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Mirrorless optical bistability with the use of the local-field correction
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A semiclassical-model of two-level atoms driven by a local field is developed. It is shown that this
leads to optical bistability without the presence of an optical cavity. The quantitative and qualita-
tive character of this mirrorless bistability is different from cases considered earlier.

I. INTRODUCTION

Recently, there has been considerable interest in the
problem of optical bistability. ' Most experimental and
theoretical work has concentrated on Fabry-Perot de-
vices. In addition, there has been an interest in devices
using nonlinear surface concepts. In this paper we con-
sider the question of whether one can dispense with opti-
cal paraphenalia altogether, and make an optically bi-
stable device out of the material system alone.

This idea of making "mirrorless" bistable devices, in-
cluding using the local-field correction (LFC) to make
the bistability, is not new. Earlier calculations have fallen
into three categories. Some treat the medium as a single
particle. Aside from the inconsistency of using a many-
body effect like the LFC in a single-particle calculation,
this procedure leaves open serious questions as to whether
the bistability is possible unless proper boundary condi-
tions are imposed. Some of these calculations have yield-
ed quite unrealistic results, predicting large nonlinearities
at very weak powers. Other calculations use the Dicke
model, which neglects the propagation of the electromag-
netic field. Since propagation of optical fields can be im-

portant, this limits the results to qualitative interpretation.
Finally, there are calculations in which nonunique molec-
ular states are invoked to make mirrorless bistability, such
as anharmonic oscillators (e.g. , HF). In such cases, bista-
bility is exhibited by each molecule independently of each
other. Since there are no strong intermolecular forces,
each molecule fluctuates between its bistable states in-
dependently of all others. Under such circumstances, the
memory of the initial state can decay (called a "glitch" )

rapidly in time due to fluctuations.
The first-principles aspects of the LFC is considered

here, although not in detail. The point of a development
from first principles is to indicate where the fundamental
assumptions of the treatment lie. Our primary purpose in
this development is not to demonstrate in any absolute
sense that optical bistability is possible using the LFC, but
rather to develop the problem in a systematic fashion so
that the basic issues are at least clear. We thus consider
this paper to be a preliminary exercise. We hope it will
result in more attention to a problem that we believe is of

both fundamental and practical interest.
The microscopic semiclassical formulation of optical

interactions follows directly from quantum electrodynam-
ics when the electromagnetic fields are described by
Glauber states and the Heisenberg equations of the system
are assumed to factorize. Our equations contain terms
quadratic in elements of the density matrix, and it is by
no means clear that such factorization is allowed. Hence
factorization is a strong assumption in this work, and no
justification other than the intractability of the fully
quantum problem is intended. In addition, we find that
the media are not truly bistable; rather there are a very
large number of stationary solutions. We restrict the solu-
tions we examine in detail by using the additional assump-
tion that all atoms in a given locality are in the same su-
perposition of atomic states. We refer to this solution as
"cooperative, " in accord with nomenclature of the Dicke
model. This assumption is made for simplicity, and no
effort to justify the validity of the assumption is made.
The question of the stability of the solutions is beyond the
scope of this work, and may require quantum electro-
dynamics for proper evaluation.

We eventually formulate the problem in terms of a
self-consistent solution of the macroscopic, semiclassical
density-matrix and Maxwell equations for two-level atoms
interacting with a radiation field. In addition, we develop
the problem of optical bistability in a microscopic two-
atom model. This shows that the macroscopic and micro-
scopic solutions differ only in geometric factors. We also
show that bistable operation is restricted to situations in
which slowly varying solutions are invalid. Hence we
develop techniques for numerically evaluating the exact
Maxwell equations.

Our development is, thus, far from complete. There are
a nuinber of problems we do not address. These need con-
siderable research on their own, and must be answered be-
fore one can assert that bistable devices of this kind are
possible. These questions are as follows. Is the LFC a
cooperative phenomenon? This is of primary importance
in discovering the expected glitch rate of such a device;
does the answer to the previous question depend on the
structure factor (see below)? Is it permissable to use two-
level descriptions for atoms interacting as strongly as
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these, or do multilevel and/or band-structure effects play
a role? What is the influence of medium inhomogeneities
and anistropies7

II. THE LOCAL-FIELD CORRECTION

1 a'E 4~ a'P
+2E+

c gt c Bt
(2)

A conventional derivation of the LFC can be found in
Jackson. The LFC is introduced as part of the passage
from microscopic to macroscopic electrodynamics. The
derivation in Jackson suggests that the correction is due to
all of the atoms in the system, i.e., it is some kind of a
cooperative phenomenon. If this is the case, then bistabil-
ity based on this phenomenon would seem to be potential-
ly useful, since the device would have the low glitch rate
of a cavity device, as opposed to the high rate of the
single-molecule case. It is unclear, however, whether this
cooperative interpretation suggested by the development
in Jackson is correct. Moreover, there are two concepts
embedded in the LFC which are discussed in detail below,
and they may work differently with respect to cooperative
operation.

In this overview of the LFC we are drawing heavily on
the discussion of Sipe and Van Kranendonk. Let us be-
gin the discussion by emphasizing that there is no local-
field correction in the microscopic theory of elec-
tromagnetism. In that case, the force on atom m comes
from a field denoted by E, where

E- =E + X G J&J ~

j (~m)

Here E; is the input field, pj is the polarization of atom j,
and 6 J is the Green's function (i.e., the Lenard-Wiechart
potential) that takes into account geometry. Retardation
and vector properties are not denoted explicitly, but are
understood to be part of the description of the fields. The
absence of m in the sum comes from the removal of the
self-field of atom m which appears in the theory as damp-
ing and spontaneous emission.

In the passage to macroscopic electromagnetism, two
problems occur.

(1) Reintroduction of the self-field. The macroscopic
Maxwell's equation in isotropic media reads

m, not by the surrounding atoms [note that homogeneous
broadening implies that the semiclassical values of the
macroscopic and microscopic polarizations are propor-
tional to each other; hence Eq. (4a) can be written in terms
of P rather than in terms of the off-diagonal element p,b

of the 2)&2 single-atom density matrix pj. This interpre-
tation suggests that the local-field correction is a single-
atom phenomenon.

(2) Neglect of detailed correlations of the medium. In
this case, one observes that in crystals, it is by no means
clear that the field at atom m is accurately represented by
smearing out the positions of atoms j&m. This can only
be significant for atoms in the neighborhood of m, so the
correction is again proportional to P in the static limit. In
the dynamic limit, questions of the appropriate scale of
locality (i.e., the wavelength I, ) become important. If
such issues can be neglected, one obtains the total LFC as

r

4m.
E& ——E+ +s P.

3

The name "structure factor" is given to the constant s,
which comes from the correlations of atomic position that
occur in crystals. ' The contribution to the local field
from s appears to involve explicitly the forces from neigh-
boring atoms.

III. FORMULATION OF THE PROBLEM

In this development, the slowly varying approximation
is made only with respect to time, and not in the usual
fashion with respect to space. This is exact in Maxwell's
equations, and is exact in Schrodinger s equation for cir-
cular polarization (for linear polarization we take the
rotating-wave approximation to be valid). The convention
for defining amplitudes of macroscopic fields (all other
fields have the same convention) reads

E = —,
' [8' exp( i vt)+ c c —], . .

P = —,
' [H exp( ivt)+c. c.—],

and the slowly varying amplitude of the off-diagonal
density-matrix element is

p, b ———,[iR,bexp( ivt)+c. c.j . —

Here P is the macroscopic polarization defined as

P=gp, ,
J

(3)

In each case, v is the frequency, t denotes time, i =V —1,
and c.c. denotes the complex conjugate. Assuming homo-
geneity of the medium, Eqs. (3), (5), and (6) give

4'
3

(4a)

The correction in Eq. (4a) is proved only for homogeneous
broadening, and in the interpretation of Ref. 8, the ampli-
tude of P is given by the amplitude of the dipole of atom

so that P contains the contributions of all atoms. The
solution of the total field E from Eq. (2) then results in a
contribution to the total field from all atoms. When this
field is used to drive atom m, it contains the self-field of
atom m. As shown in Ref. 8, the extra contribution is re-
moved by taking the atom to be driven by a field

H =i PIVOT,b,
where 9 is the dipole matrix element, and N is the density
of atoms. From Eqs. (4)—(8), one obtains the amplitude
8'~~ of the local field as

8') ——8'+i gPNR b,
where /=4m/3+s. The density-matrix equations of the
two-level atoms whose upper (lower) states are labeled a
(b) read

dA~g P
(i 6+?,b )R,b +— 8')„n,

dt '
2A
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dn P= —y(1+n)+ —(8',"~R,b+c.c.),dt

where the inversion n is

n =paa —
pub ~ (12)

inversion-dependent shift occurs in the resonance. A sim-
ple geometry is chosen for this demonstration, namely,
one in which the atoms, labeled 1 and 2, are separated by
a distance r along an axis parallel to the wave normal of
the incident field. Let A be defined as

and p„and pbb are the diagonal elements of the density
matrix. In the above formulation, it is assumed that the
lower-state decay is zero, so that y=y, . The decay of the
off-diagonal element is y,b, 5 is the detuning of the atoms
from the field, and A' is Planck's constant divided by 2m. .

Upon substitution of Eq. (9) into Eq. (11) one obtains

ik 1+-
r 2 r 3

where k is the wave vector of the incident field. Then

(19)E& ——E;+A exp(ikr)p2,

E2 ——E;exp(ikr)+A exp(ikr)p& . (20)dn = —y(1+n)+ (8—'*Rgb+c c ) .
dt

(13)
The slowly varying amplitudes of E] and E2 then read

Thus the local field drops out of the equation for the in-
version. The equation for the off-diagonal element can
then be rearranged using Eq. (9) to read

dR, b p
[t(5 —&1'abn—)+1'ab]Rub+

~
«

where

gNP
2Ay,

(14)

(16)

One therefore sees that the local-field correction causes an
inversion-dependent frequency shift. It can be shown that
when taken off resonance, this shift leads to the Clausius-
Mosatti relationship. To obtain a magnitude for 8, it is
useful to recall the formula for the on-resonance absorp-
tion coefficent a which is9

8'& ——8'; + iA P exp(ikr)R, b (2),
8 2 ——8;exp(ikr)+iAP exp(ikr)R, b(1),

where we denote the density-matrix elements of atoms 1

and 2 by arguments (we are only interested in cases in
which the dipole amplitudes are constant, so their retarda-
tion is not explicitly denoted). The development of the
equations for the atoms in this case parallels the macro-
scopic case except that A is complex, and hence one can-
not straightforwardly simplify the equation for the inver-
sion. The polarizations in steady state read

R,b(1)= — [8';+iAP exp(ikr)R, b(2)]
P . P . n(1)

2A

R,b(2) = [8';exp(ikr) + iA P exp(ikr)R, b (1)]
P . . . n(2)
2A D 5

(24)

The absorption coefficient a can be expressed in terms of
8 as

where

D(5)=i5+y, b . (25)

(17)

Here we have used v/c =2m. /A, , where A, is the wavelength
of light in vacuum. The numerical factors that relate 8 to
a are appreciable. Since B is the shift in the central fre-
quency relative to the linewidth, it follows that for any
appreciable shift, the absorption coefficient is of the order
of or much greater than I/A, . Since bistability occurs near
resonance, the slowly varying approximation in space is
not usable.

IV. TWO-ATOM PROBLEM

In the case of two two-level atoms we deal explicitly
with the microscopic problem. We formulate the problem
in a fashion paralleling that of Milonni and Knight, ' who
formulated the problem for spontaneous radiation of a
two-atom system in vacuum. We assume a strong exter-
nal field, and factorize their quantum-electrodynamic
equations, leading to a semiclassical description of the
problem. This is the simplest system in which bistability
can be shown self-consistently. The microscopic Maxwell
and density-matrix system contains no I.FC, since none
exists in microscopic electrodynamics. However, the same

X
D(5)+iAn (1)

D(5) +A exp(i 2kr)n (1)n (2)
(27)

It is now straightforward to see the basic conclusions of
the two-atom case. I et us consider the simplest limit,
namely, kr &&m, in which case 3 is real and the terms go-
ing as exp(ikr) and exp(i2kr) are all unity. One can see
that, upon substitution into the equations for the inver-
sion, there will be a nonlinear polynomial of the form of
two coupled cubic equations with two unknowns. This
may have more than one physical solution, and there is
the possibility of bistability. Solutions to these equations

Equations (23) and (24) form a set of two equations and
two unknowns (i.e., the R's) which is solved to give the
R's as a function of the n's. At this point it is easiest to
redefine the field amplitude to absorb the factor P/A, and
to redefine A by absorbing a factor P /2A to obtain

n (1) D(5)+iA exp(ikr)n (2)
2D (5) '

D (5) +A exp(i 2kr) n (1)n (2)

(26)

R,b(2) = exp(ikr) N';
n (2)

2D 5
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n8';
2D (6)[D (5)—iAn]

(28)

This is the same solution, except for differences in the
geometric factors denoted 3 and 8, that one obtains from
Eq. (14) in steady state. Both cases give an inversion-
dependent frequency shift. We show later that the same
shift occurs with the LFC, and that this leads to bistable
solutions. In the two-atom calculation we have shown
that such shifts are reasonable based on a semiclassical
electrodynamic model in which no I.FC is involved.

V. SINGLE-ATOM PROBLEM

Treating an LFC problem as if one had a single atom
entails obvious logical inconsistencies. Nonetheless, such
techniques have been used in previous studies, and it is a
useful first step in the analysis. It helps, for example, to
establish the magnitude of the parameters involved in the
bistability.

it is straightforward to find the steady-state solutions
of Eqs. (13) and (14) for the case where the external field
is constant in time. This is given by a cubic equation

(1+n) 1+ Bn— (29)+Sn =0,

where

exist for which n(1)&n(2) and n(1)=n(2)=n. We re-
strict our attention to the latter cases. This restriction is
not justified here, and is taken for the purpose of simplici-
ty. As noted above, it is unclear whether quantum elec-
trodynamics is needed to properly describe this problem,
and may be necessary to determine the stability of solu-
tions (we would, at least, need to include retardation expli-
citly, which leads to complicated expressions for the sta-
bility eigenvalues). Such an investigation is beyond the
scope of this analysis. With this restriction, Eqs. (26) and
(27) give

d 5'(z) v 8'(z) 4+v H(z)
z2 c2 c2 (31)

where the amplitudes are independent of time, and hence
8' is described by an ordinary differential equation. To
obtain the solution to Eq. (31) it is necessary to apply
boundary conditions on the amplitudes. We denote by z
the position in a medium extending from z =0 to z =L.
The total field to the left of the medium reads

E = —,
' [8';exp[ i(kz vt)]—

+ 5'+exp[i ( —kz vt)]+ c.—c. j, z & 0

(32)

from which one obtains the amplitudes and derivatives as

8'= 8';exp(ikz) + 8'~ exp( ikz), z &—0 (33)

d8 =ik [ 8';exp(ikz) —8'&exp( —ikz)], z (0 . (34)

equations of motion for the medium.
As noted previously, the large values of the absorption

coefficient needed for bistable operation preclude the use
of the slowly varying approximation in the spatial coordi-
nate to compute answers. On the other hand, since the
media are opaque, one is not interested in large propaga-
tion distances, and hence it is feasable to numerically in-

tegrate the exact equations over distances short compared
to an optical wavelength. The distances involved in this
calcultion are so short that there is no possibility of cavi-
tylike resonances occurring between the surfaces of the
medium, although small amounts of interference oc-
casionally complicate the results. There has been no
work, to our knowledge, on how to solve an exact, non-
linear propagation problem in this limit, so we discuss our
technique in some detail.

In the steady-state, plane-wave case, Maxwell's equa-
tions reduce to

5=-
'V'V ab

(30)

For fields to the right of the medium we have

E = —, j 8'rexp[i (kz —vt)+c.c.]], z)L (35)

The term containing the geometric factor 8 comes direct-
ly from the inversion-dependent frequency shift of Eq.
(14). Equation (29) has three real roots in the parameter
range B &6, S&4, 6/y, b

——2. These roots are always
such that

~

n
~

(1, so they are physical (in practice one
finds n &0). These solutions have the property that the
largest and smallest values of n are stable, and the middle
value is unstable. We find that a complete solution of the
problem does give bistability in this general range of pa-
rameters, and not in others. For B)6 and s=0, Eq. (17)
gives aA. ~~1. At the value of detuning given above, the
medium is opaque.

from which one obtains the amplitudes and derivatives as

8' = 8'z.exp(ikz), z )L
d8'

=ik 8'rexp(ikz), z )L .
dz

(36)

(37)

Here the subscripts T and 8 denote the transmitted and
reflected field. We assume normal incidence. In this case
the important boundary conditions are the continuity of E
and H (the magnetic field) at each boundary. The former
requires that 8' is continuous at each boundary, the latter
can be easily shown to require that the derivative of 8'
must be continuous. At the boundary z =0, Eqs. (33) and
(34) provide the conditions

VI. MAXWELL'S EQUATIONS 8'=8', +8', , z=O (38)
The single-atom solution, while useful, is nonetheless

self-contradictory in the case of a many™body effect like
the LFC. We therefore consider next the multiatom
macroscopic solution. The single-atom equations are the

d8'
=ik(S'; —8'g ), z =0

dz
(39)

to integrate Eqs. (31), (13), and (14) across the medium,



29 MIRRORLESS OPTICAL BISTABILITY WITH THE USE OF. . . 2595

provided the reflected field is given. Equations (36) and
(37) reduce to

cy of every computed point was independently checked
(there are no test cases).

(41)

(42)

Here R and T are the usual reflection and transmission
coefficients, A is the absorptance, i.e., the fraction of opti-
cal energy that is dissipated in the medium, and r is the
reflection coefficient for the field amplitude.

VII. METHOD OF SOLUTION

The difficulty with the solution is that 8'~, i.e., r, is un-
known. The solution method involves guessing r until
one finds a result that meets the criterion of Eq. (40).
When that is found, then one has a valid solution of the
problem insofar as all of the boundary conditions are met.

As a practical matter, such a procedure is tedious, and
it is necessary to find some method for systematizing the
search for the proper r. The method used here is to as-
sume that 8'(z =L) and its derivative are analytic func-
tions of the complex number r, so that d 8'(z =L)/dr and
d 8'(z=L)/drdz are taken to exist. The measure of
whether a solution is found is denoted C(r), and reads

C(r) =
dz

ik8', z—=L . (43)

The assumptions outlined above imply that C(r) is an
analytic function of r. The solution is found when C(r)
=0, so the problem has been reduced to a complex
Newton-Raphson procedure. The remaining difficulty is
to define the derivative numerically. This is done by
choosing some 5r prior to the calculation, and then for
each successive choice of r, the case r+5r is computed,
and the derivative of C(r) is taken to be

=ik8', z =L .
dz

Equation (40) is a criterion that must be met in order that
the solution be valid.

Before discussing how the solution is obtained it is use-
ful to define the following standard notation:

VIII. RESULTS

In the calculations we assume that the atoms are always
locally in the same superposition of atomic states. To en-
sure this, we specify, in advance of the calculation, the
state that the atom will be in (the "upper" or "lower" ) if a
nonunique atomic state is encountered. The upper state is
the one with the largest value of p„, and the lower state
has the smallest value of p„. The former defines the
upper bistable branch, and the latter defines the lower
branch. These branches would be reached in practice by
the usual methods; the lower branch by adiabatically in-
creasing a weak field, and the upper by adiabatically de-
creasing a strong field. The upper and lower branches
have the highest and lowest rates of dissipation of optical
energy (i.e., as measured by the absorptance). By this
measure, the terms upper and lower have the same signifi-
cance as in a cavity. However, the transmission charac-
teristics of the two states are reversed from the bistability
in a cavity, in that the lower branch has the higher
transmission.

In Fig. 1 the transmission function is shown as a func-
tion of detuning 5 for three values of B, each with two or
three values of 8';. The case where B =4 and 8'; =3 was
not finished due to extreme difficulties in numerical con-
vergence, probably because it is approaching the condition
of an optical transistor. For B &6, bistability is not ex-
pected, and is not found. Note the shift in the resonance
frequency as the atoms become saturated. Hopefully, this
shift could be measured experimentally, which would be
an additional verification that the ideas presented here are
valid. For B =6, 5—= —2, and 8';-=2, a nonunique ab-
sorption is seen, which is consistent with the values ob-
tained in the single-atom calculation. Note that the
curves for the upper and lower branches join continuous-

(b) B=4

dC(r)
dr

C(r +5r) C(r)—
5r

The numerical criterion for a solution is taken to be

~

C/8'r
~

&0.0001. There is an independent criterion on
the solution that is simultaneously checked, and that is
that the dissipated energy predicted by Eq. (42) must
equal the dissipated energy computed by Eqs. (13) and
(14). This criterion turns out to be met to within 2% ex-

cept when dissipation is small, in which case it was within
5%. We take this as a measure of the expected accuracy
of the solution. Criteria coming from the boundary con-
dition are not as well suited to this purpose. The energy is
an absolute criterion while the boundary condition is only
measurable relative to a field which is itself guessed
through the numerical procedure. The numerical accura-

50
(c)B6

—6

—10 b 0

FIG. 1. Transmission T vs detuning 5 for (a) 8=2 and
8';=1,2, 3; (b) 8 =4 and 8';=1,2; (c) 8 =6 and 8';=1,2, 3.
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(a)

0
0

0,

FIG. 2. (a) Absorptance 3 and (b) transmission T vs input
field 8'; for 6= —1.5 and B=6.

ly, so the states taken by the atoms as the tuning is varied
are indeterminate in a steady-state analysis. Unlike bista-
bility in a cavity, there is no method of systematically
reaching bistable states by adiabatically tuning the fre-
quency.

In Fig. 2, a bistable loop is shown for 8 =6, 5= —1.5,
and 8'; variable over a range from 1 to 3. Both the ab-
sorptance A and transmission T are shown. The absorp-
tance is the same for this case and for bistability in a cavi-
ty, insofar as in both cases a larger amount of optical en-

ergy is dissipated if the atoms are in the upper branch
than if they are in the lower branch. The condition on
transmission theo reverses the normal one. The lower
branch has a higher transmission than the upper branch.

IX. CONCLUSION

In conclusion, it has been shown that the notion of us-
ing the LFC to generate optical bistability is a sensible
one, insofar as the present understanding of semiclassical
electromagnetism is concerned. Bistability is seen to be
limited to cases in which the medium is so highly absorb-
ing that it is opaque. In that case, we imagine using slabs
of active media that are much thinner than an optical
wavelength. The widths of these slabs are so short that no
cavity resonances occur for the wavelengths of interest.

Our development is far from complete. There are a
number of problems we have not addressed. These chiefly
involve the stability of the solutions, and, in particular,
whether semiclassical theory is capable of properly ad-
dressing the stability question. There is an additional im-
portant issue, and that is whether it is possible to devise
experiments such that the answers to these theoretical
questions can be obtained in conjunction with data.
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