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Radiative decay of autoionizing states in laser fields. II. Photoemission spectra
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The fluorescence produced by an autoionizing state under strong pumping by a coherent laser
field is considered. It is shown how the spectrum of emitted photons and the total number of pho-
tons are related to the two-time and single-time atomic expectation values, and explicit expressions
are derived for them. Numerical results for the time development of the number of photons ejected
are presented for finite times and in the long-time limit. The photon spectra are shown to exhibit ac
Stark splitting of the states involved. The spectrum is a doublet for transitions to a stable final state
and a triplet for transitions connected back to the initial, strongly driven state. The decay of an au-

toionizing state in the absence of a laser driving field is considered, and the square of the Pano q
value is interpreted as the ratio of two decay rates.

I. INTRODUCTION

In paper I of this series, ' we developed a general theory
to describe the radiative decay of autoionizing states in
the presence of strong laser fields. The general theory
was then applied in studying the dependence of the pho-
toelectron spectra on spontaneous emission and laser in-
tensity. In the present paper we analyze the characteris-
tics of the fluorescence produced by the autoionizing
states, and show how studies of the fluorescence can
provide important information on the characteristics of
the autoionizing states.

In Sec. II we show how the spectrum of the emitted
photons and the total number of photons are related to the
two-time and single-time atomic expectation values. We
also show that in the steady state the dipole moment is
zero, and hence the emitted radiation has no coherent
component at the driving frequency of the laser. In Sec.
III we calculate the total number of photons emitted in
each of the transitions

~

E )~
~

i ) (back to the state from
which the system is being pumped by the laser field) and

~

E)~
~
f ) (to a third level which can act as a sink for

the atomic population). It is shown how the "confluence
of coherences" is manifested in the number of photons
emitted. The time development of the photon number is
studied, and is shown to reflect the Rabi oscillations
within the atom for large values of Fano's q parameter.

In Sec. IV we calculate the spectrum of photons ejected
in the

~
E)~

~ f ) transition. The spectrum is shown to
exhibit a doublet, reflecting the ac Stark splitting of the

I

autoionizing state. For small y;, the spectrum to
~ f ) can

serve as a probe of the coherences within the system. We
show how recycling (nonzero y;) affects the Raman spec-
trum. In Sec. V we calculate the spectrum of photons
ejected in the

~

E)~ ~i ) transition. This spectrum ex-
hibits a triplet reminiscent of the Mollow triplet, but
with no coherent (5-function) component. The triplet
shows the ac Stark splitting of both the autoionizing state
and the initial state. It is shown how nonzero yf affects
the spectrum.

In the Appendix we consider the decay of autoionizing
states in the absence of a laser driving field, as studied by
Armstrong, Theodosiou, and Wall. We study the
branching ratios of the two decay channels, and discuss
the importance of the "virtual recombination" or coupling
between the photon and electron channels. Our results al-
low for an interesting interpretation of the Fano q value
as the ratio of two decay rates.

II. PHOTOEMISSION SPECTRA—RELATION
TO ATOMIC CORRELATIONS

In this section we first introduce the definition of
photoemission spectra in terms of the correlation function
of the atomic operators. This can be done by obtaining
the Heisenberg equation of motion for ak, (t), and then
formally integrating such an equation. Having obtained
ak, (t), the mean number of photons in any mode can be
calculated. This procedure is fairly standard. Using the
Hamiltonian Eq. I(2.5) [i.e., Eq. (2.5) from paper I], we
obtain for the mean number of photons

&k, ;(t)=
~
d„uk,

~ f dt& f dt2(At(t t&)A;(t —t2))e'—
t

IVt f(t)=
~
d,f uk,

~
dt& f dt2(Af(t t, )Af(t —t2))e' "~— (2.1)

(2.2)

29 2565 1984 The American Physical Society



Q. S. AGAR%'AL, S. L. HAAN, AND J. COOPER

N;(h)= QNk, „(h)
k, s

=y; f Cr(A;(r)A;(r)), (2.3)

Nf(h) =yf f Cr( Af(r)Af (r) ) .

On summing (2.1) and (2.2) over all the directions, we can
obtain the number of photons at a given frequency

(2.&)

N, (5,h)= f Ch, f Ch, (A;(h, )A;(h, ))

where the suffixes i and f represent the two channels open
for spontaneous emission, and where the operators A; and

Af are defined by I(2.12):

A = f cEI'&«IBz Af= f cElf&«lc
The total number of photons are given by

Nf(5f)= Re QFj '(0+i5f)Gf' '(0)
fr

CX

(2.14)

where we have assumed that the limit as z 0+ of all
quantities like F' ' exist. It will be seen in Secs. III—V
that all these limits indeed do exist, implying that
CN;(5)/Ch =CNf(5f)/Ch =0. Thus the spectra discussed
in Secs. IV and V are different from conventional spectra
as the conventional spectra deal with the rate of change of
photons in a given frequency interval. In order to have
nonvanishing values of the conventional spectra for the
auto1on1zatlon system, 1t would be necessary to continu-
ously pump the ground state.

Another point worth noticing about autoionizing states
is that in the steady state (A; ) = (Af ) =0. To see this
consider, for example, (A; ):

(A;) = f CEBz,px;(z)
—~5(t, —t2)Xe 5 =co—6th &E;(z)= f cEBE,

1 —g (z)

], /2

D (z)
Pl

(2.15)

t
Nf(5f, h)= f Ch, f Ch, (Af(h, )A&(h2))

g.6)

The time integrais ln (2.3)—(2.6) can be removed by using
Laplace transforms and the structure of fhe two time-
correlation functions. On using the quantum regression
theorem, the two-time correlations can be written in the
form

(A;(h&)A;(h, ))=QF,' '(h, —h, )G '(h, ) .

and hence in the steady state

(A;(ao)) = f CEBF, limz&E;(z)/[I —g (0)]

=[1—g (0)] ' lim f CEBF,gz(h)g*, (h).
' 1/2

=[1—g.(0)] '

fg f—+ac
lim p,*(h)X2(h), (2.16)

which is zero since both P; and X2 decay with time. In
other words, the induced dipole moment is zero, which
implies that there will be no coherent scattering [i.e., no
5(a) —co) )-like contribution].

N, (z)= 'W(A, 'A, &,

Nf (z) = W (Af Af )

(2.8)

(where carets and W denote Laplace transforms),

N, (5,z)= '
R.e —'gr, "(z+i5)G,"(z)

z a

Nf(5f, z)= f Re —'ps~"(z+i5f)Gf"(z)
z a

(2.10)

The use of Laplace transforms is especially attractive, as
then the expressions for steady-state quantities follow,

N; = lim N~(h) = lim y;W(A; A; ),t~ oo g-+0

N/ —lim yf W(Af Af ),
s—+0

(2.11)

A simple analysis leads to the Laplace transforms of
(2.3)-(2.7): III. TOTAL NUMBER OF PHOTONS EMITTED

IN THE DECAY OF AUTOIONIZING STATES

In this section we study the features of the total number
of photons that can be emitted in each channel of spon-
taneous emission. It will be seen that these quantities car-
ry very interesting information regarding the features of
the autoionizing states. From the definition I(2.12) and
the orthogonality of states, we find that (2.8) can be re-
duced to

N;(z)= f cEi f cE2BE,,BF,,pE,E,(z),

Nf(z)=- f cE) f cE2CE,,C@,,pE,E,(z),

which on using the solution I(3.22) with v=0 and the ini-
tial condition p(h=0)= li)(i

I
reduces to

N, (z)= ' f cE, f cE,B,'.B,,
(3.2)/

N;(5) = Re g Eg' '(0+i5)G '(0) (2.13) f og,x, (z)
Nf(z)= f cEi f cE2CF*,,CE,z 1 —g (z)
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On recalling crE x (r) =QE (t)QE (r) and using I(3.32), we

can reduce the double integrals in (3.2) to

fN;(z) =—
z 1—

(3 3)

2 f e "/Xi(&)/'
Nf(z) =-

z 1 —g

The expressions for the X's are

20

X;= i[m—(1+m) '];, .

Thus

X2=&[(1+m) ']2i

Xi——i [(1+m) ']pi,

(3.4)

12

10

mig(z)m23(z) =mzp(z)mi3(z) . (3.6)

with the matrix m defined by I(3.37). An explicit expres-

sion for X2 is given in Eq. I(6.11). X3(z) can be obtained

by writing

X3(z)=i [(1+m) ']3i

[m i2m2i —(1+m z2 )m ii ] (3.5)
z det(1+ m )

and noting from I(3.37) that
I

0 0.02 0.04 0,06 0,08 0.10 0.12 0.14 0.16 0.18
Q

FIG. 1. Number of photons X; vs 0 for yf ——0, q;=1,
u= —0.9, and for various values of y;. The dashed curves
neglect the virtual recombination.

im ii(—z)

zdet[1+m(z)] '

and in terms of e

1+(e+q;)/qf +iq;
f f(e e)(e e—}—

The expressions in the steady state are even sImpler:

2 gp t t g (}

1 —g~ 0

2 f, /
X,(t) 1'dk 2 f„ 1

X&(t) 1'

1-2f [X,(t}['dt

(3.7)

(3.8)

(3.9}

(3.10)

in Figs. 1—4. Figure 1 gives N; as a function of field
strength 0 for y =0 and the laser tuned close to thef
Pano minimum (q;=1, a= —0.9). The dashed curves
show the corresponding results when the "virtual recom-
bination" is ignored and show that this continuum-
contlillluiil coupliiig cali oiily be lleglected wlmil y; ((I .
The "confluence of coherences" is shown by the large in-
crease in N~ near 0=0.10 for small y;. Near confluence
the electron channel is nearly closed and the system ejecta
many photons before ejecting an electron. However, or

y, /I' = O. 1

It is instructive to note that for qf =q;, X2 and X3 a«
identical under a y;~yf interchange
recycling can occur, then the p«babihty of the system s
ejecting a photon is

Pph ——2 X3 t t .

However, if yf ——0 but y;+0, so that the system can recy-
cle, then the expected number of photons is increased to

~ph

ph

where Pph can be interpreted as the "probability per cycle
of e]ecting a photon. "

We have evaluated the quantities N~, Nf for various
values of the system parameters and the results are shown

1Q.Q

5.0

0 5,02.5
~ t (105)

FIG. 2. Time development of X; for q;=1, a= —0.9,
0=0.1, and various y;. The solid curves have yf ——0, the
dashed curves yf/I =0.001.
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0.4

0.2 0.2

5.00 2.5
I' t (IO~)

PIG. 3. T1Blc dcvclopmcQt of Xf for thc coQditioQs of thc
dashed cUrvcs of Plg. 2 cxccpt pf /I =0.01.

It
FIG. 4. Time devdopment of E; for q;=10, +=0, 0=1.0,

y;/I =0.1, and yf/I =0 and 0.1. The dashed cnrve gives the
population of state

~
i }I';; for yf =0. The scale at the left-hand

sldc of thc graph 18 for Xg ~ aIld thc scale at thc right fol P;].,

small y;, a long time will be required for these photons to
be emitted, and other sources of incoherence could be im-
portant. Figure 2 shows the time development of Ã~ for
&= 1+(II/q) =0.10 for the conditions of Fig. 1 (with vir-
tual recombination included), and shows the very long-
tIme scales involved. The dashed curves show the time
development for yf /I =0.001. Figure 3 depicts the time
development of E~ for the conditions of the dashed
curves of Fig. 2 except yf /I =0.01.

Finally, in Fig. 4 we superpose the time development of
Ã~ near confluence for large q; with the population of

I'}, I';;, from paper I. The Rabi oscillations between

i} and
~

a } are seen to be reflected by the staircase
form of N;(r).

IV. SPECTRAL CHARACTERISTICS OF THE
PHOTONS EMITTED IN TRANSmON [ I & ~

~ f}
We first consider the spectra of photons emitted in the

transition
~

E}~
~ f},which we will refer to as the Ra-

man transltIOQ. The corresponding spectra map be called
Raman spectra. Note that the pump field on the transi-

tion
~

i }~
~
E }can be of arbitrary intensity. To find the

spectra we need the correlation function (Af(tI )Af(t2) },
which can be evaluated by using the solution of Eqs.
I(3.27)—I(3.29) and the quantum regression theorem.

Using the definition of the operator Af, we have

(~f(&I)}=f dECE, p/F. (tI)

(4.1)

where I(3.27) has been used. As mentioned in I, the time
dependence of 4E can be obtained from the solution for
the Itz's. Thus Kq. I(3.35) can be used:

L/(E)4E(0)f dECz, bE =— i I[(1+m)m—] II»C;(0)+ g [(1+m) ']3J f dE
z

(4.2)

where the L's are defined by I(3.31). Equation (4.2) written in operator language implies that

W {A f }= +i [I( I+m)m] 'III{ ~i }(f
~
}+g[(1+m) I]s f dE {(E}{f

~

-}
Z —g

whc1'c conlplcx colljllgRtlon has Rlso bccII done [Ilo'tc z I'cBIRBls z Rs It Is 'thc Laplace varlablc: Tllc collvcIltloII wc will llsc
here is that, for example, f*(z) represents the Laplace transform of f (I), and hence z is not changed in taking the com-
plex conjugate]. The regression theorem can now be applied:

( ( }{If(Af}=f dEIC~, , ( ) }{IE~}I=f dEICE, ,pE,;,
( i

E}{f i Af }= f dEI C@,,pE, E .

On combining (4.3) and (4.4) we obtain
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00 00 I

Af t1 Af t2 e ' '
t1 —t2 dt2e

1
1/2

—=f (z z') = i I [(j.+m )m ] 2

LJ*(E)f dE& CE,pE; (z') + g [(1+m ) ']3J f dE
J

Yf
2

' 1/2

&& f dE)CE,pE E(z'), (4.5)

which on using I(3.22) reduces to

f«»')= —i[(&+m') ']3i[1—g (z')] '

Lj (E) yf+ g [(I+m') ']3j f dE
J

' 1/2

E1 E aEi

E]CE,OE E z 1 —g z (4.6)

The quantities that appear in (4.6) can be simplified by using the factorization property of & in the time domain:

f dE, CF, tJE; ( t) = 3 f
2 f dE)CE, QE (t)g;'(t)

' 1/2

=X3(t)g';(t),

f dE(C@,oE F(t) =X3(t)QF(t) .

(4.7)

Though now we have the complete form for f(z,z'), in what follows we concentrate only on the steady-state spectra and
hence we can let z' —+0:

f (z, O) = —i [(I+m') ']»[1—g~(0)] ' f dt X,(t)g;'(t)

Lj"(E)
+ g[(I+m") ']3j[1—g~(0)] ' J dE '. f dtX3(t)lpF(t) .

J
(4.8)

Let us denote the second term in (4.8) by
[1—g (0)] 'f(z, O). Thus

LJ(E)f*(z,O) = g [(I+m ) ']3~ f dE z+i AE

x QX3 '*p~( —z" ), (4.9)

LJ(E)
E(z,g)= f dE 1ijE(g),z+ihE

which on using I(3.36) reduces to

Lj(E)
E(z,g)= i f dE—

z+ihE

where we have written X3(t) as && QE;(E,g)I [)1+m(g)] (4.11)
2

X3(t)= g X3 'e

To do the energy integral in (4.9), consider, for any g,

(4.10)
remembering that E; and I depend on the Laplace vari-
able. On using the definition of the m matrices, relation
(4.11) can be simplified to

K(z, g) =— [[I+m(g)] 'J )) —m )(z) —mj)(g) + I [3.+m(g)] 'I2)[mj2(z) —mj2(g)]z.
+ [[jL+m(g)] 'I3$[mj3(z) mj3(g)] (4.12)

On substituting (4.12) in (4.9), we find that

f '(z, O) = g X3 '*[A3( (z,g ) ] (4.13)
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where

h3i(z, g)=— I [1+m(g)] 'J3] I [1+m (z)] ]3]z .

~- I[I+m(&)]-']„I[I+m(z)]-'I„ (4.14a)

Using Eqs. (3.35), h can be rewritten as

X3(g ) X3(z)
h3, (z,g)= — — —p;(g)X3(z) .

z

The spectrum of the photons emitted in the transition
~

F. )~
~ f ) is obtained by substituting (4.5) in (2.14):

2
Nf (5f ) =—Re[f (i5i', 0)], 5~ =co col—+Ey

f (z, 0)=[I—g~(0)] ' QX3 '( i I [I+—m*(z)] J3&g,*(—z~)+h 3&(z, —z~)) .

(4.14b)

(4.15)

(4.16)

(a)
[X*,( —z ) —X",(z)] .

~ +~a

On using (4.10) this simplifies to

~(a)~(p)+

f (z,0)=
1 —g (o) p ( —z —zp)(z —zp)

'

(4.17)

(4.18)

Finally, a very simple expression for Ni(5I) can be ob-
tained by adding (4.17) and its complex conjugate On.
simplifying one finds that

NI(5/) =, ~

X 3(i5I) I

'
m 1 —g 0

(h3~ is a function of two Laplace transform variables and
neither is changed in taking the complex conjugate. )

Combining (4.14b) and (4.16) one obtains

f(z,0)= l
1 —g (0)

factor [1—g (0)]
It is clear from (4.20) that the Raman spectrum is an

asymmetric doublet. Figure 5 shows graphs of Ni (5/) for
fg 0, q; = 1, a = 1, and various Q and y~. Since we are
close to confiuence, we show only one component of the
doublet. The solid curves have q~

——1 and the dashed
curves show the limit q/~no (equivalent to neglecting
the virtual recombination). ' Figure 6 shows how increas-
ing y; smooths the sharp feature of the spectra.

V. SPECTRAL CHARACTERISTICS OF THE
PHOTONS EMITTED IN THE TRANSITION

! E)~!i)
This section is devoted to the study of the characteris-

tics of the photons emitted in the transition
~

E)~
~

i).

m[1 —g (0)]

which can be written explicitly as

(4.19) I50—

1 —g.(O)

2Qyg
X

—i' = ——,iI (5o—a)

1/2 2
q i [1+(5o—+q; ) /q/]

q(5o —&+)(5o—e )

(4.20)

10.0—

5.0

Q =1.5

eo —E~ +E~
I /2

(4.21)

The modulus squared in (4.20) is identical in form to the
result when y; =0. Thus y; affects the spectruln only by
altering the values of g and e+ and through the scaling

-I 5 —I.0 -0.5
8~

FIG. 5. Raman spectrum in units of' 1/nF graphed vs

5p={2/I }5y+u for a=q; = 1, y; =0, qy
——1 (solid curves), and

q~~ oo {dashed curves). Confluence occurs at 0=2.0 and the
Fano minimum at 5()———1.
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These spectral features are expected to be different from
those discussed in Sec. IV because the

~

E&~
~

i & «ansi-
tion is strongly driven. To obtain the spectra, we calcu-
late the two-time corrdation function &A (r&)A (tz)&
directly using the equations of motion for such two-time
correlations. Equations I(3.1)—I(3.6) can be written as ex-
pectation value equations since p p=&

~
P&&rr

~
&.

ing a number of two-time correlations by

{5.1)

we obtain equations of motion for these using
I(3.1)—I(3.6) for v=0 and the quantum regression
tlMorern:

80
FIG. 6. Spectra to

~ f} for the same conditions as the solid
curves in Fig. 5 except for nonzero y;. y;/I =0.01 for the solid
curves, 0.1 for dRshed curves.

Vl—I'E,E,
———i(E) E2)rF.,—E, iud, ;1 E—,;+iuE, ; r;s, — dE BF,,BE,I E,x87

f dECE, ,Cs, I g,s
' —f dEBF,,Bs,l Es, — f dE Cs,,CE,re, , (5.2)

r&z = —i~z rrz ' "E iri& f dEuzirzE
'T

f dEBs,,BF.,I;E f dE—CE,,CE, r;@, (5.3)

I;;= —/ f dE Vol;a+i f dE UE;I s&+ f dE) f dEBE,BE,I s E

+ El E ~E a~Ea~EE (5.4)

The 1nltlal condltlons are g"=—g E PE.R E+E E UE.RE' (5.6)

rE,F., (0,r)=I'E,E,(t)=&
) Eg&&E& (

2;(r)&=0,

r;E (r) = &
~

i }&E,
~
A;(r) & =0 „

(5.5)

For the time being we leave the initial conditions on R
quite arbitrary. %e have constructed the R matrix suck
that the equations are factorizable:

r, , {i)=&~i&&i ~A;{t)&=&&;(t)&

E~Eaj Ei

R~p{t)= U~(t) Up(t) {5.7)

&' „&i&=& ~z, &&~'IA;&r&&= jd&&&z. & I&i&&&
I

&

= f dEBF.,pcs, (r) ~

EI&E,» UE,
(5.8)

7l
U~ = —j&E Us iuE;U; —— dEBs,,BE,UE

The initial conditions 1nvolve the expectation values at
one tiIDe, the solut1ons to which are glvell 11l papel I, Sec.
III. We now introduce a set of auxiliary quantities

RE,F, ,R;s, ,RF.,; such that these satisfy (5.2) and (5.3)
with I"—+E. and

which are identical in form to I(3.9) and I(3.10). The
functions U are thus known in terms of matrices m:

Uz= —i g&;(E)[(I+m) '];,U;(0) —gE;{E)[(I+m)-'].. f dE , I;(E')UE (0) Us(0)
~ +~+E' Z +EAE

(5.9)
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L,(Ei ) UE, (0)
V;= f dEL;(E)UE g——[(I+m) '],J i—U;(0)mfi+ f dEi z+I,AE

(5.10)

U;=
U;(0) iVi

z Z
(5.11)

We now use (5.9)—(5.11) in (5.7) and replace quantities
like Ua(0) Up(0) by R E(0). Formally we will have

R =LR, R (t) =e 'R (0} . (5.12)

g(r, t)= f dE, f dEB",B,I'

f dEi f dEBE,,BE,I EE, . (5.17)

We are now in a position to construct the matrix elements
of e '. It turns out that we only need Ri; and

dE1RE g.Bg, .
I (z, t)=(z L) 'I'(t)—+g(-z, t)(z L) 'Ii)—(i

I

. (5.18)

On taking the Laplace transform with respect to r, the
solution of (5.16) is

R,, (t) = U;*(t)U;(t),

f dEiRE, GABE, a
——

If we now write

' 1/2

V*, (t) U, (t) .

(5.13)
As noted above, the construction of the R matrix gives us
the operator (z I ) '. —The last term in (5.18) is just the
R matrix under the initial condition UE ——0, U;= I. Let
us call this solution S:

S(z)=(z —L) 'Ii)(i
I
=

V2 f2i Ui(0}+ f dE1UE((0}f2Ei

U;=f;;Ui(0)+ f dEiUEi(0)fiE, i

(5.14)

(5.19)
S &(t)= U*(t) Ui3(t), UE(0) =0, U;(0)=1 .

In terms of S and T matrices (which are now known)

then the matrix elements of the operator e ' follow:

(e '),;,; =f,*, (t)f,, (t),
(eE').. .E =f;(t)fE (t),

(e ');;E;=f;;(t)fE (t),

(ei');;,E,E,=fE, (t)fE,(t).
1/2

f dEiBE,a« ')E, r, ir = f2t(t)fii(t),

(5.15)

T=(z —L) 'I (t),
we have

I (z, t}=T(z,t)+g(z, t)S(z) .
The unknown g can be eliminated by introducing

gT(z, t) = dEi f dE[BE,,BE,TE,E(z) t)

+BE aBEa TEE (z~t)1

gs(z)= f dEi f dE[BE,,BE,SE,E(z)

(5.20)

(5.21)

(5.22)

' 1/2

f2;(t)f, (t), .

with the final result:

+BE, BE SEE (z)],

' I/2

f dE&BE,,(e '),= f*,(t)f;;(t),
gT(z, t)

I (z, t) =T(z, t)+ S(z) .
1 —gs«)

(5.23)

' 1/2

f dEiB:,.(e")E.E E
=

I =LI'+ Ii)(i Ig(r, t), (5.16)

It should be remembered that f2;(t)=72(t), fi(t)=f;(t) if
the equations for f's are solved subject to the initial con-
dition QE(0)=0, f;(0)=1.

Having obtained the operator e ', we are now in a posi-
tion to solve Eqs. (5.2)—(5.4) which can be written as

It should be remembered that the matrix S does not de-

pend on t. Moreover, the way the matrix S has been con-
structed, it is related to & [Eq. I(3.16)] by

S p(t) =a~,(t) . (5.24)

(A, (t+r)A, (t)) = f dEBE.(( IE)(i
I ),+,A,.(t))

= f dEB*,I;(r t) (5.25)

For the calculation of the spectrum we need
(A t(t+r)A;(t) )
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and hence

3; t+rA;t e "~=I zt

1/2

= f dEBE~TEi(z, t)+
Vl

gT(z, t)D '(z),

f dE BEoSEi(z)= f dEBE, TE;(z, t)+gT(z, t)
1 —gs(z)

(5.26)

(5.27)

f„e X2(t)g;(t)dtD'( )= (5.28)
, e "~Xz(t) ~'«

where (5.24) and the definition of X [Eq. I(3.32)] have been used. We will now simplify the other terms in (5.26). We
take the matrix element of (5.20) and use (5.5):

T tt(z, t)=(z I-)~p';;—f dEBE.pE;(t)+ f dE2(z 1.)ap, E2i f dEBEapEE, (t) .

Thus the first term in (5.27) reduces to

X(z, t)= f dE, BE,ATE, i(z, t)

—= f dE1 f dEBE~aBEo (z 1.)E~iiiPEi(t)+ f dEz( 1)i(i E~ipEE (t)

Using the matrix elements given by (5.15) and the definition of D (t) [Eq. (2.15)] (5.30) can be reduced to

(5.29)

(5.30)

X(z, t) = f dr e "Xz(r)g;(r) D (t)

+ f f f dEdE, dE,BE,,BE,PEE (t)(z L, )E ', E, — .

~(X2$;)D (t)+ 2

Xl Xl

1/2

f dE2 f dE W(fzE, fit)PEE, (t)BE (5.31)

We next simplify gT using (5.29) in (5.22),
1/2 1/2

gT(z, t)=(2) f dEi f dE2BE GABE ~(z L)E E;;—
Vl pl

f dEBE,pE;(t)

1/2

+2 ' f dE, f dE2BE,,BE,, f dE3(z —I )E,E,E; f Ea
l

PEE (t),

which on using the matrix elements given by (5.15) can be simplified «
' 1/2 1/2

Yl
gT(z, t)=2~(X2X2)D(t)(2/)';)+2 f f dEdE3~(fzE f2') BEapEE (t)

3 p, 3

On substituting (5.31) and (5.32) in (5.25) we obtain the dipole-dipole correlation function (y;/2) (A; (t +r)A;(t) ),
1/2

(5.32)

2 l

' I'(z, t) = W(X2$; )D (t)+2&(X2X2)D (t)D '(z)+
2 f "EBEo f dE2PEE, (t)(f2E,fit)

f dEBE, f dE2PEE, (t)W(fgE f2;)D (z) . (5.33)

The steady-state photon spectra can be obtained by com-
bining (5.33), (2.9), and (2.13). The result is

S'"(z)= P(X2$;)D(0)

X,(a) =—ae[S' "(z)+S'"(z)]. ..,

where

(5.34)

+2~( ~X
~

)D(0)D*(z),

S' '(z) = f dt e [1(;(t)+2D '(z)X2(t)]

X W(t)[1 —g.(0)]-',

(5.35)

(5.36)
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and where the function W(~) is given by

I&E&g,og~, W——(X2+, ) . (5.38)

W(r)= E&Ea dE2EE, 0 2E, & .

derIvtng (5.35) and (5.36) wc have also llscd

X2—p'2 —f2;, g; =f;;. Note further that &@F.,(0)

=W(gzfz ) and hence

In view of (5.38) and using I(6.12), (5.3'7) reduces to

W(z)= QX2 f dE2QE ( z—)f2E (z) . (5.39)

The energy integral that appears in (5.39) is similar to that
appearing in (4.8) and hence can be similarly reduced to

W(z) = g X2 'h 21(z, —z ), (5.40)

II 2)(z,g ) =—
0

I f I pm(g)] 'I 21
—

t [I+m(g)]
z .

t[L+m(g)l 'II)I[I+m(z}] 'I21 (5.41)

X2{—z )—X2(z)
II2((z, —z )= —p ( —z )X2(z) .

z +ZQ
(5.42)

D, ( )
C(z)

1 —g (z)
(5.43)

g")(z) can be simplified further by noting from (5.28)
that

When (5.48) and (5.49) are combined explicitly, the terms
involving W2 simplify nicely. The summations over i
and P can be separated from the sums over a and k to
give

D(0)=[ lim D*(z)]*= C(0)~
z o 1 —g(0)'

y(i)X(j )+

C(z) =~{X',y, ) = g
~~J I J

X2 X2
(i) (j)+

g (z) =2
~
X2(z)

~

'=2 g
i,j & J

(5.44)

(5.45)

(5.46)

&")(z)= „g[1t(')+2D *(z)X(')]W, (z —z, }
1 —g (0)

[C(z)+D *(z)g (z)]C(0)*
1 —g (0)

(5.50)

Next using expression (5.43) for D "(z) the expression in

large parentheses in (5.50) is

C(z) C(0)'
1 —g (z) 1 —g (0)

=D *(z)D(0)

C(0}'= —S'"(z) .
1 —g (0)

L

Thus we obtain

(5.51)

To sIIIlpllfy S' '(z) wc rctuA1 to (5.36), wrIte X2(r) as 111

Eq. I(6.12), and expand p;(I) similarly. It follows that

g(2)(z)
1 —g (0)

g(1)(z)+g(2)(z)
1 —g (0)

)& g [fI'+2D'(z)X2']WI(z —z;) .

&& g [P,"+2D '(z)X,"]W(z —z,. ) . {5.48) (5.52)

The terms in (5.42} can be expanded in summations to
give

W(z —z;)= WI(z —z( )+ W2(z —z;),
x"x'~'*

2 2
W((z —z()= Q

~ p (z —z; zp)( —z~ —zp)—
X(a)X((s)+

'
y(k)+

W2(z —z;)= g
ap z zi zp k za+zk

y, =(—1)+(k) k+y Ek Ag +ltd
6+ —E

(5.53)

To examine the structure of the spectrum, note that

C(z) [Eq. (5.45)] and W2 [Eq. (5.49)] both have poles at
z=z;+zJ, i,j=1,2 and therefore wiH exhibit a triplet
structure when we take z =i5=i(co —a&)). The peaks will

be located at

An explicit expression for X2' is given in I(6.13), and p; is

given in I(7.4). It follows that
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5=Re[—i(z;+zJ')] I

Q = 0.05 Q=0.5

——,'I Re(e; —e,*), ij =1,2

0, + —,'I Re(e+ —e ) . I = o, o.ol

y,
/I" = O, 1

The two peaks at 5=0 have widths —I Im(&+) and thc
sjde peaks have width —(I /2)Im(e++e ) N«jcc, how-
ever, that the structure of the photon spectrum is compli-
cated slightly by the factor [1—g (z)] ' appearing in
D'(z). When the spectrum is determined, this factor
leads to a fourth-order polynomial in the denominator.
The roots of this polynomial are expected to correspond
to the four possible transitions between two effective
dressed states of the problem. Two of these transitions
are expected to have the same (laser) energy, but different
widths (both these widths will be nonzero, since there is
no coherent component in the present problem).

Numerical results for the steady state (long-time limit)
photon spectra arc shown 1n Figs. 7 Rnd 8. F1gurc 7
shows the spectrum for large q but fairly low laser inten-
sity, and clearly shows the triplet nature of the spectrum.
The figure also shows the effects of nonzero yf. Figure 8
gives a series of curves with changing field strength
for a=q; =1, y;/I =0.01, and yf/I'=0, 0.01, and 0.1.
The poles e+ for these parameters can be interpolated
from Fig. 4 of paper I. For small yf, the confluence is
clearly shown by the narrow spike at the laser frequency
(5=0) and the increased area under the curve.

VI. C()NCI.USIONS

In this series of papers we have shown in detail how the
method of master equations can be applied to the problem
of laser-induced autoionization. In the first paper we
presented thc gcncral theory and applied 1t ln studying thc
spectrum of ejected electrons. In this second paper, we
have examined the properties of the ejected photons, both
in the Raman transition to

~ f ) and in the transition back
to

~

t ), the state from which the atom was excited by the

0.024—

I 'HEioHTs =
3.7 AND 1.7

Q= 2.0
I

HEl GH TS
58. 1 AND 6, 1

I

t
—o

z 5 ~.o -5.o -2.5 o
2—8I"

FIG. 8. Spectra to
1
i ) for a=q; =1, y;/I =0.01, y//I"=0„

0.01, and 0.1, and various Q. The confluence occurs at 0=2.0.

hscr. We have shown how the "conflucncc of coher-
ences" js manifested by the number and frequency djstrj
bution of ejected photons.

Wc have also shown that tlM photon spectrum for the
Raman transition js 8 doublet, reflecting the ac
sphftjng of thc autojonjzjng state, and that the spectrum
for thc transition back to

~

i }js essentially 8 triplet (sjnce
tt contains thc supcrposltlon of fwo peaks around the laser
frequency) reflectin the Stark splitting of both the initial
and final state. In addition, wc have shown how the pres-
ence of two decay channels can affect the spectra and
number of photons cjcctcd jn thc individual channels.

Finally, jt js worth noting again that the decay of 8 sjn-
gle atom in I.IA is a transient process, and in the long-
time limit thc rate of photon emission is zero. Thus our
spectrum differs from the usual photon spectrum, since
the latter studies the rate of photon emission in the long-
t1IIlc lIIIllt. It ls lntcrestlng to consider %'hat would hRp-
pen if the state

~
i) were continuously pumped at some

rate A, , so that there was always some population in
~
i).

Intuitively, one would expect a coherent component to ap-
pcaI' slncc under tllcsc c1I'cu1Il stances thc system has a
nonzcI'o 1Tlcan dipole IDOGlcnt. This qucstlon vvill bc cx-
RIQ1ncd else&herc.

FIG. 7. Spectra to
1

i ) in units of 1/mI" vs
4,
'2/I )5=(2/I")(~ —~, ) for q, =10, ~=0, 0=0.2, y, /I =0.01
and for gf =1„ff/I =0~ 0.1» and 1. IIlcreasing ff' dIH11IHshes
the left and central peaks, but slightly enhances the right peak.
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APPENDIX: BRANCHING RATIOS AND SPECTRA
FROM AUTQIONIZING STATES IN THE ABSENCE

OF DRIVING FIELDS

In this appendix we show how some of the usual results
on branching ratios, etc., follow from our master equa-
tion. We will assume that the atom was initially in the
excited state

I
a) and that no coherent field is present.

We also neglect the state
I
f). The initial conditions to

be used are

WE =5E.

For simplicity, we will assume only one channel of spon-
taneous emission by putting yf —0. Equation I(3.6) is
directly soluble as

fE bEa BEa 1+Pl 22

which on simplification leads to

r '
y,
' t 'r+y,

PE= 1+
g2 r2 2

2
p2

+ (E —&, )'

where h„P have been previously defined

—1 bE,
pE ———K2(E)( 1+m22) f2+ Z+iAE

f WEI 2(E)dE =f2&(1+m22),

1-2(E)bEa
f2 —— dE

Z+i AE
'i 1/2

2 Vi l 2z
1 +1—in

y; I q; I

Hence in the steady state

pE ——lim pEE(t) =
I gE I

PE,E,(t) =PE, (t)QE, (t),

PE + f dE&2(E))I-2(E)QE=
1 Z+ihE

1

with the result

/=1+
rq; qyr

The total number of electrons emitted will be

(A7)
I 1 yi'p= f dEpE= —1+r+y; P I'q

We next consider the photon spectrum, which can be
obtained from I(3.5) and the regression theorem:

d &(IE|&&&
I 4+%(t)&=t~E, &(IEi&&t I)~+.A (t)& —", f «B...BE.&(IE&&~ I)t+.A (t)& (AS)

the initial condition being

&(
I
E] ) &i

I ),A;(t)) = f dE2BE pE E (t) . (A9)

2
y 1 — T 'Yi

$2 2 p2 r2 2 (A13)

N~(5') =
1+ 1

1 Vl

(r+y. ) r2
a+ (5' —~, )'

2(co E,)—5' = . (A 10)

The total number of photons will be

'Vi 1 1
N~ ——f N~(5')dc@= —1+r+y; g q

We can now introduce the branching ratios y, I by defin-
1ng

(A 1 1)

The solutions of these equations are trivial [cf. (A4)j and
we quote the result for the photon spectrum that follows
from (2.13), (AS), and (A9):

The rate y also turns out to have the interpretation as it
should

Plf
11m
t~o Bt

(A14)

The branching ratios y and I are in agreement with
Armstrong et al. The characteristic shifts in the peak
positions of the photon and electron spectra are to be no-
ticed. They were discussed in paper I, and such shifts de-
pend on q values. If we had ignored the decay of the un-
perturbed continuum, or "virtual recombination, " then
6,~0,$—+I and the spectra have a very simple form.
For small values of q and moderate values of y, the decay
of the unperturbed continuum cannot be ignored.

The analysis for the branching ratios or the effective
decay rates helps us to reinterpret Pano's asymmetry pa-
rameter q. For this purpose we recall the definitions of q

—-y
y+r (A12) yP

~rII'EI' rII'Ef' ' (A15)
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where P is a numerical parameter. Using (A15) we can
rewrite y as

(b) When y~O, i.e., the state
I
a) does not decay by

spontaneous emission, then

2

l

1+

(A16)

v
y2= lim y= —

I VtE I
1+r , I

I'E
I

P

It is evident from (A17) and (A18) that

(A18)

(A19)
We now examine (A16) in two limits —(a) When I'~O,
i.e., the state

I

a ) does not autoionize, then

2

y, = li y=y 1+r o P

Therefore, the square of Pano's q parameter is equal to
the total rate of radiative decay without autoionization of

I

a ) divided by the total rate of radiative decay with au-
toionization but with no radiative decay of

I

a ).
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