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Multistep excitation of autoionizing Rydberg states
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We describe the photoexcitation spectra from bound Ba Rydberg states 6snl to the analogous au-

toionizing 6pnl states. The spectra are obtained with high laser power bringing out weak spectral
features corresponding to changes in n of the outer nl electron. These spectra are explained using a
quantum-defect-theory approach which shows that the optical cross section is a product of the spec-
tral density of the autoionizing states and the overlap integral from the initial bound state. When a
saturation effect is taken into account, synthetic spectra calculated in this way accurately reproduce
the observed spectra. Experimental spectra of unperturbed autoionizing series are presented togeth-
er with the two-channel quantum-defect theory relevant to this case. In addition, the new features
which arise in the case of interacting series are shown as well as a model three-channel quantum-
defect-theory treatment.

I. INTRODUCTION

Several years ago Cooke et al. ' introduced a method of
multistep laser excitation of autoionizing states of
alkaline-earth atoms. A central feature of the technique is
that one electron is excited at a time, which leads to two
very attractive features. First, since each electron is excit-
ed separately it is relatively straightforward to assign the
transitions. Second, the choice of final transition to the
autoionizing state leads only to excitation of a single au-
toionizing state but not the continuum. In Ba, typimlly
an intermediate bound 6snl Rydberg state is excited fol-
lowed by the final transition to an analogous 6pnl au-
toionizing Rydberg state converging to the excited 6p
state of the ion. Under these circumstances the excitation
spectrum usually consists of a single Lorentzian feature
which yields directly the position and width of the au-
toionizing 6pnl state in contrast to the Beutler-Fano in-
terference profile commonly associated with autoionizing
states.

In recent observations, with higher laser power, more
complex spectra have been obtained. Specifically,
broadening of the central feature associated with the 6pnl
state and additional very asymmetric features correspond-
ing to Rydberg states of different n have been observed.
These observations cannot be easily explained using the
picture as originally presented by Cooke et al. ' However,
using the physical insights derived from this simple pic-
ture as a guide, it is possible to mlculate the optiml exci-
tation cross sections using quantum-defect theory. Using
the cross sections calculated in this fashion and taking
into account the saturation effects produced by the high
laser flux described by Cooke et al. it is possible to calcu-
late synthetic spectra which reproduce very well the ob-
served spectra. A short account of this has already been
given by Tran et al. for the case of an unperturbed series
of autoionizing states. Here, we present a complete
description of the calculations for this case, which may be
treated by two-channel quantum-defect theory, as well as
additional experimental examples. We also present addi-

tional data which illustrate new features which arise when
there are two interacting Rydberg series of autoionizing
states. These effects are shown to be in qualitative agree-
ment with calculations based on a three-channel
quantum-defect model.

In Sec. II we review the basic physical notions of the
multistep excitation and describe the experimental ap-
proach. Then, in Sec. III, the two-channel case, relevant
to an unperturbed series of autoionizing states, is treated
in detail, and the variety of spectra which may be ob-
tained even in this simple case is illustrated. Subsequent-

ly, in Sec. IV, the three-channel case, two interacting Ryd-
berg series converging to two limits, is considered as well
as examples of new phenomena which occur in this case.
Finally, in Sec. IV, the potential extensions and usefulness
of the method as a tool are discussed.

II. BASIS OF THE APPROACH,
EXPERIMENTAL METHOD,

ANX) TYPICAL OBSERVATIONS

Let us consider the excitation of the bound Ba6s15d
state to the autoionizing 6p15d state and nearby states as
an example. (For the moment we ignore the spin of the
electrons to simplify the notation. ) Ba atoms are excited
to the 6s15d state by two dye-laser pulses as shown by the
energy-level diagram of Fig. 1. Subsequently, a third laser
drives the Ba+ 6s-6p transition to the autoionizing 6p15d
Rydberg state. Each atom excited to the autoionizing
state quickly decays and the resulting ions are detected as
the wavelength of the third laser is scanned. Why this ap-
proach leads to a simple spectrum is apparent when we
consider what the successive laser pulses do to the atom.
The first and second lasers excite one of the electrons to
the bound 6s15d Rydberg state in which the electron is
usually far from the ionic core. The third laser excites the
6s-6p transition of Ba+ while the outer electron is a spec-
tator. The most likely result is that the outer electron will
remain in the 15d state in which case scanning the third
laser across the 6s15d-6p15d transition yields immediate-
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FIG. 1. Ba energy levels showing the three laser pumping
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FIG. 2. Low-power scan of the third laser across the Ba
6s15d 'Dq~(6p3/215dj) J—3 transition taken with all three lasers
circularly polarized in the same sense. This scan yields the posi-
tion and width of the (6p3/215d) J—3 state. Narrow peak denoted

by B is a coincidence (see Table I). Term energy of the 6s15d
state is 41315.5 cm

ly the position and width of the 6p15d state. However,
there is a small, but finite, chance of the outer electron
making a readjustment in its orbit allowing the transitions
to neighboring 6pnd states. Finally, we note that al-
though the direct photoionization of the 6sl5d state to
the 6sep or 6sef continua is possible it is unlikely. This is
so because at the large orbital radius, =100 A, where the
15d electron is most likely to be found, the spatial oscilla-
tions of the 15d radial wave function are much less rapid
than those of the 2.4-eV continuum wave function which
would result from photoionization. Thus there is negligi-
ble continuum excitation, and the possibility of discrete-
continuum interference which leads to the familiar
Beutler-Fano profile is effectively absent.

Since the details of the apparatus and approach have
been described elsewhere, ' we only recount the major
features here. The atomic beam of Ba effuses from a
resistively heated oven and passes between a plate and a
grid 1.1 cm apart where it is crossed by the three sequen-
tially pulsed dye-laser beams. Subsequent to the laser
pulses a 50-V pulse is applied to the plate driving any ions
resulting from the excitation and subsequent decay of an
autoionizing state to a particle multiplier, the output of
which is recorded with a gated integrator.

The three dye lasers are all pumped by harmonics of
the same Nd:YAG laser, and the second and third laser
beams are delayed so the three laser pulses are sequential
in time. The laser pulse lengths are =5 ns, and the pulse
energies are =100 pJ. With beam diameters of 1 mm,
this leads to integrated fluxes of 10' photons/cm . In ad-
dition to recording the atomic spectrum, as the third laser
is scanned its power and frequency are recorded by moni-
toring the transmission through a 3.52-cm ' free spectral
range (FSR) Fabry-Perot etalon with a photodiode.

If we scan the wavelength of the third laser in the vicin-
ity of the Ba 6s15d-6p15d transition we observe with low
laser power an ion signal as shown in Fig. 2. Specifically,

Fig. 2 is a recording of the 6s15d'D2~(6p3/$15dj) J—3

transition taken with all three lasers circularly polarized
to ensure that only the J=3 state is populated. As shown

by Fig. 2 the signal is a single feature which is proportion-
al to the optical absorption cross section, or oscillator
strength, and has a Lorentzian line shape. The center of
the feature gives the location of the 6p3/215d state and its
width the total autoionization rate. As shown by Fig. 2
the center of the observed feature lies near the Ba+
6si/2~6p3/2 ion line at 21953 cm '. The frequency
difference from the frequency of the ion line immediately
tells us the difference in quantum defects of the 6s15d
and autoionizing 6p3/215d states. In Fig. 2 there is a
two-photon marker line, indicated by 8, which arises
from the resonant absorption of two photons from the
third laser by an atom in the 6s6p state. Specifically, one
photon drives the transition to the higher-lying 6s10d D2
state and the second drives the transition to the autoioniz-
ing 6p3/210d state. This and other marker lines, which
occur at known wavelengths, ' comprise a useful set of
frequency markers. In Table I we tabulate the marker
lines, labeled by letters, which occur in the experimental
spectra presented in this paper.

In the limit of low laser flux the detected ion signal is
proportional to the optical cross section. At higher laser
flux we must take into account the effect termed "de-
pletion broadening" by Cooke et al. For any power the
detected signal may be generally expressed as

I =ID(1—e ~),

where I0 is the number of atoms in the bound Rydberg
state, cr is the optical cross section, and P is the integrated
laser flux. Here we ignore the possibility of driving tran-
sitions back and forth between the two states. From Eq.
(1) it is clear that the maximum signal is Io and that the
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TABLE I. Markers lines in the spectra.

CGS Tfanslt1on

(A) 6s6p P)~
4512 6s10d D2
4557 6s10d 'D2

4574 6s10d 3D~

4627 6$115 So
4673 5d8s 'D2

4699 6s9d 'D2

4739 6s9d D2
4792 6s10s'S,
4853 6S10$ S&

4879 6s8d 'Dp

4948 5d6d P2

22 163.1
21938.1
21 861.9
21661.6
21404.7
21274.6
21 097.7
20 863.6
20603.5
20495.0
20207.4

9.82

EFFECTIVE QUANTUM NUMBER u

30.59 't 1.57 12.89 14.79 17.89

I I I I I I I I

6815d ~ 6p3&2nd

signal is only proportional to the optical cross section in
the limit erg&&1. In these experiments the peak optical
cross section is —10 ' cm (at 21945 cm ' in Fig. 2),
and the maximum available laser fIux is —I0
photons/cm . Thus even where the cross section has de-
creased by a factor of 100 it is possible to see a signal ap-
proaching Io. This produces a broadening of the observed
signal which Ied to the name applied by Cooke et al. An
example of such a signal is shown in Fig. 3 which is a
recording of the same transition shown in Fig. 2 with
higher laser flux For .later use we define a saturation fac-
tor N =o. P, where o ~ is the maximum of the cross sec-
tion. In Fig. 3 X-100.

In Fig. 3, the broadening implied by Eq. (1) is quite evi-
dent as is the presence of very asymmetric satellite
features which correspond to Rydberg states of other n.
In fact, spectra such as the one shown in Fig. 3 can be ac-
counted for in a very straightforward fashion, as shown in
Sec. III.

III. AN UNPERTURBED SERIES
QF AUTOIONIZING STATES:

A TWO-CHANNEL CASE

I ct Us consider thc spcclflc problem 111UstI'atcd by Flg.
4, in which we have the unperturbed series of
(6@3/2nd) J—3 states converging to the 6@3/2 limit of Ba+.
These autoionizing states are degenerate with 13 continua
of the same J which are represented by one continuum X.
This ls a good Rpproxlmatlon ln this partlcUlM case be-
cause the only role of the continua is as a sink for the
products of autoionization. Below the 6s&&2 limit is a
bound Rydberg state 6snd of even parity from which we
excite to the odd-parity 6@3~2nd autoionizing Rydberg
states.

To a first approximation we may consider each of the
autoionizing states to be slightly broadened so that its
character is spread over a small energy range. This point
of view is quite adequate to explain observations such as
the one shown in Fig. 2 in which only one feature is ob-
served. Howcvcl, lt ls not easily gcncI'Rllzcd to explain
obscrvatlons such Rs Flg. 3 I which thc obscl vcd spec-
trum is essentially continuous from one feature to the next
and covers a range of n states.

To deal with spectra such as the one shown in Fig. 3 we
have adopted a quantum-defect-theory approach to
characterize the autoionizing states. The details of a
two-channel analysis are given by Fano in his treatment of
H2 (Ref. 7) so we here concentrate on the extension of
those results to our problem. A central notion of
quantum-defect theory is that the non-Coulombic interac-
tion of the outer electron with the core occurs at very
small orbital IadiUs which leads to an I ~0 boundary
condltlon, while as I' —+ oo thc electron cxpcrlcnccs R puI'c-

ly Coulomb potential which imposes a second boundary
condition. It is thus not surprising that the atomic wave
function can be expressed in terms of either the close-
coupled states more characteristic of small r or the col-
lision channels more characteristic of large r. In an atom
with two valence electrons these channels are usually I.S
and jj coupled, respectively. In the excitation of autoion-
izing states from the ground state both electrons are ini-

6p3&2 nd

f 7d 'ted]9d
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FIG. 3. A h1gh-pow'el scan of the third laseI 1n the region of
Ba 6s15d'D2~(6@3/215d»)» 3 transition. Note the asymmetric
satellite features corresponding to other 6@3/2nd states. Power
of the third laser is 50 times higher than in Fig. 2. Marker lines
denoted by letters are tabulated in Table I.

FIG. 4. Schematic levels for a two-limit problem. The two
ionization limits are shown as well as the Rydberg series ( )

and the continua (///). A bound state of opposite parity from
which the excitation occurs is also shown (———). Excitation
from the bound to the autoionizing Rydberg state is shown by
the arrow.
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tially at small r and the excitation process is appropriately
described using the close-coupled channels. Historically
this has been the most common experimental approach,
and thus the theoretical work has been focused on this
problem. However, in our case in which the outer elec-
tron is at large orbital radius during the excitation to the
autoionizing state it is appropriate to describe the excita-
tion in terms of the collision channels. Thus we choose to
represent the wave function in terms of the collision chan-
nel expansion. Since the role of the continua is only to
provide a sink for ejected electrons, we represent all the
continua by the continuum X which we label channel 1.
We label the series of discrete nd autoionizing states con-
verging to the 6p3/2 limit as channel 2. This is shown in
Fig. 4 where the continuum X is shown above the 6s&&z
limit for concreteness. With this notation we may
represent the wave function for a state of specific parity,
angular momentum, and energy E in the autoionization
region as

ZiXi—C—&iC(l, y, r, r)+Z2Xi@2C(l, v, r) . (2)

Here X; and 4; represent the wave functions of the ion
core and the angular part of the outer electrons' wave
function, respectively, for the two channels. We take each
of these X and 4 functions to be independently normal-
ized to 1. The functions C (l,y, r, ~) and C (l, v, r)
represent continuum and bound Coulomb wave functions
for an electron of angular momentum l and radial posi-
tion r. The continuum function is also characterized by
the energy y of the electron relative to its ionization limit
and its phase shift m~ (relative to a hydrogenic wave func-
tion). We note that if the continuum entered into the
problem in a way other than merely as a sink for elec-
trons, we would need to specify its phase shift and ioniza-
tion limit. The bound Coulomb wave function needs only
the effective quantum number v for both the energy and
phase shift since for a given phase shift only one value of
v (mod 1) is allowed. The effective quantum number v is
defined by

E =I2 —1/2v

where I2 is the energy of the second ionization limit and
E is the total energy represented by the wave function. In
the above equation and throughout this paper we use
atomic units. E is of course related to y by

F. =Ii+y .

follow the usual convention that a continuum wave func-
tion should be normalized per unit energy then Z i =1, for
as r —+ 00 the bound channel 2 part of the wave function
vanishes. Thus the continuum (channel 1) amplitude is
structureless. Zz represents the amplitude of channel 2
per unit energy and is derived from quantum-defect
theory. Z2 is a function periodic in v given by

In Fig. 5 we show as an example the plot of r vs v (mod
1), conventionally called a Lu-Fano plot, appropriate to
the Ba (6p»2nd) j 3—states. As implied by Eq. (5), Z2 is
simply the slope of the Lu-Fano plot and is shown in Fig.
6 plotted versus v (mod 1). Figure 6 corresponds to the
profile of the autoionizing state, the location of which
corresponds to the region of the phase shift of the contin-
uum shown in Fig. 5, as expected from more conventional
configuration-interaction treatments. For simplicity we
shall define the value of v at the center of the Z2 profile
as the effective quantum number of the autoionizing state
which we shall label n~. We shall use n with no subscript
only as an integer to label states. On the other hand, n
with a subscript will be used to denote fixed, usually
noninteger, values; and v with or without subscripts as a
continuous variable. We denote the full width at half
maximum of the autoionizing state by 1. Thus from Fig.
6, it is apparent that for the (6pi jznd) j—3 states
nz n —2.75 and ——I'=O. 1 lv . Recall that a change of 1

in v corresponds to a change in energy of v . It is useful
to express the width as a fraction of the energy spacing
between successive members of the series; i.e., the frac-
tional width I = I v [I =0.11 for the (6p3/2nd) j—3

states].
As noted above, Z2 only depends on the slope of the

Lu-Fano plot, the continuum phase shift, and not at all on
the phase. Thus a Lu-Fano plot offset vertically from
Fig. 5 would lead to the same dependence of Z2 although
the quantum-defect parameters, and other atomic proper-
ties, would be completely different. This arbitrariness is a
direct consequence of the fact that Zq, the spectral densi-
ty of the autoionizing state, is insensitive to the phase of
the open channel, which serve only as a sink for electrons

1.00

The continuum Coulomb wave functions are normalized
per unit energy and the bound-state wave functions are
normalized so that the bound and continuum wave func-
tions for E~I2 of the same I and r are identical. As a
consequence of this, for the bound-state wave functions

~
(C(l,v, r)

~

C(l, v, r))
~

=vi, that is, the normalization
differs from that of the ususal bound-state radial wave
functions by a factor of v

Note that the Coulomb wave functions themselves tell
us nothing about the structure of the autoionizing region,
they only tell us what the continuum and bound part of
the wave functions look like. The information about the
structure comes from the weightings Z, and Z2. If we

0.75

7. 0.50

0.25

0
0.75 O.S5 1.15 1.35 1.55 1.75

EFFECTIVE QUANTUM NUMBER v (modulo 1j

FIG. 5. A plot of v, the phase shift in the open channel divid-
ed by m, as a function of the effective quantum number v.
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6.0 toionizing region. The initial bound state 4& may be
represented in the same manner as the bound part of Eq.
(2), i.e.,

+g=ZjIXII@IIC(ls, ntl, r) .

0
075 095 115 135 155 175

EFFECTIVE QUANTUM NUMBER v (modulo 1)

FIG. 6. Derivative vs v of Fig. 5, which is the spectral densi-

ty Z2.

ejected in the autoionization of the discrete states.
For our two-channel treatment of the (6p3/2ndj)J —3

states interacting with one continuum we choose as the
collision channels 1 and 2, the continuum X and

6p3~2nd3&2, and as the close-coupled channels 1 and 2, A
and Q. These labels for the close-coupled channels are
chosen to emphasize the fact that their only function is to
connect the open and closed collision channels. The
eigenquantum defects p& and p2 of the two close-coupled
channels are 0.30 (mod 1) and 0.75 (mod 1), respectively.
The i colhsion channel may be expressed in terms of the u
collision channels by the U;~ rotation matrix

coso sine
—sinO cosO

(6)

In Fig. 5 we have used O=0.42 rad. Since there are
only two experimental parameters n& and I which
characterize the positions and widths of the 6jj3/2ndj
series, it is evident that there is some degree of arbitrari-
ness in how we choose the three quantum-defect parame-
ters p~, p2, and 8. We have taken advantage of this arbi-
trariness and have chosen the quantum-defect parameters
of Fig. 5 so that the interaction strength is mostly con-
tained in the rotation matrix of Eq. (6) connecting the
close-coupled and collision channels. %'e note that this
arbitrariness is removed if we parameterize the 6p3/2nd/
series in terms of nz and I as has been done recently by
Cooke I'RthcI thaIl by pj, p2, RIld O.

To describe thc cxcltatlon from thl.c bound Rydbcrg
state to thc autoionizing state we return to our physical
picture of driving the ion core transition with the outer
electron remaining a spectator at a large orbital radius.
This picture has already led us to express the wave func-
tion in terms of the collision channels and not the close-
couplcd chRIlIlcls which would bc applopriatc foI cxclta-
tion from the ground state. The physical picture also sug-
gests how to explicitly represent the excitation.

First, recalling that there is no direct continuum excita-
tion, we only need to consider excitation to the bound
channel 2 of Eq. (2). Thus we need to calculate the dipole
matrix element between the initial bound state and the
bound channel 2 portion of the wave function in the Ru-

Zs is a product of a 5 function in energy 5(E Es—) and a
factor of vs, i.e., Z~ =5(E Es—)vs, which specifies
the initial bound state as having a well-defined energy and
the more conventional normalization (0's

l
qIs )=1. Re-

CRIl that tllc Coulomb I'adlai wave fullctlolls C(l,ns, r) Rl'c

normalized per unit energy. The functions g& and 4z in-
clude the 6s ion core wave functions and angular parts of
the outer electron wave function just as in Eq. (2).

Our original notion that the transition is essentially one
of the ion core with the outer electron a spectator suggests
that we write the dipole matrix element (4s

l p l
4'z ) in

terms of the dipole matrix element for the ion core transi-
tion and an overlap integral for the outer electron. Specif-
ically, we write the electric dipole transition matrix ele-
ment from the bound Rydberg state 4'z to the autoioni-
lng state % g as

&'ps
I p I +~ &=Z~Z2&&s

I p l&~ &&@a I @2&

X (C(ill, ntl, r)
l C(l, vr)) .

If we examine the factors on the right, -hand side of Eq.
(8), we see first the spectral densities Zs and Z2. The di-
pole matrix element of the ion core transition is given by
(Xs l p lXq ). The angular factors of the outer electron
wave functions for the bound and autoionizing states are
given by (@s

l
42) which implies that a bound state with

an outer electron in 8 state of angular momentum i is only
connected to an autoionizing state of the same angular
momentum. It also contains factors of order 1 for jj I.S-
rccoupling. For our purposes it is adequate to represent it
by a Kronecker 5 function; (4s

l
42) =5t t. Finally, we

have the overlap factor of the bound and continuum wave
functions (C(ltd, nil, r)

l
C(l, v, r) ). Recalling that ls must

equal 1 by virtue of the angular factors we may introduce
the shorthand O(l, ns, v) = (C(l,ns, r)

l
C(l, v, r) ). We

know that O(l, ntl, nII)=ns and O(l, ntl, nII+i)=0 for i an
integer different from zero due to orthonormality of the
wave functions. In fact, it is an oscillating function for
which an approximate analytic expression which does not
depend on I has been derived by Bhatti et ah. " Explicitly
their expression may be rewritten as

2nII v s1n[f7( v —ns )]
O (l, ntl, v) -=

nII +v vr(v nII)—
Note that Eq. (9) differs from the expression of Bhatti
et al."by a factor of (nsv)' which refiects the different
noHIlallzatlons of thc wave fllllctlolls. Ollc nlay obtalll
O(l, ntl, v) from Eq. (9) or calculate it numerically in a
stI alghtforward fashloIl. ' Thc cI'oss scctloIl ls glvcn

13
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I&+ Ivl+ &I'

4 2

z&z21&&alt l&~&l'1&@~1~'~&l'

X I & C(l, v, r )
I
C(l, n~, r) & I

(10)

where co is the angular frequency of the incoming photon
and c is the speed of light (c= 137 in atomic units). Let
us collect the constant or nearly constant factors of Eq.
(10). First we recognize that co

I &X~
I
p, IXq & I

= ,'f;,„—
where f;,„ is the oscillator strength of the Ba+ 6s-6p tran-
sition, which is calculated to be 1.16.' Thus Eq. (10) may
be written

3
ng

m =200—
I

(12)

For our example of the 6s15d 'D2~6p3/2nd spectrum for
which n~ ——12.35 (Ref. 6) and I =0.11, numerical
evaluation of Eq. (12) yields o.~ =1.6&&10 A . Thus an
integrated laser flux of 10' cm leads to E-100.

From Eq. (11) it is clear that the energy dependence of
the cross section is mainly contained in Z2, the density of
the autoionizing states, and 0 (l, nz, v), the square of the
overlap integral. Bizarre spectra such as Fig. 3 occur be-
cause the maxima in Z2 nearly coincide with the zeros in
the overlap integral. In Fig. 7 we show plots of Z2,
0 (l,n~, v), and their product which is proportional to the
optical cross section. In calculating 0(l,nz, v) we have
used the fact that for the bound 6s15d 'D2 state
nz ——12.35. As shown by Fig. 7, the decrease in
0(t, nz, v) away from v=nz coarsely restricts the dom-
inant part of the cross section to the central lobe

I
v n~

I
& 1. within —the central lobe it is the variation of

Z2 which leads to the observed structure in the cross sec-
tion. Thus, for reasonably narrow autoionizing states the
cross section strongly resembles Z2, which as we noted
before fully describes the position and width of the au-
toionizing states. Furthermore, Eq. (12) indicates that the
peak value of the cross section, at the center of the au-
toionizing state where v=nq -n~, is proportional to n~.
However, the width I of the autoionizing state is propor-
tional to nq so the cross section integrated over the
width of the autoionizing state is a constant. Stated

cr=ooZ&ZzO (l, n~, v)

where oo ——P~f~,„ I &4a
I
42& I

/c. Assuming that

I &@a
I +'2&,I'=1 and f;,„=1.16 we find that

o0——0.167a0 or 0.047 A .
It is useful to evaluate the cross section at is maximum,

o . In most cases the quantum defects of the bound and
autoionizing states are very nearly equal, so that nz -nz
in which case 0 (l, n~, v)=nz Since Z. z nz, t——ogether
these two factors yield an nz+ scaling for the cross sec-
tion. Recalling that Zz is given by the slope of the Lu-
Fano plot it is apparent that the maximum value of
Zq —1/I . In fact, approximating the shape of the au-
toionizing state by a I.orentzian leads to a maximum
value of Z2 ——2/I'.

Collecting all these terms it is evident that

EFFECTIVE QUANTUM NUMBER v

9.82 10.59 11.57 12.89 14.79 17.89
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I =ID[1—exp[ ooZ~Z20 (—l, nz, v)N/o ]I, (13)

where X is the saturation factor defined previously. This
allows an immediate comparison with our depletion-
broadened spectrum and provides a convenient way to
represent the entire cross section. In Fig. 8 we plot the
signal implied by the cross section of Fig. 7(c) by using
Eq. (13) with %=100. From Fig. 8 it is clear that the
zeros occur at the points where v=n~+i where i is a

another way, the cross section of the Ba+ resonance line is
spread over the width of the autoionizing state. Thus
from this quantum-defect model we recover the simple,
physically appealing explanation originally advanced by
Cooke et al. ' to explain observations such as Fig. 2.

From Fig. 7 it is apparent that we can only expect to
see the weak satellite features corresponding to changing
the n of the outer electron with higher flux excitation.
Using Eqs. (1) and (11) we may express the signal in terms
of the functions Z2 and 0 (I,nz, v) as
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20.286, respectively, or equivalently quantum defects
5& ——2.644 and 2.714, respectively. If v2 and v3 represent
the effective quantum numbers relative to the 6p~/2 and

6p3/z limits and m~z, ~~3, yz, and y3 represent phase
shifts and energies of the corresponding continuum waves,
we can immediately use our previous definition to write
the overlap integral from the bound state characterized by
ns and I to the 6p ~/2nd channel, for example, as

O(l, ns, v2)=(C(l, ns, r)
~
C(I,V2, r)) .

Above the 6@~/z limit this becomes

O(l, n~, r2, y2) = I C(l, ns, r)
~
C(l, rp, p2, r)) .

(14a)

(14b)
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In Fig. 12 we plot these overlap integrals from the 6s12d
and 6s23d states to the two 6p~/znd and 6p3/znd series.
For the high-n levels converging to the 6p~/z limit we

show only the envelope of the overlap integral correspond-

ing to v2 n~——+ ,'+i—where i is an integer, and for the

6p~/2' continuum we show the corresponding values of
the overlap integral for the phase shifts
=vr52 n(5&+———,

' .+I). If r2 52 5——s th——e overlap integral

to high-lying nd states converging to the 6p~/z limit as
well as to the continuum above the 6p&/z limit vanishes

by orthogonality. Our choice of the continuum phase
shifts, ~r2, used in Fig. 12 yields the largest possible mag-
nitudes of the overlap integral. Thus depending upon the
actual phase shift mr2, which must come out of the mul-
tichannel quantum-defect-theory analysis, the actual over-

lap integral lies between the positive and negative sides of
the envelope of Fig. 12. The region near the 6p3/z limit is
plotted in an analogous fashion. Note that the overlap in-
tegral smoothly continues across the ionization limits.
This is a consequence of our choice of the same phase for
the high-n levels and the continuum waves and the fact
that at small r the wave functions of these two are identi-
cal if the phase shift is the same.

From Fig. 12 we can see that there is a significant pos-
sibility of excitation to the continua just above the 6p&/z
and 6@3/z limits. This is an interesting point since the
lack of direct excitation to the continuum above the 6s~/z
limit where the energy of the free electron is ) 2 eV is one
of the attractions of the multistep excitation scheme. We
note though that in the case of the continua above the

6p&/2 and 6@3/2 limits the free electron has very low ener-

gy so that its wave function is somewhat similar to the
wave function of the initial Rydberg state. An interesting
example of this continuum excitation occurs just above
the 6p~/2 limit in the vicinity of a 6p3/znd state. Figure
12 implies that in this region the dominant excitation
from a high-lying 6snd state, such as 6s23d, is to the
6P &/zed continuum not to the discrete 6P3/znd state.

In the usual configuration-interaction treatment pure
continuum excitation in the vicinity of an autoionizing
state corresponds to the Pano parameter q=0, in which
case a symmetric decrease is observed in the photoexcita-
tion cross section. However, this does not occur in the ex-
citation from the 6s23d'Dz state as shown in Fig. 13.
The observed spectrum is peaked at the location of the
6p1/z23d state, and the envelope falls off smoothly to
higher and lower energy. Note, in particular, that the
spectrum smoothly continues across the 6p~/z limit show-

ing evident enhancements at the locations of the 6@3/z 1 ld
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FIG. 12. Overlap integrals from (a) the Ba 6s12d state

(n~ ——9.36) and (b) the 6s23d state (n~ ——20.29). In (a) the in-

tegral from 6s12d to the 6p&/2nd channel ( ) and 6p3/2nd
channel (———) are multiplied by 10 at 62000 and 63800
crn ' as indicated. Note that the integrals extend smoothly

across the 6p&/2 and 6p3/2 limits. Note also that the overlap in-

tegral peaks at -61000 and -62800 cm ' near the 6p~/212d
and 6p3/212d states. Maximum values are (9.36), not 1, because

of the normalization. In (b) the integral from 6s23d to the

6p&/2nd channel ( ) and 6p3/2nd channel (———) are each

multiplied by 10 in the energy ranges far from their peak values

at 62000 and 63 800 cm ', respectively.
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FIG. 13. Observed spectrum starting from the 6s23d'D2
state to the region near the (6p&/223d5/2) J 3 state. Note that the
observed spectrum extends across the 6p&/2 limit and shows evi-

dent structure at the location of the 11d and 12d states converg-
ing to the 6p3/2 limit. Relative laser power is shown by the
dashed curve.
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cosO&2 sinO)2 0

R(8,z) = —sin8&z cos8&z 0

0 0 1

(16)

To calculate the photoexcitation cross section correspond-
ing to Fig. 13 we have used the quantum-defect parame-
ters p) ——0.31, p2

——0.27, p3 ——0.61, 0)2 ——0.20, 0)3——0.87,
and 8&3

——0.68 (all angles are given in radians). In Fig. 14,
we show the calculated photoexcitation cross section as-

suming excitation to either channel 2 or channel 3, and
these results clearly show that just above the 6p&/z limit
the excitation to the 6p'/'ed continuum (channel 2) is
predominant.

Why the pure continuum excitation leads to an increase
in the photoexcitation cross section at the location of the
6p3/2118 state, for example, can be understood from the

and 6@3/212d states at 62382 cm ' and 62707 cm ' and
then disappears. The fact that the spectrum above the
6p~/2 limit is a clear extension of the 6p&/znd series is an
indication that the excitation is due to that channel. The
fact that the signal does not increase at energies above
62700 cm ' indicates that the observed spectrum is not
due to excitation to the 6p3/2nd channel.

The fact that only the excitation of the 6p~/2nd (ed)
channel is important is supported by a three-channel
quantum-defect treatment similar to those of Gounand
et al. and Lu. ' As the calculations are a combination of
the formal approach used in these two earlier papers and
the physical insights of Sec. III we do not describe the cal-
culations in any detail but simply define the parameters
and present the results.

In this treatment we number the three collision, or i,
channels as follows: channel 1, X continuum; channel 2,

6p~/qnd5/2,
' channel 3, 6@3/2Pll3/2 The close-coupled, o.,

channels are numbered as follows: channel 1, A; channel

2, 0; channel 3, X; and they have eigendefects of p&, p2,
and p3. Here the labels A, Q, and X serve to underscore
the fact that the only observable role of the close-coupled
channels is to couple the collision channels.

The unitary matrix U; connecting the close-coupled
and collision channels is given by a product of rotation
matrices

U;N=R(8~2)R(8~3)R(823),

where the R matrices are multiplied together in the order
shown. R(8~2), for example, is given by

following two-channel picture. One of the factors in the
excitation cross section is the overlap integral between
6s23d and the 6p~/~ed continuum. Away from the
6p3/2114 state the phase shifts of the 6p~/2' continuum
and 6s23d state are nearly the same and thus the overlap
integral is nearly zero by orthogonality. At the location
of the 6p3/211d state the continuum undergoes a phase
shift of m, necessarily producing a maximum in the over-
lap integral and thus the cross section, hence the enhanced
structure observed in Fig. 13. In our three-channel model
there are of course two open channels and two phase
shifts which is why the calculated cross-section value as-
suming 6@~/2' excitation is neither as syrnrnetric as one
might expect nor does it go to zero away from the loca-
tion of the 6p3/2nd states (see Fig. 14). Nevertheless, it is
clear that the observed spectral feature arises from the
continuum excitation alone and is quite different from
what would be expected if we were exciting the atoms
from the ground state.

As implied by Fig. 12 the excitations from the
6s231'D2 state to the 6p, /znd and 6p3/2nd channels are
localized near the 6@~/223d and 6@3/223d states, respec-
tively, and they do not overlap significantly. For excita-
tions from lower-lying states such as 6s12d'D~ there is
substantial overlap of the excitation amplitudes to the
6p, /2nd and 6p3/2nd channels, and there is possibility of
interferences. However, as the overlap occurs in a per-
turbed region of the spectrum, it is impossible to separate
the two effects with confidence.

As shown in Sec. III, the observed spectra are very
sensitive to perturbations of the regularity of autoionizing
series, and as a result any perturbation of a series of au-
toionizing states stands out quite clearly. A good example
is the perturbation of the Ba 6p&/2nd series at n=20 by
the 6@3/210d state. The effects of the perturbation are
two: to change the quantum defects of the 6p&/2nd5/2
states and to alter their widths in the vicinity of n=20
In Fig. 15 we show the observed spectrum from the 6s22d
state in which the irregularity at n=20 is very apparent,
as expected. The excitation to the 6p3/2nd channel is
negligible as can be inferred immediately from Fig. 12,
the plot of the overlap integrals, thus in calculating the
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FIG. 14. Calculated cross sections o. for the excitation from
the 6s23d state to the energy range (above the 6pl/2 limit)
shown in Fig. 13 assuming only channel 2 ( -- ) and only
channel 3 excitation ( ———).
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FIG. 15. Observed spectrum from the Ba 6s22d 'D2 state to

the perturbed region near (6p~/z20d5/2) J—3.
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FIG. 16. Calculated spectrum from the Ba 6s22d 'D2 state to
the perturbed region near (6p &~220d5/2) J—3.

spectrum of Fig. 15 we can to a good approximation con-
sider only the excitation to the 6p~~2nd channel. Ac-
counting for the saturation (or depletion broadening) by
the high laser powers as in Eq. (1) leads to the calculated
spectrum shown in Fig. 16. The choice of quantum-
defect parameters, p ~

——0.20, pz ——0.81, p3 ——0.74,
O~z

——0.47, 0~3
——0.20, and Hz3

——0.83 (all angles in radians),
is a compromise in that it accounts reasonably well for the
interaction between the 6p~~2nd and 6@3/2nd series and
gives reasonable values for the 6p~~znd positions, but
understates their widths. In spite of this difficulty, which
is a direct consequence of including only one continuum,
we are able to reproduce the experimental spectrum of
Fig. 15 reasonably well.

physical interpretation initially advanced to explain ob-
served low-power spectra we have shown that the ob-
served spectra can be understood as arising from the prod-
uct of the spectral density of the series of autoionizing
states and the overlap integral with the initial state. Not
surprisingly, the weak features visible in these high-power
spectra present some rather interesting effects. For exam-
ple, in such spectra perturbations of series of autoionizing
states stand out very clearly, and a pure continuum. ab-
sorption is observed which is different from that expected
on the basis of the more conventional configuration-
interaction treatment.

Several applications to take advantage of the under-
standing of these high-power spectra appear promising.
We have here shown that this is an excellent method for
detecting local perturbations in an autoionizing Rydberg
series. In addition, we have observed that mixing between
two channels converging to the same limit can be studied
using this technique. Finally, we note that to reach Ba
autoionizing states converging to higher core states of
Ba+ from the bound Rydberg states two-photon excita-
tion through one of the lower channels of autoionizing
states has been shown to be useful. ' In general, such
schemes lead to single-photon ionization and the conse-
quent loss of two-photon signal. However, if we tune the
first laser to one of the overlap-integral zeros we may
avoid one-photon excitation while still having a small de-
tuning between the real and virtual intermediate states,
preserving a large two-photon amplitude. Such a tech-
nique has been shown to be viable' and may prove to be
quite useful in future experiments.

V. CONCLUSION

We have described the multistep laser excitation of au-
toionizing Rydberg states under the condition where the
final transition is driven by a laser with enough power to
bring out very weak features of the spectrum. Using a
simple quantum-defect-theory treatment to extend the
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