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Radiative decay of autoionizing states in laser fields. II. Photoemission spectra

G. S. Agarwal
School of Physics, University of Hyderabad, Hyderabad 500134, India

S. L. Haan* and J. Cooper
Joint Institute for Laboratory Astrophysics, University of Colorado and National Bureau of Standards,
Boulder, Colorado 80309
and Department of Physics, University of Colorado, Boulder, Colorado 80309
(Received 27 October 1983)

The fluorescence produced by an autoionizing state under strong pumping by a coherent laser
field is considered. It is shown how the spectrum of emitted photons and the total number of pho-
tons are related to the two-time and single-time atomic expectation values, and explicit expressions
are derived for them. Numerical results for the time development of the number of photons ejected
are presented for finite times and in the long-time limit. The photon spectra are shown to exhibit ac
Stark splitting of the states involved. The spectrum is a doublet for transitions to a stable final state
and a triplet for transitions connected back to the initial, strongly driven state. The decay of an au-
toionizing state in the absence of a laser driving field is considered, and the square of the Fano ¢
value is interpreted as the ratio of two decay rates.
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I. INTRODUCTION

In paper I of this series,! we developed a general theory
to describe the radiative decay of autoionizing states in
the presence of strong laser fields.> The general theory
was then applied in studying the dependence of the pho-
toelectron spectra on spontaneous emission and laser in-
tensity. In the present paper we analyze the characteris-
tics of the fluorescence produced by the autoionizing
states, and show how studies of the fluorescence®~® can
provide important information on the characteristics of
the autoionizing states.

In Sec. II we show how the spectrum of the emitted
photons and the total number of photons are related to the
two-time and single-time atomic expectation values. We
also show that in the steady state the dipole moment is
zero, and hence the emitted radiation has no coherent
component at the driving frequency of the laser. In Sec.
III we calculate the total number of photons emitted in
each of the transitions | E)— |i) (back to the state from
which the system is being pumped by the laser field) and
| E})— | f) (to a third level which can act as a sink for
the atomic population). It is shown how the “confluence
of coherences” is manifested in the number of photons
emitted. The time development of the photon number is
studied, and is shown to reflect the Rabi oscillations
within the atom for large values of Fano’s g parameter.

In Sec. IV we calculate the spectrum of photons ejected
in the | E)— | f) transition. The spectrum is shown to
exhibit a doublet, reflecting the ac Stark splitting of the

autoionizing state. For small y;, the spectrum to | f) can
serve as a probe of the coherences within the system. We
show how recycling (nonzero y;) affects the Raman spec-
trum. In Sec. V we calculate the spectrum of photons
gjected in the | E)— |i) transition. This spectrum ex-
hibits a triplet reminiscent of the Mollow triplet,” but
with no coherent (8-function) component. The triplet
shows the ac Stark splitting of both the autoionizing state
and the initial state. It is shown how nonzero y, affects
the spectrum.

In the Appendix we consider the decay of autoionizing
states in the absence of a laser driving field, as studied by
Armstrong, Theodosiou, and Wall> We study the
branching ratios of the two decay channels, and discuss
the importance of the “virtual recombination” or coupling
between the photon and electron channels. Our results al-
low for an interesting interpretation® of the Fano ¢ value
as the ratio of two decay rates.

II. PHOTOEMISSION SPECTRA—RELATION
TO ATOMIC CORRELATIONS

In this section we first introduce the definition of
photoemission spectra in terms of the correlation function
of the atomic operators. This can be done by obtaining
the Heisenberg equation of motion for a;(¢), and then
formally integrating such an equation. Having obtained
ajs(t), the mean number of photons in any mode can be
calculated. This procedure is fairly standard.’ Using the
Hamiltonian Eq. 1(2.5) [i.e., Eq. (2.5) from paper I], we
obtain for the mean number of photons

—
— t t i —_ —
Nks,i(t)= ' d,,i'uks |2 fO dtl fO dtz(AiT(t ——tl)Ai(t —t2)>el(wks @)ty —tp) , 2.1)
- ¢ t I _
Nig,p(t)=| dgf s |2fodtl fo dt, (AJ(t — 1)) Ag(t —ty) )e' s 1T EP =1 (2.2)
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where the suffixes i and f represent the two channels open
for spontaneous emission, and where the operators 4; and
Ay are defined by 1(2.12):

Ai= [dE |i)(E |Bg,, Ap= [dE|f)(E|Cp, .
The total number of photons are given by

Ni()= 3 Ni (1)
k,s
=Yi foth<AiT(T)Ai(T)> ) (2.3)

NpO=v; [, dr(afinas ) . (2.4)

On summing (2.1) and (2.2) over all the directions, we can
obtain the number of photons at a given frequency

Vi pt t
Ni&0=-" [ diy [ dea (Al 4,010))

—i8(t; —t,)
e 176

, 0=w—aw; (2.5)

'}/f t t
Nf(8f,t)=—2*1r‘ fO dt, fO dtz(AfT(tl)Af(tz)>

—i8p(t; —1,)

Xe N 6f=6+Ef .

(2.6)

The time integrals in (2.3)—(2.6) can be removed by using
Laplace transforms and the structure of the two-time
correlation functions. On using the quantum regression
theorem, the two-time correlations can be written in the
form

(Al 42y = 3 F @, —1,)G61%t,) . 2.7)

a

A simple analysis leads to the Laplace transforms of
(2.3)—(2.7):

ﬁ,-(z)=%f(A,-TA,~) ,

(2.8)
Rpa=LL7(alap)
(where carets and . denote Laplace transforms),
Ri(8,2)=Y Re [i S Fl9(z +i8)G{¥(2) } : (2.9)
o z a
K6 _Yro |1 (a) . (a)
1(85,2)= —Re |~ 2 F(z+i87)GM(2) | . (2.10)
a

The use of Laplace transforms is especially attractive, as
then the expressions for steady-state quantities follow,

N;= lim N;(t)= 1ir%y,.z<,4,-*A,-> , @.11)
—> o0 zZ—
Np= 1ir%y,z<A}Af> , (2.12)
Z—>!
(2.13)

Ni(S)z%Re [21«“}“’(0+i5)6§“’(0)} :

a
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Ny(sp)=LLRe | 3 FP0+i8G70) |, @14

where we have assumed that the limit as z—0% of all
quantities like F'® exist. It will be seen in Secs. III—V
that all these limits indeed do exist, implying that
dN;(8)/dt =dN(8f)/dt =0. Thus the spectra discussed
in Secs. IV and V are different from conventional spectra
as the conventional spectra deal with the rate of change of
photons in a given frequency interval. In order to have
nonvanishing values of the conventional spectra for the
autoionization system, it would be necessary to continu-
ously pump the ground state.

Another point worth noticing about autoionizing states
is that in the steady state (A4;)=(4;)=0. To see this
consider, for example, (4, ):

(4;)= [ dE By,pp(2)

= deBEa In(2) = [i

172
= D(z) (2.15)
l—g\a(z) J

i
and hence in the steady state

(4(e0))= [ dE By, lim 265,(2)/[1—£,(0)]

=[1-£,(0)]™" lim [ dE By, g5 (14}

i

172
=[1-§,(0]" {%] tlim Y (X,(2), (2.16)

which is zero since both 3; and X, decay with time. In
other words, the induced dipole moment is zero, which
implies that there will be no coherent scattering [i.e., no
8(w —w;)-like contribution].

III. TOTAL NUMBER OF PHOTONS EMITTED
IN THE DECAY OF AUTOIONIZING STATES

In this section we study the features of the total number
of photons that can be emitted in each channel of spon-
taneous emission. It will be seen that these quantities car-
ry very interesting information regarding the features of
the autoionizing states. From the definition 1(2.12) and
the orthogonality of states, we find that (2.8) can be re-
duced to

& Vi A
Ni2)=—" [ dE| [ dE;B} .Bg,ipr,s5,2) ,
(3.1

A Y ~
Nf(z)-_-_zfi J dE; [ dE;C} . Cr upi, s (2)

which on using the solution 1(3.22) with v=0 and the ini-
tial condition p(¢t =0)= |i ) (i | reduces to
A . (’}E E (Z)
N,'(Z)=lz‘" del dezBElaBEzal—“‘zA—l‘—“ R
—&,(2)
(3.2)
Or,k,(2)

V()= 1L *
Nf(z)— 2 del deZCElaCEZa—I:é;—(Z—)— .
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On recalling O'EZEI(t)=¢E2(t)t/JEI(t) and using 1(3.32), we
can reduce the double integrals in (3.2) to

oy 2 Lo o

Ni(z) ~ ’
z l_ga
w ) (3.3)
N e | X5(t)
Nf(Z =£ fo IA ’ ’ .
z l_ga
The expressions for the X’s are
Xi=—ilm(1+m)~"];; . (3.4)

Thus
L=i[(1+m) T,
)?3=i[(l+m)”‘]31 ,
with the matrix m defined by 1(3.37). An explicit expres-

sion for X, is given in Eq. 1(6.11). X5(z) can be obtained
by writing

Xy =i[(L+m) 15

i

= — 3.5
zdet(1+m)[m12m23 (I14+mp)m3] (3.5
and noting from I(3.37) that
m12(z)m23(z)=m22(z)m13(z) . (3.6
It follows that
A ——im13(z)
= 3.7
X3(z) zdet[14+m(2)] ’ 67
and in terms of €
N 1+(e+q;)/q5+ig;
=12Q (3.8)
X3 VI gle—e Ne—e_)
The expressions in the steady state are even simpler:
2 [7 1 xy(0) | 2at +(0)
= J,_1o] R (3.9)
1=2 [ 7 [Xao(0) %t~ 1-84(0)
2 [T |%de 2 [ 1xy0)2
IEEC] —f°[3l.(3.10)

Ny= - —
T2 [T x| 2 1—g,(0)

It is instructive to note that for gr=g;, )?2 and X 3 are
identical under a y;<>y interchange. If ;=0 so that no
recycling can occur, then the probability of the system’s
ejecting a photon is

Py=2 fo‘” | Xs(2) | 4dt .
However, if ¥ =0 but y;50, so that the system can recy-
cle, then the expected number of photons is increased to
Py

N;= :
T 1-Py,

where P, can be interpreted as the “probability per cycle
of ejecting a photon.”

We have evaluated the quantities N;,Ny for various
values of the system parameters and the results are shown
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FIG. 1. Number of photons N; vs Q for y,=0, ¢;=1,
a=-—0.9, and for various values of y;. The dashed curves
neglect the virtual recombination.

in Figs. 1—4. Figure 1 gives N; as a function of field
strength Q for y,=0 and the laser tuned close to the
Fano minimum (g;=1, a=—0.9). The dashed curves
show the corresponding results when the “virtual recom-
bination” is ignored and show that this continuum-
continuum coupling can only be neglected when y; <<T.
The “confluence of coherences” is shown by the large in-
crease in N; near 1=0.10 for small y;. Near confluence
the electron channel is nearly closed and the system ejects
many photons before ejecting an electron. However, for

12.5
( yi/r'= 0.1
10.0 0.01
0.001
7.5
.
sof — o/ . _ _ _ _ _ oot _ _ _
2.5
0.001
- | l |
(o} 2.5 5.0
r't(095)

FIG. 2. Time development of N; for ¢;=1, a=-—0.9,
0=0.1, and various ¥;. The solid curves have y;=0, the
dashed curves y,/T"=0.001.
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FIG. 3. Time development of Ny for the conditions of the
dashed curves of Fig. 2 except y,/I'=0.01.

small y;, a long time will be required for these photons to
be emitted, and other sources of incoherence could be im-
portant. Figure 2 shows the time development of N; for
Q=14(a/q)=0.10 for the conditions of Fig. 1 (with vir-
tual recombination included), and shows the very long-
time scales involved. The dashed curves show the time
development for y,/I'=0.001. Figure 3 depicts the time
development of Ny for the conditions of the dashed
curves of Fig. 2 except v/I"'=0.01.

Finally, in Fig. 4 we superpose the time development of
N; near confluence for large g; with the population of
|i), Py, from paper I. The Rabi oscillations between
|i) and |a) are seen to be reflected by the staircase

form of N;(¢).

IV. SPECTRAL CHARACTERISTICS OF THE
PHOTONS EMITTED IN TRANSITION | E)— | f)

We first consider the spectra of photons emitted in the
transition | E)— | f), which we will refer to as the Ra-
J
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Tt
FIG. 4. Time development of N; for ¢;=10, a=0, Q=1.0,
yi/T'=0.1, and y;/T'=0 and 0.1. The dashed curve gives the
population of state | i )P; for y;=0. The scale at the left-hand
side of the graph is for N;, and the scale at the right for P;.

man transition. The corresponding spectra may be called

Raman spectra. Note that the pump field on the transi-

tion |i)«>|E) can be of arbitrary intensity. To find the

spectra we need the correlation function (A4 ;(tl)A (1)),

which can be evaluated by using the solution of Egs.

1(3.27)—I(3.29) and the quantum regression theorem.
Using the definition of the operator 4 fT, we have

(Af(t1))= [ dE Chpsu(ty)

= [dECh O, (v=0), @.1)

where 1(3.27) has been used. As mentioned in I, the time
dependence of ®; can be obtained from the solution for
the ¢’s. Thus Eq. 1(3.35) can be used:

172
Vs P _ _ L;(E)®Pg(0)
—2— deCE,,CI>E=—t{[(1+m)m_] 1}31¢i(0)+§[(1+m) 1]31- deZ—-HITE—— (4.2)
where the L’s are defined by 1(3.31). Equation (4.2) written in operator language implies that
}31<lz><f|>+2[(11+m>—1]3,de (|E>(fl) 4.3)

172
%] LA =+i{[(L+m)m]

where complex conjugation has also been done [note z remains z as it is the Laplace variable: The convention we will use
here is that, for example, :p*(z) represents the Laplace transform of 1/*(¢), and hence z is not changed in taking the com-

plex conjugate]. The regression theorem can now be applied:

iXf 1A= [ dE\Cp o |iXE\|)= [ dE\Cg apg,; »
(4.4)

CIEMS | 4p)= deICE,aPE,E-

On combining (4.3) and (4.4) we obtain
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yf ® ® i —z(t;—1t,) —2z't
Tfo fo <Af(t1)Af(t2)>e 24t —ty)dte
172
dexcElaﬁEli(Z') + 3 [(1+m)~'L5; de
j

L}(E) 2

73
2

Yr

=f(z,z)=i{[(L+m)m]~'}3 2

X delcElaﬁElE(z') ) 4.5)

which on using 1(3.22) reduces to
172

f dEICElaGEI,-(z')
172
[ dE\Cy 065 5(2)[1-8,(z)] 7" . (4.6)

Y

Flaz)= —ilQ+m*) Tul1-8,] " |5

L}(E)
Z—“lAE

rr
2

)"y [ dE

+ > [(1+m*
j

The quantities that appear in (4.6) can be simplified by using the factorization property of & in the time domain:

172
J dE\Cg o05,:(0=

172

Y [ dE\C o, (035 (1)

2

¥r
2

=X;(¢; (1),

1/2 4.7)

Yr [ dE\Cp 005 x(0) =X (1)

2

Though now we have the complete form for f(z,z’'), in what follows we concentrate only on the steady-state spectra and
hence we can let z'—0:

F(0)= —i[(L+m*) " 1y[1—-8,(0)] f”dtx3 mpt(t)

+2[ )13 [1—£,(0)1~ 'de f dt X5(£)d%(1) 4.8)
|

Let us denote the second term in (4.8) by L/E) .

[1—8,(0)]"'F(z,0). Thus K(z5)= [ dE— T et
L;(E)

2[(]l+m)"1]31 fd z—HAE which on using 1(3.36) reduces to

. g LB

X XD~ , w9 Ked=—if B vin,

where we have written X;(¢) as
2
X3(t)= 2 X(3a)ez t
a=1

To do the energy integral in (4.9), consider, for any ,

(4.10)

]

i
K(z5)=———
=5 5—7

+ {[L+m(5)]™

On substituting (4.12) in (4.9), we find that
FHz0)= T [hy(2,5)]
a

— %
F=—2Zq

([1+m(x)]1 Y [';_mjl(Z)—mjl(é)

Na1lmjs(z) —mys(4)]

X S K(EN{[1+m(5)] i, @411

remembering that K; and m depend on the Laplace vari-
able. On using the definition of the m matrices, relation
(4.11) can be simplified to

+{[L+m(5)]1 Yalmj2)—my(5)]

(4.12)

(4.13)
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where

~ i
h3l(z’5)~ - 5—z

Z2=5
F

Using Egs. (3.35), k can be rewritten as

~ Xsl5)—X32) ~ A
h31(z,g)=—3—ﬁ—;-3—z——1/!i(5))(3(z) .

([1+m()]1 Y~ {[1+m )] 3

({l+mH)]T Y uf[l+m )] s
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(4.14a)

(4.14b)

The spectrum of the photons emitted in the transition | E)— | f) is obtained by substituting (4.5) in (2.14):

Nf(Sf)=%Re[f(i8f,0)] , 8f=w—a),+Ef ,

f(2,0=[1—g, (O] ' X (—i{[L+m*(D] 3B F(—zo)+h 34(2,—2,)) .

(h 31 is a function of two Laplace transform variables and
neither is changed in taking the complex conjugate.)
Combining (4.14b) and (4.16) one obtains

1

0)= ————
/(20 1—g,(0)
X9 . ~
X § ", [X35(—z,)—X3(2)] . (4.17)
On using (4.10) this simplifies to
X(a)X(B)*
L 303 (4.18)

90 = *
/=00 1—g,(0) 3% (—Za—ZB)(Z —zg)

Finally, a very simple expression for N(8,) can be ob-
tained by adding (4.17) and its complex conjugate. On
simplifying one finds that
1
Ny(8y)= 7[1—g,(0)]
-
m[1—g,(0)]
which can be written explicitly as
1

Nf(&f)= 1—80(0)

a2

|X38,) |2

| X3(—i8/) |2 (4.19)

2 qi—il1+(80+41)/g,] |
P(Sp—e€ N(Gp—e_)

b

X

(4.20)
—i8;=—3il(§—a)
or
_ 0B AE
= rn

The modulus squared in (4.20) is identical in form to the
result’ when y; =0. Thus y; affects the spectrum only by
altering the values of ¥ and €, and through the scaling

4.21)

(4.15)

(4.16)

factor [1—g,(0)]~L

It is clear from (4.20) that the Raman spectrum is an
asymmetric doublet. Figure 5 shows graphs of N(5) for
¥i=0, ¢;=1, a=1, and various ( and y,. Since we are
close to confluence, we show only one component of the
doublet. The solid curves have gs=1 and the dashed
curves show the limit gr— o (equivalent to neglecting
the virtual recombination).!’ Figure 6 shows how increas-
ing v; smooths the sharp feature of the spectra.

V. SPECTRAL CHARACTERISTICS OF THE
PHOTONS EMITTED IN THE TRANSITION

This section is devoted to the study of the characteris-
tics of the photons emitted in the transition | E)— |i).

10.0}—

Ng (3¢)

-1.0

80
FIG. 5. Raman spectrum in units of 1/#I" graphed vs
8=(2/T")8s+a for a=g;=1, y;=0, gy=1 (solid curves), and
gr— o (dashed curves). Confluence occurs at 1=2.0 and the
Fano minimum at §,= — 1.
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These spectral features are expected to be different from
those discussed in Sec. IV because the | E)<>|i) transi-
tion is strongly driven. To obtain the spectra, we calcu-
late the two-time correlation function (AiT(tl A;(t))
directly using the equations of motion for such two-time
correlations. Equations I(3.1)—I(3.6) can be written as ex-
pectation value equations since p,g={ | B){a| ). Defin-
ing a number of two-time correlations by

FEZEI(T,t)z(( |E2><E1 l );+1-A,‘(t)> ’
FiE’(Tst):(( Il)<E1 l )t+rAi(t)> ’
Fii(T’t)z(( ’l><i ' )g+1-Ai(t)> ’

(5.1)

2571
9.0
Q=15
6.0—
-~ =3.0
w©
=
3.0—
~ 01 7,/ T=0.
// N // A y¢/T=0.01
001 [~
d .L\ |
-1.5 -1.0 -0.5
-]

we obtain equations of motion for these us@ng FIG. 6. Spectra to | f) for the same conditions as the solid
1(3.1)-1(3.6) for v=0 and the quantum regression curves in Fig. 5 except for nonzero y;. v;/T"=0.01 for the solid
theorem: curves, 0.1 for dashed curves.
—§—F = —i(E|—E,)T —ivg ;Tg;+ive ;T Y deB* Bg, T
37 L BBy T 1= 82 BBy —WE i By T WEi L iE, — 7 EaBEl EE
~ Y [ 4B C} o CraTsp— Y- [ dE By BfuTpp — L [ dE Cy o CET (5.2)
) Ea“Eal E,E 2 EyaPEat EE 2 Eya™~Ea' EE, > .
d , ,
3 VE= —iAg ip, —i [UElirii“ f dE inrEEl}
— Y [ BBy BT~ L [ dEC},Cr T (5.3)
2 EaPEat iE 2 Ea“~Ea' iE > .
d . , Yi
-a—TF,-i= —1 deinFiE+l devEIFE'+.2,‘— del deBZ'laBEaFElE
7/.
+7‘ [ dE, [ dE By .Bf. Tz, . (5.4)
[
The initial conditions are _a__Rﬁz_,- deUEiRiE’Fi de vgiRgi - (5.6)

FEzEl(O’t)erzEl(t)=< |E2><E1 ]A,-(t))=0 ’

FiEl(t)z( Il>(El |A1(1)>=0 >
(5.5)
Tu(t)=( i) (i | Ai(8))=(A4;(t))
= deBEaPEi(t) s
T (0=(|E\)i | 4;(0)= [ dEBg,(|E\)E|)

= [ dE Bgapez () .

The initial conditions involve the expectation values at
one time, the solutions to which are given in paper I, Sec.
III. We now introduce a set of auxiliary quantities
Rg,p Rig,Rg; such that these satisfy (5.2) and (5.3)

with I'—=R and
]

Up=—i ZKAEN(1+m) "1 U0~ S K(E[(1+m) "]y [ dE’
i i,j

or

For the time being we leave the initial conditions on R
quite arbitrary. We have constructed the R matrix such
that the equations are factorizable:

Rop()=Ug()Up(t) (5.7
with

l.]iz—l. delvgl,-UEl N
(5.8)

. . Vi
UE1= ——-IAEIUEI—IUE”'U[—_:;‘ deBEIaBEaUE

Y
—— [ dE C},uCriUs

which are identical in form to I(3.9) and 1(3.10). The
functions U are thus known in terms of matrices m:
Ly(E"Ug(0)  Ug(0) 59
z +lAE' V4 +iAE ’ ’
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Vi= [dEL(E0z= S[(A+m)~"); | —iU;0m; + [ dE,

U;(0) iV,
zZ z

>

-

We now use (5.9)—(5.11) in (5.7) and replace quantities
like UZ(0)Ug(0) by R,5(0). Formally we will have
R=LR, R()=elR(0). (5.12)

We are now in a position to construct the matrix elements
of el It turns out that we only need R; and
[ dE\Rg B} .

R;(0)=U()U(1) ,
(5.13)

, |12
f dElRE,iBE,a= [7} V3()U;(t) .

If we now write

V) =F2Ui(0)+ delUEl(O)fZEl ;
A (5.14)
0:=FaUi0)+ [ dE,Ug (0)fi, ,

then the matrix elements of the operator e’ follow:

(e u=ri)fult),
(M) g, =fi(Ofig, (1),
()i =fu(t)fi, (1),

(e")ip £, = fie,(OfiE, (1),
(5.15)

172

f dE\B o(eM)g ;= [%J [a@fu0),

12
2
L . b
[ dE B o(e™), , pr = | Su0fg 0
, |12
* (L
delBEla(e ')E[i,E;i= P f;E;(t)fii(t),
, 17
L *
f dE B, a(e t)Eli,E;Eg = [7 Sap Of i, (0

It should be remembered that f,;(t) =X,(2), fi;(t)=1;(¢) if
the equations for ¥’s are solved subject to the initial con-
dition ¥5(0)=0, ¥,;(0)=1.

Having obtained the operator e, we are now in a posi-
tion to solve Eqgs. (5.2)—(5.4) which can be written as

P=LT+ |i){i|g(n1), (5.16)

L;(E})Ug (0)

e | (5.10)
(5.11)
|
g(r,n= 7’? [ dE, [ dE B} ,Br.Ts s
(5.17)

’}/.
+7’ [ dE, [ dE Bg B} Tsx, .

On taking the Laplace transform with respect to 7, the
solution of (5.16) is

0=z —L)"'T()+8z0z —L)"'|i){i | .

As noted above, the construction of the R matrix gives us
the operator (z —I )~!. The last term in (5.18) is just the
R matrix under the initial condition Uy =0, U;=1. Let
us call this solution S:

(5.18)

S)=(z—L)""|i)i| =
(5.19)

S.p(D=UUgt), Ug(0)=0, U;(0)=1.

In terms of S and 7 matrices (which are now known)

T=(z—L)"'I'(t), (5.20)
we have
Bz, 0)=T(z,t)+8z)S(z) . (5.21)

The unknown & can be eliminated by introducing
P Yi A
gT(Z,t)_—— —2’— f dEl f dE[leaBEa TElE(z’t)

+Bg B Tep (2,0)]

(5.22)
- Vi &
gs(z’-)=7l f dE, f dE[BE oBg,Sg,£(2)

+Bg oBtSex (2],
with the final result:
~ ~ gr(z,t) 4
Pan=TEn+ 2" 8() . (5.23)
1—g5(2)

It should be remembered that the matrix S does not de-
pend on z. Moreover, the way the matrix S has been con-
structed, it is related to & [Eq. I(3.16)] by

Sap(t)=0p,(t) . (5.24)

For the calculation of the spectrum we need

(A,'T(t —|—T)A,(t))

(Al +1)4,0) = [ dEBE (| Ei | )1 r4s(2))
= [ dEB},Ty(n,1) (5.25)
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and hence

[ (afe+na0)edr=Fzn)

~ dE B},Sg;(z)
= deBEaTEi(Z,t)‘f'g\T(z»t)L—AM——
1—-g5(2)
172

= [dE B}, Tz, + griz,)D*(2),

fowe“”X;(t)tlJ,-(t)dt
1-2 [T e~ Xy(0) | %t |

D*(z)=
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(5.26)

(5.27)

(5.28)

where (5.24) and the definition of X [Eq. 1(3.32)] have been used. We will now simplify the other terms in (5.26). We

take the matrix element of (5.20) and use (5.5):

Tup(z,)=(z —L)ags [ dE Bgapsi(t)+ [ dEsz—L)zgp i [ dE Bpapgg,(0) . (5.29)
Thus the first term in (5.27) reduces to
Xz0= [ dE\Bf ,Tx (z,1)
= [ 4B\ [ dE B} By, |z~ D)5 ups(0+ [ dEs(z —L)E} pper,(®) | - (5.30)
Using the matrix elements given by (5.15) and the definition of D (¢) [Eq. (2.15)] (5.30) can be reduced to
X(z,t)= ’VL [ fow dre X5 (m)(1) |D(¢)
i
+ [ [ [ dEdE\dE;B} ,Br.pps (1z —L)g i,
5 172
== 20D+ | == | [ dE, [ dE L (f35 fipex, (B, . (5.31)
i i
We next simplify g using (5.29) in (5.22),
172 " , |2
| &= [dE, [ dE:B} Bs.z—Liglu || [ dEBrpm(®)
7 172
+271 f dE, f dE,B} 4Bk, f dE;(z —L )EIIEZ,E3i f dE B, 7, PEE,(?),
which on using the matrix elements given by (5.15) can be simplified to
172 172
= Era)=2L0X)DO2/v)+2 [ [ dEdE;, L (f35 f2) ‘;2— Brapzr (D) . (5.32)
i i
On substituting (5.31) and (5.32) in (5.25) we obtain the dipole-dipole correlation function (y; /2)( A,T(t +1)A4;(1)),
y 172
%ﬁ(z,t)= ZLOGY)D (1) +2.L(X5X,)D (D *(2) + 7' f dE Bg, deszEz(t)(f§E2 ii)
y 172
+2 |50 | [ dEBg [ dEypes, (0L (fle,f20D*(2) . (5.33)
|
The steady-state photon spectra can be obtained by com- ) ., A
bining (5.33), (2.9), and (2.13). The result is §Tz)= Z(X39,)D(0)
+2.2(|X,|9D(0)D*(2) , (5.35)
2 © A
N,-(S):;Re[S’“)(z)+S(2)(Z)]z=is, (5.34) S¥(z)= fo dte ~#[;(t)+2D *(2)X,(1)]
where XW([1-8,0)]"1, (5.36)
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and where the function W (7) is given by
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(5.38)

172
Vi A
TIJ J dE Bpopp,~ £ (Xa3%,) .

172
Vi
Wir)=|— dE B, dE,6 g (0)f5 . .
T 2 ] f Ea f 20£E,(0)f 25, (7) In view of (5.38) and using 1(6.12), (5.37) reduces to
(5.37) N . . ~
W)= 3 X5 [ dEs} (—2,)f 35 (2) . (5.39)
In deriving (5.35) and (5.36) we have also used a
Xo=Vy=fa, ¢i=fz Note further that 0gg,(0) Tpe energy integral that appears in (5.39) is similar to that
=7 (¢E¢2—2) and hence appearing in (4.8) and hence can be similarly reduced to
J
W(z)= 3 Xh%(z,—2,) , (5.40)
a
ho(z,5)=— ;l_—z {[1+m(x)] a—{[L+m(5)]1 '}y
z ——
- [——‘f (L+m N ulll+m@] Y |, (5.41)
~ Xo(—z5)—Xs(2) 5
oz, —2q) =22 Gi(—z,ol2) . (5.42)

zZ+2Z,

SW(z) can be simplified further by noting from (5.28)
that

b*&= 1550 (5.43)
T P ol ()4
D(0)=[ lim D (2)] =1-g.0 ’ (5.44)
(£)q/(j)%
P X
C)=2LX)=2, ——21—; , (5.45)
ij Z—Zi—-Zj
~ X(i)X( i
8,(2)=2|Xy(2)|?=23 —2——21—* . (5.46)
i,j zZ—Zz; —Zj
One then obtains
(1) C(z) C'(())"r
S = @) 18,0
=D*(2)D(0) . (5.47)

To simplify $®(z) we return to (5.36), write X,() as in

Eq. 1(6.12), and expand ;(¢) similarly. It follows that
S(Z)(Z)= ____,1\_
1—g,(0)

X Z Y +2D* X Wz —z) . (548)

The terms in (5.42) can be expanded in summations to
give

Wz —2)=W,(z —2;)+ Wiz —z) ,

N X5x P
Wiz—z)= , (5.49)
! ) ,,EB (z—z;—2zp)—2z4—2p)
R Y@y (B (o
Wiz —z;)=, 2 2 . — .
@B Z2—2i—2 |k ZatZk

I
When (5.48) and (5.49) are combined explicitly, the terms

involving ﬁ’z simplify nicely. The summations over i
and B can be separated from the sums over a and k to
give

S2(z)= —-Al—— 3 [ 42D * (X IW (2 —2;)
l_ga(o) i

— =l _c@)+D*@g,1c0r|.

+ A
1-£,(0)

(5.50)

Next using expression (5.43) for D*(z) the expression in
large parentheses in (5.50) is

1 C(z)

- cCOr=-8Yz. (.51
1-¢,(0) | 1-8,(2) ¢
Thus we obtain
SV +5P ()= ——
1—£,(0)

X [ +2D* @I, (2 —z) .

(5.52)
An explicit expression for X ) is given in 1(6.13), and 1/},- is
given in 1(7.4). It follows that
€ — Aa +i’0
€,—€_

B = (1), +1 (5.53)

To examine the structure of the spectrum, note that
C(z) [Eq. (5.45)] and W, [Eq. (5.49)] both have poles at
z=z+z}, i,j=1,2 and therefore will exhibit a triplet
structure when we take z =i8=i(w—w;). The peaks will
be located at
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8=Re[ —i(z;+2z])]

— 5T Rele;—¢€}), i,j=1,2
= 1 (5.54)
0, 5T Rele,—e_).

The two peaks at §=0 have widths —I"Im(e.) and the
side peaks have width —(I"/2)Im(e +€_). Notice, how-
ever, that the structure of the photon spectrum is compli-
cated slightly by the factor [1—g,(z)]~" appearing in
D*(z). When the spectrum is determined, this factor
leads to a fourth-order polynomial in the denominator.
The roots of this polynomial are expected to correspond
to the four possible transitions between two effective
dressed states of the problem. Two of these transitions
are expected to have the same (laser) energy, but different
widths (both these widths will be nonzero, since there is
no coherent component in the present problem).

Numerical results for the steady state (long-time limit)
photon spectra are shown in Figs. 7 and 8. Figure 7
shows the spectrum for large g; but fairly low laser inten-
sity, and clearly shows the triplet nature of the spectrum.
The figure also shows the effects of nonzero y,. Figure 8
gives a series of curves with changing field strength!'!!?
for a=q;=1, y;/T'=0.01, and y,/I'=0, 0.01, and 0.1.
The poles €; for these parameters can be interpolated
from Fig. 4 of paper I. For small yy, the confluence is
clearly shown by the narrow spike at the laser frequency
(6=0) and the increased area under the curve.

VI. CONCLUSIONS

In this series of papers we have shown in detail how the
method of master equations can be applied to the problem
of laser-induced autoionization. In the first paper we
presented the general theory and applied it in studying the
spectrum of ejected electrons. In this second paper, we
have examined the properties of the ejected photons, both
in the Raman transition to | f) and in the transition back
to | i), the state from which the atom was excited by the

0.032
0024 —
£ oo}
-
0,008 |—
]
-16.0 -8.0 o 8.0 16.0
2
I.S
FIG. 7. Spectra to |i) in wunits of 1/#T vs

(2/T)6=(2/T Nw—wy) for ¢;=10, a=0, 0=0.2, y;/T"'=0.01
and for gr=1, y;/I'=0, 0.1, and 1. Increasing y; diminishes
the left and central peaks, but slightly enhances the right peak.

2575

=0.05 Q=05
0.3— ~y/T=0,001 T i
v, /T =0l
00l o
il 1 |
T T T i Ay T
- - HEIGHTS =
@=1.0 Q=15 3.7 AND 1.7

T
HEIGHTS =
38.1 AND 6.1

50-50 -25 o 2.5 50

FIG. 8. Spectra to |i) for a=g;=1, y;/T'=0.01, y;/T'=0,
0.01, and 0.1, and various . The confluence occurs at =2.0.

laser. We have shown how the “confluence of coher-
ences” is manifested by the number and frequency distri-
bution of ejected photons.

We have also shown that the photon spectrum for the
Raman transition is a doublet, reflecting the ac Stark
splitting of the autoionizing state, and that the spectrum
for the transition back to | i) is essentially a triplet (since
it contains the superposition of two peaks around the laser
frequency) reflecting the Stark splitting of both the initial
and final state. In addition, we have shown how the pres-
ence of two decay channels can affect the spectra and
number of photons ejected in the individual channels.

Finally, it is worth noting again that the decay of a sin-
gle atom in LIA is a transient process, and in the long-
time limit the rate of photon emission is zero. Thus our
spectrum differs from the usual photon spectrum, since
the latter studies the rate of photon emission in the long-
time limit. It is interesting to consider what would hap-
pen if the state | i) were continuously pumped at some
rate A, so that there was always some population in | i).
Intuitively, one would expect a coherent component to ap-
pear since under these circumstances the system has a
nonzero mean dipole moment. This question will be ex-
amined elsewhere.
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APPENDIX: BRANCHING RATIOS AND SPECTRA
FROM AUTOIONIZING STATES IN THE ABSENCE
OF DRIVING FIELDS

In this appendix we show how some of the usual results
on branching ratios, etc., follow from our master equa-
tion. We will assume that the atom was initially in the
excited state | a) and that no coherent field is present.
We also neglect the state |f). The initial conditions to
be used are

¥;=0, Yp=Dbg, . (A1)

For simplicity, we will assume only one channel of spon-
taneous emission by putting y,=0. Equation I(3.6) is
directly soluble as

(A2)

pr, 5 (1) =, (000, (1),

*

A A bEla
Vg, + [ dE Ky(E\)Ly(E)jz= pT (A3)

1

with the result
|

—d—<( [E1><i | )t+TAi(t)>=iAE1<( |E1><i ’ )t+1-Ai(t)>—

the initial condition being
((Ei )40 = [ dE3By pp,p, (1) -
The solutions of these equations are trivial [cf. (A4)] and

we quote the result for the photon spectrum that follows
from (2.13), (A8), and (A9):

(A9)

1
I+—
N,(S'):—IT 7/! ql ,
(' (C+y:)* 12 )
———+—(8'—4,)
4y? 4
g 2eE) a0
= T .

The total number of photons will be

i 1 [1+i] (A11)

Ni= [ N;(8"dw= rEw—

We can now introduce the branching ratios 7,T* by defin-
ing

(A12)
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De=—Ky(EY1+mp)~'fr+ L
E= 2 2 2t Ay’
[ VsLABEVE =f,/(14my), (A4)
(E)b;
j‘ dE 2 Ea
z +1A E
~1
2 1’ i i 2z .
— — [l— | | =+1—-ia
Yi r i r
Hence in the steady state
PE= tl_i’m pee(0)=[¥g |?,
2
=bp, —Bj ,
1/’1:' Ea —PEa 1 +my
which on simplification leads to
2 -1
r Vi C+y; r?
= —(E —A,)? ,
PE 2 I'%q? 2y + 4
. . (AS)
where A, have been previously defined
Vi 2
g} T T gyl
The total number of electrons emitted will be
2
r 1 Vi
= | dEpg= — (A7)
14 f PE T4y, | ¥ FZ%‘Z

We next consider the photon spectrum, which can be
obtained from I(3.5) and the regression theorem:

LU [ 4B By BLk (1 EXG Drgedi(0)) (A8)
[
~_ Y 1 = T %
=2 l1+4 |, F=L 1.1 (A13)
P ‘Ii2 1//2 i2

The rate 7 also turns out to have the interpretation as it
should

30.:
lim 2% _5 (A14)

The branching ratios 7 and T' are in agreement with
Armstrong et al.® The characteristic shifts in the peak
positions of the photon and electron spectra are to be no-
ticed. They were discussed in paper I, and such shifts de-
pend on g values. If we had ignored the decay of the un-
perturbed continuum, or “virtual recombination,” then
A,—0,—1 and the spectra have a very simple form.
For small values of g and moderate values of y, the decay
of the unperturbed continuum cannot be ignored.

The analysis for the branching ratios or the effective
decay rates helps us to reinterpret Fano’s asymmetry pa-
rameter g. For this purpose we recall the definitions of g

2= leia'2 _ }/ﬂ

| Vig|? T|Vgl|?
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where 8 is a numerical parameter. Using (A15) we can
rewrite ¥ as

r r
1+—— | Vig | +— | Vie |?
~ Y 7/3[ E | Y BI x|
’}/= 2 = [V |2 2 - (A16)
1 Y iE
+I‘q2 1+——————ﬁ

We now examine (A16) in two limits—(a) When I'—0,
i.e., the state | @) does not autoionize, then

-2
| Vig |2

(A17)
B

5 — lim 7= |1
Y1 I‘ILHOY Y1+
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(b) When y—0, i.e., the state |a) does not decay by
spontaneous emission, then
-2

_ . . T | Vie | *
= 1 = — i 2 —_—
Vo= limy=-5 [Vie |* |1+ B (A18)
It is evident from (A17) and (A 18) that
q*=v1/7, . (A19)

Therefore, the square of Fano’s ¢ parameter is equal to
the total rate of radiative decay without autoionization of
| @) divided by the total rate of radiative decay with au-
toionization but with no radiative decay of | a).

*Present address: Department of Physics, Calvin College,
Grand Rapids, MI 49506.
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