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Coster-Kronig spectrum of argon
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A relaxed-orbital multiconfiguration Hartree-Pock calculation of the L, l-I.23M1 Coster-Kronig
transitions in Ar has been performed. The effects of exchange between the continuum electron and
the bound-state electrons have been examined. %'ith regard to transition energies, excellent agree-
ment with experiment is attained. Calculated transition probabilities are slightly closer to measured
rates thRn 1n prcvlous theoretical work that docs not 1ncludc complete rclaxat1on» but Rn lInpo1tant
dlscIcpancy still rcInalns that apparently cannot bc 1"csolvcd %'1thln thc independent-particle fralTlc"
stork.

I. INTRGDUCTIGN

The L, -L23M! Coster-Kronig spectrum of Ar has long
been a problem area in atomic theory. A theoretical cal-
culation of the energy and transition rates was first re-

ported by Rubenstein. ' The spectrum was measured a few
years later by Mehlhorn, ~ who found a perplexing
discrepancy: The calculated transition rates of Ruben-
stein exceed experimental rates by a factor of 4. To com-
pute the energy of the continuum electron, Rubenstein
used an lncorI'cct 287-cV I 1 -subshell blndlng cncI'gy,
whereas from the measured L!-MM spectrum, Mehlhorn
determined this energy to be (326+0.5) eV. Coster-
Kronig transition I'ates being vcI'y scnsltlvc to thc cncrgy
of the continuum electron, Mehlhorn ascribed the
discrepancy of Rubenstein's result to the use of an in-
correct L l subshell binding energy. McGuire ' repeated
the calculation with three different values of the
continuum-electron energy: one obtained from the model
potential, the second from ESCA (electron spectroscopy
for chemical analysis) measurements, and the third from
experimental Auger-electron energies. The transition
rates calculated on the basis of each of these energies,
however, still remained about a factor of 4 higher than the
measured L 1

-L, 23M &
probabilities.

Although this discrepancy is large, it is not altogether
unexpected. Only over limited range of atomic numbers
do calculations of L-shell Coster-Kronig transition proba-
bilities for various elements ' ' agree reasonably well
with measured rates. The most refined calculation in the
independent-particle RppfoxlIDatlon ovcrcstlIDates thc
L!-subshell width by about 10% for heavy elements
(Z )50), while for low-Z elements the dtscrepancy can
get as large as a factor of 3. Possible reasons for this dif-
ficulty could be (i) many-body interactions in the initial
and final atomic systems, (ii) the effects of relaxation of
the final ionic state, and (iii) the effect of the exchange in-
teraction between the continuum electron and the final
bound-state electrons. These factors were neglected in
most earlier calculations. ' ' ' In the present work, we
have extensively investigated the effects of final-state re-
laxation and of exchange between the continuum electron

and bound electrons in the final state, and we have includ-
ed some of the many-body interactions through initial-
and final-state configuration interactions, for the
L&-L23M& Coster-Kronig energies and transition rates in
RI'gon.

Ohno and Wendln have already deIDonstratcd thc
strong influence of electron correlation on M-shell
Coster-Kronig transitions. Dyall and Larkins' have cal-
culated the L, -L23M& transition rates and energies of ar-
gon including the final ionic-state configuration interac-
tion, and reached somewhat improved agreement with ex-
perimental results. In the present calculation, we have in-
cluded both initial and final ionic-state configuration in-
teractions to account for some of the many-body aspects.
The effect of exchange between the continuum and bound
electrons has been investigated by constructing an an-
tisymmetric (%+1)-electron wave function for the final
state that comprises the X-electron double-hole core and
the continuum electron. Complete I'elaxation has been in-
corporated by determining the initial and final bound-
state one-electron orbitals in their respective single- and
double-hole configurations and replacing Wentzel's an-
satz with a more general transition-rate formula.

II. THEGRY

A. Transition rate including relaxation

Coster-Kronig transition probabilities including the ef-
fect of relaxation are given by'

( (ff )
(H E)

) ft) j p(Ef )—„

where p; and gI are the initial and final states of the sys-
tem p(Ef ) is the density of final states, E is the initial to-
tal energy, and H is the total Hamiltonian of the system.
The initial and final states g; and Pf are constructed as
linear combinations of Slater determinants U and V froID
the one-electron orbitals I u; I and I u; I, respectively,

U =(X!) 'i det
i u!,u 2, . . . , u~ i,

V=(¹!)'~ det ~u!,uq, . . . , u&I .
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The initial one-electron bound orbitals

u;= ~n; llml;mg, ), i=1,2, . . . , X

and final one-electron bound orbitals

u;=~n 1 mI;m, ';), i=1,2, . . . , N —1

are optimized separately in their respective single- and
double-hole configurations. The orbital uz for the contin-
uum electron is determined in the field of the final

I

double-hole configuration. Since the basis sets {u;J and
{u;I correspond to different Hamiltonians, they are not
orthogonal to one another. A general expression for the
matrix element f O'A, z Vdx, constructed from two
nonorthogonal basis sets of spin orbitals {u;J and Iv;I
[Eq. (2)] with nonorthogonal integrals

d»(k 1)=f ul', (xi )u(x, )dx, , (3)

has been developed by Lowdin, '

f U'A l I dx=AoDUv+g &k
I
Ai

I
1&DUv(k

I
1)+( z ) X &ki k2

I
A12 I li 12&DUv(ki k21li, lz)+ ~ ~ ~ (4)

k, l k), k2,
ll, l2

where Ao is a constant, 3
~ and A &z are one-electron and two-electron operators, respectively,

& k
~
A,

~
1)=f uk(xi )A ivl(x 1 )dxi,

& ki k2
I
A12

I
1112 & f uk1(xl )uk2(x2)A12vl 1(xi )vl2(x2)dxldx2

The quantity DUv is a determinant formed from all the nonorthogonality integrals d»(kl),

DUv det
~

d„„——(k, l) ~,

(5)

and DUv(k
~
1), DUv(ki, k2

~
li, lz), DUv(k i,k2, k3 i 11,12,13), . . . , are the cofactors of Did of orders 1,2, 3, . . . .

The determinantal wave functions g; and Pf for the initial and final states can be constructed by a sequence of
angular-momentum couplings and antisymmetrizations. In the case under consideration here, we have for the final
[2p]3s 'Pep S state.

LSMI. Ms) =
l
0—,'0 —,

'
)

(
I 2P+i»o ~P —i &

—
I 2P+i»o ~P —i &

—
I 2Po»o ~Po &+ I 2Po»o kPo &

+ 12p+i 3so up++1 &
—

~
2p —13so+ up++1 &)

and, for the final [2p]3s Pep S state,

ff ( P) =
~

L SML Ms & =
~

0-,' 0-,' )

( ~2P+, 3so+ep i) —~2po 3so ~po &+12p-+13so+&p+1&)
3

P+i o P —1& —
i P+i o P —1&+i Po o Po &3v2

+ 12po»o+&po+ &
—

I
2P +i»o+&P+i &

—
I
2P i—»o+&P+i &)—

Here we have used the notation

x (1)a(1) x (2)a(2) x (3)a(3)
~

x+y z+) = y(1)P(1) y(2)P(2) y(3)P(3)
z(1)a(1) z(2)a(2) z(3)a(3)

The two-electron integrals in Eq. (5) were determined fol-
lowing Slater's procedure.

B. Electron correlation

where the c,j are mixing coefficients, and the @& are con-
figuration state functions built from antisymmetric prod-
ucts of one-electron orbitals

Electron correlation was included in the calculation of
the L ~-L23M& Coster-Kronig transition rates by the
method of configuration interaction. Atomic state func-
tions were constructed as

(10)

The coefficients c;J. and orbitals Ok were determined varia-
tionally.

The success of the configuration-interaction method
hinges on the proper choice of the configuration state
functions NJ. so that they may account for the dominant
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correlation effect. For the initial single-hole state, we
considered mixing of the following two-configuration
state functions:

1s 2s2p 3s 3p S,
ls 2s 2p ('D)3s 3p 3d S . (12b)

For the final ionic states we considered virtual excitation
of the type 3s3P ~3s 3P 3d and performed a multicon-
figuration Hartree-Fock (MCHF) calculation with the fol-
lowing configuration state functions for the 'P final ionic
state:

ls'2s'2p'3s('P)3p"P ,

ls 2s 2p 3s 3p ('S)( P)3d 'P

ls 2s 2P 3s 3P"( P)(2P)3d 'P,
ls 2s 2p'3s 3p ( P)( D)3d 'P,
ls 2s 2p 3s 3p ('D)( P)3d 'P,
ls 2s 2p 3s 3p ('D)( D)3d 'P,
ls 2s 2p 3s 3p ('D)( F)3d 'P .

(13b)

(13c)

(13f)

ls 2s 2p 3s( P)3P

ls 2s 2p 3s 3p ('S)( P)3d P,
ls 2s 2p 3s 3p ( P)( P)3d 3P,

ls 2s 2p 3s 3p "( P)( D)3d P,
ls 2s 2p 3s 3p ( P)( P)3d P,
ls 2s 2p 3s 3p ( P)( D)3d P,

(14d)

(14e)

For the P final ionic state, the following configuration
state functions %fere t8kcn 1nto account:

ls 2s 2p 3s 3p ('D)( P)3d P,
ls 2s 2p 3s 3p ('D)( D)3d P,
ls 2s 2p 3s 3p ('D)( F)3d P .

(14g)

(14h)

(14i)

The configuration state functions (13d), (13f), and (13g) of
the 'P ionic state and (14d), (14e), (14h), and (14i) of the
I 1onlc state %ere cons1dcIcd by Dyall Rnd I alk1QS.

C. Exchange interaction between continuum
Mld bound electrons

As the continuum electron recedes through the electron
cloud, it interacts with the remaining doubly ionized
atom. Ideally, we should determine the wave function for
thc continuum clcctI'on by solving thc Schrodinger cqUR-

tion for a system which consists of a doubly ionized atom-
ic core plus 8 continuum electI'on. The problem is greatly
simplified, however, if we assume that the wave functions
of the bound core electrons are not perturbed by the pres-
ence of the continuum electron. In this approximation,
onc can dctc1 m1nc thc boUQd" state onc-electr on o1b1tals
following a standard technique and the wave function
for the continuum electron can then be calculated in the
potential produced by these electrons. To take into ac-
count the effect of exchange between the continuum and
bound electrons, an antisymmetric (%+1)-electron wave
function can be constructed from the product of the con-
tinuum and the N-electron core wave functions. Differen-
tial equations for the continuum electron obtained in this
way are similar to the Hartree-Fock equations for the
bound-state clcctfons. ' FOBowing Chen et ah. , thc
radial equation for the continuum electron is found to be

IJ(1&+1) 2z +k2 Pr (r~+)) —2Vr r Pt (r~+, ) —28'rt-(r~+ ))—+5gkgP„I(r) =0, ,

rx+1

ran+I

&r ( &+&) f 1 (
I %+1 +%+1) 2 P(Y I

X 0%+1oÃ+l)dx d'()1V+~ do~+~
i =1 &+&,&

8'rr(r~+))= —¹~+,I Q*(I ~X ' +"8~+)o~+))(H —E)hatt(I'~X x~)dx ' +"d8~+)do~+) .

The off-diagonal Lagrange multipliers A,&I, were deter-

II11ncd Us1ng 8 tcchn1quc suggested by Dalgarno.

The irutial and final bound-state one-electron orbitals
mere obtained using the multiconfiguration Hartree-Pock
computer code of Froese Fisher. With these known
bound-state ofbitals, thc HartIcc-Fock cqURtlon fof thc
coIlt1QUunl clcctI'OIl was solved by an 1tcfat1vc technique
Us1ng solut1ons without exchange tel ms as thc 1n1t181

guess. The asymptotic solutions were obtained by the
method of Stewart and Rotenberg. Matrix elements of
thc oIlc-clcctlon opcI'Rtof connecting two bound™state 01-
bitals were calculated with the subroutine III. taken from
FI'OCSC F1SchCf S COIIlputCI' COdC. To calCUlate thC IllatfiX
element of the one-electron operator connecting a bound-
state orbital with a continuum orbital, we first determined
the Hartree-Fock equation for the bound-state orbital us-
ing the technique of Froese Fischer ' and then took a sca-
lar product of this equation with the approprIate contlIlu-
um orbital.
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TABLE I. Mixing coefficients c;J in the eigenvectors P; =g c;~PJ.

Initial S state

—0.9972
0.0742

0.0742
0.9972

1

2
3

5
6
7

0.8344
0.0197
0.1590

—0.1876
—0.3289

0.3610
—0.0655

0.0097
0.0046

—0.2683
0.6560

—0.6760
—0.1912
—0.0632

—0.0379
—0.5120

0.1994
—0.0734
—0.2127
—0.0588

0.8016

—0.0752
0.3059
0.4674

—0.3886
—0.3780
—0.6142
—0.1054

Final 'I' ionic state
4 5

0.2329
0.7149

—0.1205
0.1914
0.2227

—0.1194
0.5654

—0.3085
0.2290

—0.5358
—0.5338
—0.4083

0.3108
0.1305

0.3835
—0.2835
—0.5856
—0.2377

0.1740
—0.5845
—0.0358

1

2
3
4
5
6
7
8
9

0.8343
0.0615
0.0072

—0.1578
0.1563

—0.3389
—0.1086
—0.2434

0.2546

—0.0119
0.2082

—0.0896
—0.5679
—0.4950

0.1523
—0.4415

0.3121
0.2559

—0.0084
0.1322
0.6022
0.1413
0.2611

—0.1536
0.0487
0.6318
0.3263

—0.0111
—0.4174
—0.0884
—0.3551

0.5146
0.5459
0.0810

—0.0158
0.3497

Final 'I' ionic state
4 5

—0.0736
0.3302
0.3657

—0.5996
0.0165

—0.0262
0.5357

—0.2141
—0.2418

—0.0899
0.4564

—0.3192
—0.1365

0.6139
—0.0853
—0.3438

0.1762
—0.3602

7

0.2323
—0.2055
—0.4828
—0.1178
—0.0949
—0.1686

0.5064
0.5787

—0.1679

—0.2934
0.4199

—0.3903
0.1065
0.383

—0.1804
0.3047

—0.1618
0.6488

0.3873
0.4747

—0.0184
0.3212

—G. 1001
0.6866
0.1729
0.0770

—0.0608

IV. RESULTS AND DISCUSSIQN

%'e have investigated the effect of electron correlation,
exchange, and relaxation on the energies and intensities in
the L &-L»M& Coster-Kronig spect~u~ of Ar.

A. Effects of electron correlation

The mixing coefficients for the eigenvectors
g;=g.c,JPJ for the initial and final states are listed in
Table I. There is strong mixing among the final ionic-
state configuration state functions, which alone reduces
the transition rate by -29%. Similar results have been
obtained by the conventional configuration-interaction
calculation of Dyall and Larkins. ' Mixing among the in-
itial configuration state functions is rather modest, reduc-
ing the transition rate further by -2%. The effect of
initial-state configuration interaction on the energy is,
however, quite large: it depresses the initial-state energy
level by 2.1 eV. This brings about excellent agreement be-
tween the calculated and experimental transition energies.
The initial-state configuration mixing also greatly per-
turbs the 2p and 3p orbitals. This causes the nondiagonal
and diagonal overlap integrals involving these orbitals to
differ substantially from zero and unity, respectively. In-
clusion of complete relaxation of orbitals in the
transition-rate calculation is therefore indicated.

The calculated transition energies and intensities of the

diagram lines for the L&-L23M& Coster-Kronig spectrum
are listed in Table II. The effects of exchange between the
continuum and bound electrons and of relaxation are in-
cluded. Satellite lines arising from configuration mixing
of the final ionic configuration state functions appear on
the low-energy side of the diagram line. Inclusion of
initial-state configuration interaction results in a few sa-
tellites on the higher-energy side of the spectrum. These
satellites are very weak and are not included in Table II.

B. Transition rates including relaxation

A relaxed-orbital calculation of transition rates was per-
formed by determining the matrix elements in Eq. (1) to
various orders in nondiagonal overlaps (u;

~
v~ ) using Eq.

(4). The magnitude of the overlaps (2s
~

3s), (3s ~2s),
(2p

~
3p), (3p

~
2P), and (3p

~
ep) were substantially

larger than others. %'e therefore considered all terms up
to order three involving any two of these overlaps, and up
to order two otherwise, excluding, however, terms that are
numerically less than lo . A multitude of terms survive
these criteria, too extensive to be included here; for details,
the reader is referred to the first author's thesis. Transi-
tion rates obtained on the basis of this calculation are re-
ported in Table III. Relaxation causes the (3P) rate to in-
crease by 244%, while the ('P) and total rates are reduced,
respectively, by 14% and 12%. The major change in the
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TABLE II. Diagram and satellite lines in the L&-L23M]

spectrum of Ar. The initial and final states refer to the atomic-
state functions given in Table I.

Initial
state

Final
state

1p
Energy

(eV)

28.95
20.26
14.91
11.99
10.67
7.35
2.08

Rate
(10 a.u. )

255.56
0.17

12.42
13.97
40.39
48.47

1.38

Relative
intensity

100.0
0.1

4.9
5.5

15.8
19.0
0.5

3p

30.29
23.04
20.60
18.51
16.86
11.30
10.54
9.54
7.17

6.17
0.06
0.01
0.05
0.01
0.27
0.06
0.30
1.26

100.0
1.0
0.1

0.8
0.1

44
1.0
4.8

20.4

( P) rate is seemingly due to the fact that theory grossly
underestimates this transiton amplitude. It is interesting
to note that if we consider, following Dyall and Larkins, '6

the term containing diagonal overlaps only, we get 50%%uo,

55%, and 50% reductions in the 'P, P, and total transi-
tion rates, respectively. Though in agreement with experi-
mental total transition rates, these results are substantially
different from those obtained from a complete relaxation
calculation. Because it is so easy to incorporate such ap-
proximate relaxation in transition-rate calculations, it may
be worthwhile to know when one must venture into the
prodigious labor involved in a complete relaxed-orbital
calculation. The terms contributing to the transition arn-

plitude can conveniently be grouped according to the non-

diagonal overlaps that they contain as factors. It was
found that the individual terms contributing to the tran-
sition amplitude can be very large, some even larger than
the diagram lines. The sum over all terms of each group,
however, is rather small. This circumstance can be made
more evident by expressing the one-electron integrals in
terms of two-electron Slater integrals, which leads to ex-
tensive cancellations of terms within each group if one
makes the approximation that diagonal overlaps are equal
to unity and that R (i,i;f f)=R "(i,i;i,f). The total con-
tribution of each group will then depend on the magni-
tude of the remaining two-electron terms, the phase rela-
tions among these terms, and the overlaps that they con-
tain as factors. It is difficult, however, to make any a
priori conjecture as to the magnitude of this contribution
without carrying out the actual calculation.

C. Effects of exchange

To investigate the effect of exchange between the con-
tinuum and bound-state electrons, the Hartree-Pock equa-
tion for the continuum electron was solved with and
without the exchange terms. It was seen that the ex-
change interaction slightly increases the magnitude of the
radial Slater integrals for the L&- Lq 3M& ('P) transition,
there being a corresponding reduction in the magnitude of
the L ~-Lz3M& ( P) radial integrals. Computing transition
rates using these radial Slater integrals, we found that
L ] L /3M~ ( 'P), L ~

-L 23M~ ( P), and the total transition
rate increase, respectively, by about 7%, 38%, and 8%,
because of the exchange interaction.

V. CONCLUSION

Present relaxed-orbital multiconfiguration Hartree-
Fock calculations including exchange between the contin-
uurn and final bound-state electrons lead to good agree-
rnent with experimental transition energies and slightly
improve the theoretical transition rates in the L&-L23M]
Coster-Kronig spectrum of Ar. The total calculated tran-
sition rates are still about a factor of 2 higher than the ex-

TABLE III. Transition energies (in eV) and rates (in milliatomic units) in the L~-L;3M~ Coster-
Kronig spectrum of Ar.

('~)
Rate

5.8

L )-L23M)
Energy

L )-L23M)
Energy

7.6

0.62
0.13

33.3
30.3

29.66 0.18

30.3 0.06

30.3 0.08

28.9

Experiment 28.7 30.5
CI' calculation including

partial relaxation 32.2 23.75
Present calculation: MCHF 28.9 27.61
MCHF including exchange

interaction 28.9 30.3
MCHF including partial

relaxation 28.9 13.94
MCHF including exchange

and partial relaxation 28.9 14.97
MCHF including exchange

and complete relaxation 25.55 30.3 0.6

'CI stands for configuration interaction.
Approximate relaxation, including only the terms containing diagonal overlaps (Ref. 16).

Total
rate

13.4

24.37
27.74

29.84

14.00

15.05

26.17
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perimental values. Relaxation tends to minimize the
differences between individual L &-L23M& ('I') and
L)-L23M, ( I') transition rates; inclusion of intermediate
coupling and channel-channel interaction' should mini-
mize it further by redistributing some intensity from the
('I') line to the ( P) line. The initial and final ionic-
configuration interaction reduces the total decay rate by
31%. Inclusion of complete relaxation reduces it further
by 12% with respect to calculations that do not include

relaxation. The exchange interaction increases the rate
by -8%. We conclude that, although these effects are
substantial and cannot be omitted from a successful calcu-
lation, they do not adequately account for the physical sit-
uation. Clearly, the independent-particle model of atomic
structure is insufficient to treat the pronounced many-
body aspects of radiationless transitions of the type con-
sidered here, and more elaborate approaches are required
to explain the observed intensities.
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