4zd )VtThe application of the diffraction operator e ' on
e,„,(z„,p) is not so obvious. This could be performed in
paper I since the beam was stripped on the whole profile.
Therefore, we model the stripped amplitude by a truncat-
ed Gaussian at p =p„,as if the beam passes through a cir-

We proceed by taking account of diffraction from z„,
as discussed in Sec. II. In order to treat it, we assume that
diffraction and absorption are uncorrelated processes
from z„sothat diffraction works as in free space. This
approximation is well justified for any p &p„where I,„,is
smaller than unity, but it is not so obvious near the axis
where nonlinear absorption is expected further in the cell.
The effect of the near-axis nonlinear absorption can be ac-
tually neglected if both z„and the abscissa of the on-axis
maximum, z~, measured from z„,obey
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cular aperture at z„.The application of the diffraction
operator is more easily handled in Cartesian coordinates,
so that the circular aperture is replaced by a square one of
full width 2a.

All approximations considered, the distortion of the
amplitude profile will be described by the product
D (x)D (y ) of the diffraction functions on the Ox axis and
Oy axis, with

Maxof ID(ojI (Q)

Q.3

ZM/ZD

(27)

Equation (27) can be calculated by taking the Fourier
transform D(IC„)of D(x) and then performing a convo-
lution product on a finite aperture,

T 1/2

I
a

0
0.5 05 1

FIG. 3. Role of the aperture width: (a) variation of the max-
imum of

~

D(0)
~

as a function of half-width a; (b) variation of
the abscissa z~/zd as a function of a.

1 Q 2 2 1D(x)= —e " '& —ee
2

—Lzd
(ag —x/g)

' 1/2
Lz1+
Zd

—lzd
' 1/2

(a g+x /g)

(28)

(0) ID(o) l4

0 I

0.1
I

0.5

Zo
0

0.1 0.2 0.3

FIG. 2. On-axis diffraction function for the intensity

(
D(0) [

=[1/1+(z/zq)z]
( erfla(1 izqlz)'~']

)

~—
as a function of z/zd .. (a) a = 1, (b) a =O.5.

Equation (28) exhibits the Fresnel interferences for arbi-
trary propagation length z. The on-axis diffracted func-
tion for the intensity

~

D(0)
~

is plotted in Fig. 2 as a
function of z for two different apertures. It first displays
rapid oscillations for very small values of z/zd and then a
distinct wide maximum for an abscissa z,„.The wider
the aperture, the lower and the further the maximum.
When the full width 2a increases from 0.2 to 2, the max-
imum decreases from 3.2 to 1.35 and the abscissa in-
creases from 0.04zd to 0.35zd (see Fig. 3). It follows that
both the enhancement of the on-axis intensity and the
focus will depend on the choice of the aperture width.

Now, let us compare our model, stripping from 0 to z„
followed by diffraction by an aperture of half-width a,
with numerical results. The case eo 0

——10, F=60, in Fig.
2 of Ref. 1 that we labeled BS2 and the other, eo o

——15,
F =500, in Fig. 3 of Ref. 1 (BS3 case), are shown in Figs.
4(a) and 4(b), respectively. In the three curves, the abscis-
sa origin is z„.The dashed line exhibits the numerical'
on-axis intensity resulting from direct integration of Eq.

(9) with an input Gaussian profile at z =0. The solid line
displays

~

D(0) ~, the diffraction function for the intensi-

ty for a =1 in Fig. 4(a) and a =0.8 in Fig. 4(b). The dot-
ted line exhibits a diffraction function for the intensity
without modeling the stripping by an aperture. In this
simulation, the beam undergoes stripping from 0 to z„
and then only diffraction. Therefore, the dotted line ex-
hibits the effect of the free-space propagation on the exact
encoded function ,„e,(z„,p) given by Eq. (11).

Solid lines agree well with the dotted ones, with a =1
in BS2 and a =0.8 in BS3, except at the very beginning
where the fast oscillations result from the cutoff. This
good agreement confirms that stripping is accounted for
quite well by an aperture.

The neglect of absorption in the solid and dotted lines
of Fig. 4 explains the discrepancy between them and the
exact on-axis intensity (dashed line). In BS2 the exact
maximum is below the approximated one: The latter can
be corrected by multiplying the solid and the dotted lines—~/Jo 0by e '; then it gives approximately the accurate
enhancement with respect to the input as shown in Table
I. The approximate focus for BS2 is located slightly fur-
ther than the exact one. This discrepancy cannot be gen-
erally corrected by changing the width of the aperture. If
a decreases, the enhancement increases and zM decreases
(Fig. 3), but in counterpart, z„increases so much that zf
(=z„+z~)does too. Table I shows a comparison be-
tween a numerical simulation and our model for a BS3'
case, with Ioo ——225 and F=150. Conclusions are the
same as for BS2.

For BS3, the situation is rather different. The exact
maximum is larger than the approximated one, in which
absorption was neglected. Table I also illustrates that the
model is too crude. As the aperture decreases, the
enhancement increases and goes to the exact one, but the
position of the focus is unchanged (there is a balance ef-
fect between the increasing of z„and the decreasing of
zM). In this case, the inequality (26) is not satisfied. Io o
is only twice azM in BS3 whereas it is 5 times azM in BS2.
In BS3 near-axis nonlinear absorption cannot be neglected
after z„.

Finally, in Fig. S, profiles given by our model

~

D(x)D(0)
~

are compared with the exact profiles of the
intensity. Figure 5(a) displays results for BS2 and Fig.
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Zsg Zsg+0.~ZD Zsg+ 0.5ZD

l
I

l I
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0-
Zst Zst+ 0.1ZD

I I

Zst+0.5 ZD

—02FIG. 4. On-axis intensity behavior as a function of z/zd from z„=Iooe ' . Solid line [Eq. (28)] corresponds to stripping
modeled by an aperture at z„.Dotted line exhibits Fresnel interferences from z„onthe numerically calculated stripped amplitude.
Absorption is not taken into account in either the solid or dotted lines. Dashed line shows the numerical simulation with absorption
included for all z. (a) BS2, Io o ——100, I' =60, a =1, z„=0.22zd. (b) BS3, Io Q

—225, F=500, a =0.8, z„=0.125zd.

5(b) displays results for BS3. We see that our model
displays good enough profiles for BS2 but poor fits for
BS3.

The perturbation treatment of the diffraction which is a
usual and successful treatment in case of self-lensing, does
not predict any on-axis enhancement when working on a
stripped beam exactly tuned on resonance with atoms. On
the contrary, a simple description of wing stripping
mode1ed by a circular aperture, &om which the beam is
diffracted, reproduces fairly well the numerical results of

BS. Such an agreement confirms that the on-axis on-
resonance enhancement is a result of Fresnel interferences.
As is well known, Fresnel interferences are a consequence
of strong diffraction effects and they explain, a posteriori,
the breakdown of the perturbation treatment of the dif-
fraction.

The aperture model exhibits the main features of the
on-axis on-resonance enhancement, especially its variation
with Io 0 and E. The enhancement, the number, and the
relatives heights of the on-axis oscillations increase as Io o
does. In terms of Fresnel interferences this implies that
the aperture decreases as Io 0 increases, as reproduced in

TABLE I. Comparison between our model for the BS2, BS3', and BS3 cases with numerical simulation results.

Numerical simulation'

Io o
——100

zf /zd

BS2
I' =60
If /Io, o

Io o =225

Zf /zd

0.4

r =150
If /Io, o

Io o =225
zf /zg

0.28

BS3
I' =500

/Io, o

1.8

Encoding plus free-space propagation 0.33

0.57 0.5

0.7
1.4
1.5

Analytical model'

JO. 22zd ( BS2)

0 06z (BS3—BS3') 0.9 0.41 0.9 0.4

JO. 33'(BS2)
" 0.09z,(BS3) 0.63 —1 0.39 1

a =0.8, z„=0.125zd 0.4
a =0.5, z„=0.272zd 0.37
a =0.4, z„=0.327' 0.39

'Numerical simulation z =0—zf [Eq. (9)] (dashed line, Fig. 5).
Encoding [Eq. (11)]from 0 to z„plus free-space propagation from z„to zf, az«=ID 0/e (dotted line, Fig. 5).

'Analytical model Encoding approximated by an aperture at z«[I(z«, p) ccIooe ' for p&a; IooccO for p)a] plus free-space
propagation (solid line, Fig. 5).
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„
I (z, p)/Io, ~ I ( z, p)/Ip p

1

ZD Zp

0,

-0.33 Zp 0'16 ZD

=0,40 Zp

I

1 p

Z=0.20 Zp

1 p

Z -0.48 Zp

1 p

Z =0.24 ZD

1 p

Z1- 0.52 Z p

Z=0.66 Zp

I
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i
I
I

1

I

\

\
i

Zf = 0.28 Zp

(o) (b)

FIG. 5. Transverse shapes of the intensity. Dashed line ex-
hibits numerical simulation. (a) is relative to BS2, solid line
shows analytic model with a =1. (b) is relative to BS3, solid
line shows analytic model with a =0.8, dotted line at the focus
corresponds to a =0.4.

in agreement with numerical results. The maximum
enhancement appears for F/Ip p 2 whatever both F and
Io o may be. When E increases above 2IO 0, the aperture
width decreases [see Eq. (23)]; the amount of energy in the
beam at z„decreases so that the enhancement decreases.
(In Ref. 10, with Ip p

——225, the on-axis enhancement is
approximately 1.8 at maximum, E-2IOO and decreases
to 1.25 foi' F 6Ip p. ) As F goes up further, we find
again the case of I. ' The aperture vanishes as exhibited
by Eq. (23) in the limit of large F/Ip p. For F/Ip p & 6,
the whole profile is stripped at z„=z&z.' ' Reshaping
effects result still from Fresnel diffraction but the energy
in the core of the beam profile is so small that no
enhancement is expected.

The best choice for the observation of an on-resonance
enhancement is F 2Ip p. Tile difficulties to fit both the
profiles near the aperture and near the focus in BS3 case
do not lie in the concept of an aperture by itself. The
weak side of the present model consists in assuming that
the undistorted input Gaussian hearn goes through an ef-
fective aperture. A better model would take successive
stripping and diffraction effects into account. In other
words, we could imagine that the beam undergoes diffrac-
tions by successive apertures with decreasing widths. An
improveinent of our aperture model in this direction
would lead to a better prediction of the on-resonance
enhancement. But it would not be probably so easily han-
dled and the simple physical understanding would not
gain so much. Doppler broadening could affect the on-
resonance enhancement; its effect will be discussed else-
where.
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APPENDIX

1+Io—(1+Ip) ln
1 +Ienc

Integration of Eqs. (14), although not exciting, is straightforward. Let us give ei(z,p)

Io Io
ti(zp) = —2E (1+Ip) lil +2E„,p [2Ip+( 1'+Ip) ] ln

Ienc enc

+ 2(1+Ip)' 1

1+I,„, (A 1)

e'i was calculated with the help of Eqs. [15(b) and A i]. The analytical expression of the integrand of Eq. 15(b) was nu-
merically integrated over the variable z.

Let us give the analytical expression of %~~@i.

V', ei 4e,„,(2A—p—+2p A, +4p A4),

Ap ——[(1+Ip)P+4Ip+(1+Ip) ] ln —(1+Ip) in@+213(I,„,Ip), —
Ienc



A )
———[4Io+6Icp p—(1+Io )+2p ] In —4[2Io —p —p(2Io —1)]+6pB (p)+ 3 —B(p),

Io 2 1 8
Icnc P ~P

2IO—P'+2P'-
I +I,„,1+I,„,

+4Io 2(1+Io)» (1—+2Io) 1np+ +—p'— — —p' —p' +
Io 9 7 (4+7Io) 2 6 3 1+Io 4 Io
I,„, 2 2 )+I,„, I +I,„, Io Io I+I,„,

B(p)=-,' [2I,+(1+I,)']» +(1+Io)' ——»P+I,„, 2 I +Io

(A2)
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