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Radiative decay of autoionizing states in laser fields. I. General theory
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A theory describing the radiative decay of an autoionizing state under strong pumping by a
coherent field is developed. The theory systematically takes into account the radiative decay of the
unperturbed continuum. The problem at hand corresponds to the case of strongly coupled bound
states decaying to electron and photon continua with the two continua also weakly coupled to each
other. A master equation describing the time evolution of the atomic system is derived, and its exact
solution under arbitrary initial conditions is given. The effect of radiative decay on the Fano pro-
files and photoelectron spectra is analyzed in detail. The time development of the system is also ex-
amined. The radiative decay of the autoionizing state and the unperturbed continuum changes the
spectra in a significant way. The characteristics of the spectra are correlated with the dressed states
(with complex energies) of the system. The changes in the structure of the dressed states as a func-
tion of the system parameters such as the spontaneous-emission rate and laser intensity are dis-
cussed in detail.

I. INTRODUCTION

Fano, in his well-known paper, ' considered the effect of
configuration mixing on photoelectron spectra at energies
near an autoionizing state and predicted asymmetric line
profiles with asymmetry depending on the ratio of the
certain matrix elements involving the autoionizing state,
the bound state, and the continuum. Such profiles have
been studied at length. Configuration mixing was also
shown to be important in studies of the four-wave mix-

ing involving autoionizing states. Currently there is
considerable interest in the study of the fluorescence
produced by such states —as such states lead to the laser
action' which can be extended to the vacuum ultraviolet
region, and in addition if the radiative decay of the au-
toionizing states is significant, then one has an optical
method for studying the characteristics of the autoioniz-
ing states. One also must consider the excitation of the
autoionizing states. The excitation process itself leads to
several new features' particularly if the strength of
the exciting laser is high. Note that any theory of the
laser action in such a system should simultaneously treat
all the coherent and incoherent processes.

Interference between different pathways of ionization in
strong laser fields was noted theoretically by Beers and
Armstrong in 1975 in the context of multiphoton ioniza-
tion, and in the same year Armstrong et al. pointed out
the similarity in formalism between multiphoton ioniza-
tion and autoionization. In 1981 I ambropoulos and Zoll-
er' studied autoionizing states in strong laser fields, and
their results showed an interesting narrowing of the pho-
toelectron spectrum near the Fano minimum. This nar-
rowing was the primary topic of a letter by Rzyzewski
and Eberly, ' who considered a very simple model system

consisting of an initial state, autoionizing state, and con-
tinuum. They called the narrowing of the spectral line a
"confluence of coherences. " Subsequently, Agarwal and
co-workers ' showed how spontaneous radiative decay
affects the coherence and can be used as a probe of the
system.

Andryushin et al. ' studied a model which included de-
cay processes not included in the model of Rzyzewski and
Eberly, and showed that these new channels give a
minimum width to the photoelectron spectral lines. They
also considered the case of two autoionizing states. Cole-
man and Knight' have examined population trapping
and laser-induced continuum structure, and Kim and
Lambropoulos' have studied configuration mixing in
multiphoton ionization and have shown how the autoioni-
zation formalism applies in some cases but not others.

Eberly, Rzyiewski, and Agassi' have considered off-
diagonal relaxation processes such as weak elastic col-
lisions and finite laser bandwidths, and have shown how
such processes affect the electron spectrum. Several
groups have studied fluorescence from autoionizing states.
Crance and Armstrong considered one-photon decay
processes for a slightly generalized system, and Lewen-
stein et al. " have examined the photon spectrum for the
recycling case and, more recently, the time development
of the photoemission spectra and photon yield. Recently,
Agassi has also studied the photoelectron and photoemis-
sion spectra, and, using complex dressed states similar to
those discussed in this paper, has obtained several results
equivalent to those detailed here.

We have carried out a detailed investigation of the de-
cay of autoionizing states in the presence of a coherent
pumping mechanism (which can be quite strong) and the
results of our investigations are presented in the present
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series of two papers. The organization of this paper is as
follows: In Sec. II we present our model and work out the
dynamical equations describing the behavior of the atomic
system. In Sec. III we show how these dynamical equa-
tions can be solved exactly. We give the solution in terms
of certain auxiliary matrices which are chosen so that
their dynamical equations are similar to the original
dynamical equations, but with the significant difference
that these dynamical equations are factorizable. As a first
application of these solutions, we consider in Sec. IV the
modification of Fano profiles due to radiative decay. The
decay of the unperturbed continuum is shown to be very
important in the existence of the Fano minimum in such
profiles. The differences in the Fano profiles due to the
radiative decay in two different channels are discussed. In
Sec. V we examine the complex dressed states of the sys-
tem as a function of various system parameters. Such
dressed states with complex energies determine the struc-
ture of various photoelectron and photoemission spectra.
The confluence of coherences discussed recently in the
literature is shown to follow from the fact that in the ab-
sence of any radiative decay, one of the dressed states lies
exactly at the position of Fano minimum for certain
values of the field strength. In Sec. VI we calculate the
photoelectron spectra in the long-time limit and show
how the spectra are affected by spontaneous radiative de-

cay. We conclude the main text of this paper in Sec. VII
with a short discussion of the time development of the
ground-state population. Finally, in the Appendix we dis-
cuss the connection between our master equation results
and phenomenological decay equations. A study of the
photons ejected by the system is deferred to the second pa-
per.

II. BASIC MODEL AND DYNAMICAL EQUATIONS

In order to see the main features that emerge due to the
radiative decay of autoionizing states, we consider the

EaV

FIG. 1. Schematic diagram of the energy levels and interac-
tions for the system of interest.

simplest possible situation, shown schematically in Fig. 1.
We consider one autoionizing state

~

a ), with energy E„
interacting with the unperturbed continuum of states

~

E). We assume that the state
~

a ) is resonantly coupled
to the state

~

i ) by a laser' field of frequency co~. The laser
field also couples the states

~
E) to

~

i ). We also allow
for radiative decay of

~

a ) and
~

E). In order to keep the
analysis general, we allow the possibility of two radiative
channels, i.e., we consider decay to both

~

i ) and
~
f).

This will allow us to treat the various special cases. We
will further assume that the state

~
f) can decay in-

coherently at the rate v to the state
~

i ). All the energies
of the atomic system are measured from the level

~

i).
The total Hamiltonian of our atomic system and the radi-
ation fields (both vacuum and the coherent driving fields)
can be written as

II =E. Io)&o I+ f E IE)(E IdE+Ef lf)&f I+ f [I'E. IE)&o I+H c ]dE

+ f [uE; ~E)(i ~e '+H. c.]dE+(u„~a)(i ~e '+H. c. )

+ g~kok, o~ —f [
~

E)(i
~

dz; E„',+,'+H. c.]dE
k,s

—f [I E)f&ldEf Evac'+Hc]dE [(d'+d f)E +Hc], (2.1)

where E„',+,' is the positive-frequency part of the electric
field operator associated with the vacuum field and d & is
the dipole matrix element. In writing (2.1), the rotating
wave approximation has been made and A has been set to
unity. Various terms in (2.1) have the following
meaning —the first three terms represent the unperturbed
Hamiltonian of the atom, the fourth term is responsible
for the autoionization, the fifth term (enclosed in large
parentheses) is the interaction with the coherent driving
field, the sixth term is the free Hamiltonian of the radia-

tion field, and the last three terms will account for the ra-
diative decay.

Fano, in his classic work, diagonalized the part respon-
sible for autoionization. The new set of states will be
denoted by

~
E) and we will refer to such states as Fano

states. In what follows, we find it convenient to work
with such states

~
E) =b (E,o)

~

o ) + f dE'b (E,E')
~

E'),
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where

b(E,a)=
~~E.

~Ea
b(E,E')= ', —cosh5(E —E'),

mVE, (E —E')
—~l VE. I'

Q(E)

(2.3)

Markov approximations (with regard to the interaction
with the vacuum of the radiation field) is fairly standard
and we quote the result. Let p be the density matrix for
the atomic system alone. On making the transformation
to the rotating frame the dynamical equation of p is found
to be

i [H—„h, p] — (A; A;p 2—A;pA; + pA; Ai )

and where I" (E) is a small frequency shift due to the con-
figuration interaction which we will ignore. The autoioni-
zation rate I is related to VE, by

1=2mlVE,
I

The Hamiltonian (2.1) can now be rewritten in terms of
Pano states

H = E E E E+Eg + a)k, ak, ak,
k, s

t
2

(Af Afp 2AypA—~+pAf Af ),
where the operators 3; and Ay are given by

A, = f dE li)(Elm„,

AI ——f dE
I f)(E I CEg

and the decay rates y;, y~ are
3

(2.11)

(2.12)

+ f dE(uE;
I
E)(i

I
e '+H. c.)

—f dE(dE, "Evnc
I
E)('

I
+H c )

—f dE(dE~. E'„,+.'
I
E&(f I

+H.c.),

where now the matrix elements are in terms of Fano
states:

3

(2.13)

H„h ——f (E —coi) IE)(E
I
dE

We have denoted the coherent part of the interactions by
~.oh

uE&=(E lu Ii) ~ + f (u„ IE&&i I+H. c.)dE. (2.14)
The new matrix elements and the old matrix elements can
be related by introducing Pano's asymmetry parameter q

(a Iuli)
The incoherent transition from

I f) to li ) can now be
incorporated by modifying (2.11) to

(2.7)
&u lulf&

n.(a
I

V
I
E)(E

I
u

I f )
The details can be found in Fano's work. Here we quote
the result:

Bt ' 2
i [H„h, p—]— (A; A;p —2A;pA; +pA; A;)

~f
2

( AfAfp 2Ai pAi +p Ay—Af )

UiE Uia ~Ea UiE Qi ~~Ea ~Ea

where

(2.g)
—

2
(

I f ) (f I p —
I
i ) &f I p I f & &i

I
+H. c.

(2.15)

2(E E,)—
BE, b(E,a) 1+——

I q;
(2.9)

DIE =~IaCEa ~

2(E Eg)—
CEg b(E,a) 1+——

I q]

(2.10)

Similarly the matrix element for the other transition
I E)~If) will be

For the model system shown in Fig. 1, (2.15) is our basic
dynamical equation characterizing the decay of the au-
toionizing states in the presence of a laser field, which
could be of arbitrary intensity. Note that the radiative
coupling between the unperturbed continuum

I
E) and

I
i ) and

I f ) has been completely taken into account in
(2.15) since the seventh and eighth terms in Eq. (2.1)
describe this decay. However, if we were to ignore such a
decay, then one would still have the master equation (2.15)
but with

The next major step is to eliminate the degrees of free-
dom associated with the vacuum of the radiation field.
This can be done using the master equation techniques.
The derivation of the master equation in the Barn and

Ai~ f dE li)(E IbE, ,

Ag —+ f dE
I f ) (E

I bE, .
(2.16)
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We will refer to the "decay" of the unperturbed continu-
um as "virtual recombination" since this decay does not
imply the physical ejection and reabsorption of an elec-
tron. In order to separate out the effects connected with
this continuum interaction, we will take

of

2(E E—)
BEa ——bEa 1+

Iq

A; = J dE
I
] ) (E

I
bE, 1+

2(E E,—)

Iq
(2.17)

where appropriate.
The limits q —+q; and q —+ao correspond, respective-

ly, to virtual recombination being included or ignored.

III. EXACT SOLUTION OF THE MASTER EQUATION UNDER ARBITRARY INITIAL CONDITIONS

In order to study the various features of the electrons and photons emitted from the autoionizing states, we need to
know the solution of (2.15) under a variety of initial conditions. For this purpose we write (2.15) in terms of the various
matrix elements of p,

Xf
pff — dE

&
dE CE a CE,pEE +c.c. —vpff (3.1)

Pl'l = UEl-pEl + 1 E j a EapEE) +C.C. +Vpff (3.2)

pif i f VEipEfdE Pif ~l (3.3)

Vl ~f
pE f— & ~E]PE]f ivE]ipif dE BE]aBEapEf dE CE]a CEapEf

2 pE]f t (3.4)

~ ~ ~
'Vl Vf

PE]i = i iE]PE]i i VE]ipii EPE]EVEi dE BE]aBEaPEi dE CE]aCEapEi (3.5)

PE]E2 i(E] E2 }PE]E2 ]VE ipiE2+]VE iPE i I dE BE aBEapEE2

~fdE CE(a CEaPEE2 dE BE2aBEaPE&E dE CE a CEaPE~E (3.6)

where

hE ——E) —O)I .
1

o ti(t)=g (t)pp(t)

with the dynamical equations for the f's given by

(3.8)

This set of equations is extremely complex and a direct
solution is not immediately evident. However, a solution
of (3.1)—(3.6) can be constructed in terms of certain auxi-

liary matrices. It should be remembered that the master
equation (2.15) conserves the trace, i.e.,

Trp(t)=1= f pEEdE+p;;+pff . (3.7)

I dECE]aCEagE ~

1'; = —i I vE;QE dE]

(3.9}

(3.10)

Vl
fE] ———t b E]]]|'iE] i VE];g; — —dE BE]aBEaitiE

In view of (3.7), one can see that the set of equations
(3.1)—(3.6) reduces to two independent sets involving

pE, E,,pE, ;,p;l, and pE,f,p~f. Let us denote the part of the

density matrix with elements pE E,pE;,p;;,p;E by Q, and

we first consider the solution for Q.

A. Exact solution for pE E,pE;,p;;,p;E

Thus formally one can show that

BQ
, =LQ+vpff(t) It)&t I+g(t} Ii)&i

I

where L is defined by (3.9) and (3.10) through

0 =LE
at

and

(3.11)

(3.12}

An exact solution for Q can be constructed if we note
that the equations for the elements of Q would be factor-
izable if the terms involving pff and pEE in the equation

1

for p;; were absent. We now introduce an auxiliary matrix
o which is factorizable and which satisfies the equations
for Q with the nonfactorizable terms neglected:

g(t)= f dE] f dEBE,,BEapEE, (t)+C.C. (3.13)

In order to solve these equations we need the initial condi-
tions. Assuming p(0) to be a superposition of the states

I
E) and

I i), i.e.,
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QE(0)=&E, 1{;(0)=u;,

(3.14)
&( )

z Tr&(z)

(ii) y; =0. Then g=O and (3.22) yields

Q~( )
~ (I)( )

v/z —v TrcT (z) ~( )
1+vTr&(z)

& ' '(z) = (z —L) 'o'(0),

&(z)=(z —L) '/i&{i
/

whereas the Laplace transform of (3.11) is

Q(z) =(z —L) 'Q (0)

+[vpff(z)+g(z)](z —L) '
~i &(i

~
.

On rewriting (3.17) in terms of o's given by (3.16) we ob-
tai.n

{3.17)

Q(z) =& 'I'(z)+ [vPff(z)+g(z)]&(z) .

The quantity appearing in square brackets is still un-
known.

We can obtain another equation for g by using (3.18) in
(3.13). Let us introduce

solve for o, and denote such a solution by o'I'. We will
denote the solution corresponding to the particular initial
condition aE ——O, a; =1 by o. It is clear from (3.12) that
the Laplace transform of cr is

which in the limit v~o reduces to

Q(z) =& ' '(z) (v=O, y; =0) .

B. Solution of {3.3) and g.4)

Wc next collsldel' thc solution of (3.3) and (3,4). On de
fining

we find the equations for @; and @E,

@'E = I ~F. @'E ——iuE .C' — dEBE BE @E

which are identical in form to (3.9) and (3.10). Hence it is
sufficient to know the solution of (3.9) and (3.10).

g'."(t)=y, f dE, f dEB,',.B,.~",,', (t),

g (t)=y; f dE~ f dEBF*,,BE,oFE, (t) .

A second relation follows from (3.7):

——pfi ——TrQ(z)= Tr& ' '+(uPff+g)Tr& .

(3.19)

(3.20)

On taking the Laplace transforms of (3.9) and (3.10), we
obtain an integral equation for 1{E

ps, + f dEQE;(E))L;(EgrE —— iX)(E—I)a;

QE
+ . , (3.30)+ZI

Note that Eqs. (3.20) and (3.21) determine g and p/f in
terms of the known quantities. We have thus constructed
a co111plctc solutloll for Q plovldcd cr ls kllowll:

v/z+g' '(z) vTr&' —'(z)
Q( )=&' '( )+ — „„&() .

1+v Tr&(z) g(z)—
(3.22)

E'I (E)= L1 (E)=uE;,z z+ihE
i]/2

E L (E)2; z+SAE 2

(3.31)

We defer the solution for o to Sec. III C.
Let us consider some special cases of (3.22) which will

be of interest later.
(i) yf ——0. Then

KI(E)= —,LI(E)=
2

) z+ihE '
2

The integral equation (3.30) has a separable kernel and
hence its solution can be obtained bg matrix methods. In-
troducIng the quantItg

X;= f dEL;(E)gE, (3.32)

1 z —Tr&'"
Q( )=""'( )+

Tx'0

If the atom is initially in state
~
i &, then & 'I'= & and

(3.23)
multiplying (3.30) by L~(E~) and integrating over El, we
obtain

XJ + g I7lg;X; =—IQ; Ill~ I +fJ.

J
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mi, ——f dELJ(E)E;(E)

f, = f L; (E)aE
z +ihE

y, —= —i g K, (E)[(I+m )-'];&tt;

Hence the solution becomes

g;= g [(I+m) '],J( ia—;mj. )+fq)
J

(3.34)

(3.35)

y; (1 i—/9/ ) 1
m22 +I 2z/I + 1 i—a q,.

' z

Xf
m33 I

m23 =m32

(1 i lq—; )

2z/I + 1 i a—
q,.

+Qq;
m11

(1 i—/qf )

2z/I +1—ia qf

(p'pf)' ' (1 t/q—)(1—~/qf) 1

r 2z/I + 1 i a— q,.
'
qf

(3.37)

QE—QIC;(E)[( I+m) '];,f, +
z +ihE

For the initial conditions a; = l,aE ——O, we obtain

X;(z)=i I[3.+m(z)] 'J;) —i5;)

(3.36)

(3~ 35')

VE,
m12

V Ei

m13
V Ei

m 21zVE,

VEi

1/2
Vl

2

m 31zVE,

VEi

(1 i/—q;)(1 i/—q )

2z/1 +1 ia- + I
qi q'i

Pf
2

(1 i /q;—)(1 i /qf )—
+2z/I + 1 ia —

q,.qf

QE(z) = i g E;—(E) I [I+m(z)] 'I; ) (3.36')
a=(2/I )(col E, ), Q=—(2m./I )

~
u@; (3.38)

The matrix m can be computed using relations such as
(2.8) and (2.10) and by assuming the flat structure of the
initial continuum

~

E). These calculations show that

The determinant of the matrix (I+m) will be seen to
determine the various features of the time-dependent and
time-independent spectra and hence we list its value

det(I+m) = y; Qq;I2

I 2z
Vf (1 i /qf )' —

1+ &+ + 2I 2z/I + 1 t a qf—
(1—i/q;)' 1 yf (1/q; —1/qf)

2z/I +1 ia —
q, I2z/I +. 1 ia-+ 2 + (3.39)

where we have accounted for all recombination effects q =q;,qf ——qf. We will now use these exact solutions to discuss
various features of the spectra of photons and photoelectrons.

IV. PANO PROFILES WITH RADIATION DAMPING

As a first application of our general results of Secs. II and III, we find how the usual Fano profiles change when the
radiative decay of the autoionizing states is taken into account. In the absence of any radiative decay such profiles are
given by

S,(~)=(~+q)'/(1+~'), ~=2(E E.)/r— (4.1)

which for small values of q are highly asymmetric. In order to obtain such profiles from our analysis we evaluate
lim, (d/dt)pzE(t) to the lowest order in the laser field interaction, assuming that the atom was in the state

~

i ) at
t=0. From (3.35), we find Pz to lowest order in uE;.

n VEiE
QE (z) = — %BE,'trVE~ +z

z z+ihE
BE~D (z)

[m23m» —m2~(1+m33)]
VEi'

Vf+ z
2

1/2
D '(z)

C~, [m32m2& —(1+m22)m3)]
VEi

(4.2)

D(z)=(1+m22)(1+m33) m23m32 ~ (4.3)
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[The second BE, and the CE, in (4.2) are related to the ra-
diative decay, and thus involve q, qf as in Eq. (2.17).]
Inverting (4.2) one finds that yE(t) has the form

Expression (4.5) is still to be averaged over the density of
final states. Note that while computing A and 8 we can
now put E =roI and thus

—ihEt

QE{t)= . +B . +C(t),
l AE —l AE

where the last term decays as t~ oo. Thus

(4.4)

i E—EtA q

+C.C.

~n.5(b,E)(BA'+c.c. ) .

lim —IQE(t) I'~»m B
t—+oo t-+ oo

(4.5)

Note also that B is the residue of zfE at z= iA—E
whereas A is the residue of (z+ibz)QF at z=0 B.ecause
of 5(bE) in (4.5), these two residues are identical and
hence

»m —l@E(t) I'=2~&(~E)
I
A I'IUE I'*

taboo df
(4.6)

3 =lim q;BE,m Vg, +z
z—+0 2

B'.D '(z)
[mp3m3) —m2)(1+m33)]

'(z)
CE, [m32m2i —(m22+ l)m3, ]

~Ei

where, as in (4.2), the second BE, and the Cz, involve q or qf in accord with Eq. {2.17). On simplification, we find

Fi 9'i Xf 0i
(q;+e) + 1 — + 1—

I q,.
' I qf'

[(, ~)',„] (4.8)

The time development of liE can be obtained from the
standard Laplace inversion

—2 Vi 7f
I q I qf

PE(t) = I dz e f(z),
2'w

(5.1)

The A„and q are discussed in Sec. V, and are sho~n to
represent the effective energy (relative to E, ) and half-
width of the autoionizing state in units of (I"/2). Note
that for y; =yf =0, we have the very simple result

(q;+e)'
fA f2=

1+/

where g is given in Eq. (3.35). The result depends on the
pole at z = i b,E and the zeros —of det(1+ m) [Eq. (3.38)].
This dctcrTI11nant 1s quadratic 1n z and its I"oots dcpcnd 1n
a complicated manner on the field intensity, q's, and the
spontaneous emission rates. Hence this section is devoted
largely to a detailed study of the roots z+ of (3.38).

It is clear that

which is just the classic result of Fano. If yf ——0 but
y;&0, then Sp(e) does not show a zero at e= —q; if vir-
tual recombination is ignored (q ~ Oo ), but the zero is re-
stored when virtual recombination is included (q =q;).
For nonzero yf, the Pano profiles do not show the zero at
6= —gi %'11cn thc vlrtURl recomblnatlon 1S 111clUdcd Unless

Wc show a fcw IDodificd Pano pI'of1lcs 1n F1gs. 2
and 3, which are self-explanatory.

P~(t) =e lim (z+ib~)QE(z)
z~ —i BE+0+

z+t+e + lim {z—z+)QF. (z)

+e lim (z —z )PE(z) . (5.2)
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5.0
2z- Q—= —I,q —2+—
I '

q;
(5.5)

2.5

-10 IO

FIG. 2. Modified Pano profiles S+(e) for q;=q =, yf ——,~ ——' ——2 =0,
and y;/I =0, 0.2, 0.5, and 1. The Fano minimum is retained at

b t the maximum is washed out with increasing y;.e= —q;, u

Therefore, in the absence of any radiative decay, one of
the roots of D(z) lies on the imaginary axis, whereas the
other root has always the finite width.

The root which lies on the imaginary axis represents a
state which is stable against decay. This phenomonon was
noted by Beers and Armstrong in the context of multi-
photon ionization, and was dubbed "confluence of coher-" b Rzq.zewski and Eberly' since the state lies

aldirectly at the Fano minimum. For 0 near but not equa
to the confluence value 1+(o,/q) the state decays on y
very slowly, and consequently the photoelectron spectrum
would exhibit a very narrow spike at the energy of this
state. This also leads to the so-called population trap-

in
'16

p g
Population cannot be trapped for nonzero y, since

spontaneous emission moves the root off the imaginary
axis. For small values of y, one can calculate this move-
ment to lowest order in y. %riting

Thus z+ represent complex dressed states of the system.
We will first examine the case when y;=yf ——=0. In

such a case (4.3) gives

2 2z/1 +1 ia—
D(z)=Qq; (1—i/q;) + 2

qi

D(g) =Do(g)+y;D;(g )+yfDf(g)
2z

+y;yfD, f(g), g=

and the root as

(5.6)

2z 2z+ 1+ —Ecxr r
An analysis of (5.3) shows that if

(5.3)
7i 7f

S —So+ S.+ ~ SfI

it follows that

(5.7)

=(ia+iq;), 0=1+— (5.4)

then D (z) vanishes. Thus for 0= 1+(a/q; ),
(2z+/1 )=i(a+q;) is a root of (5.3). The other root is
also easily found to be

27

D;(go) Df (go)

Do(go) Do(go)
(5.&)

N
'

th t D' =0+1 ia+2g an—d hence for the caseNoting t a
(5.4), we get Do(go)=[2+(a/q;)][1+(iq;)]. The correc-
tion terms g; and gf are then given by

A2+ —gf
qi

(5.9)

I8—

-IO IO

The correction term gf agrees with the previously report-
ed value though in that work the virtual recombination
was ignored. The above analysis shows that for
0=1+(a/q;) the correction term (valid for small y's) is
in epen en
'

d ndent of the vittual recombination effects.
ev eralThe detailed structure of the zeros of D(z) for severa

vaues o ys, qs,l f ' 's 0 and n is shown in Figs. 4 an
These figures show the behavior of e+, which are re ate
to z+ by

FIG. 3. Modifed Fano profiles S~(e) for q; =q =,~ ——' ——5

q =q =1 y =0 and yf/I =0, 0.2, 0.5, and 1. Now the Fanoqf =qf = y'= an f
~ ~

mtnlmuma e= —q;
'

t =—;is lost but the curves remain asymmetric.

t'r
(e+ —a) .

2

The e+ are the solutions of the quadratic

(5.10)
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-0.4 —04

—0.8 -0.8

—1.2— y; /I =1.0 0.5 O. l 0
—1.2

—1.6— —1.6

- 2.0—
—2.0 —I.O 1.0 2.0 —2.0—

-20 —1.0 0 1.0 2,0

FIG. 4. Motion of e+ when the laser intensity 0 is varied

from 0 to 10 for q; = 1, a =1, y~ ——0, and y;/I =0, 0.1, 0.3, and
1. The dots indicate increments of 0.3 in 0; the 0=1.5 dots are
indicated specially because we examine the spectra for this Q in

a later section. Identical curves would be obtained if we took

qg
——q;, y; =0, and varied yg.

FIG. 5. Motion of e+ with 0 (0 to 10) for q;=1, q~
——10,

a=1, y;/I =0.1, and yy/I =0, 0.5, and 1. Again the dots in-

dicate increments of 0.3, and the Q=1.5 dots are indicated.
Note that the real parts of the poles move toward each other for
small 0 and then repel for larger Q. The y~/I =1 curve shows
that at a particular laser intensity the real parts are equal, i.e.,
the two decaying states have the same energy.

e —[a+A,, i (rt—+0/P)]@+ah,, ——
q; 1+2 Q 2 yI 1

I q;

0—i ag —2—q; =0, (5.11)

where f, ri, and 5, are defined in (4.9). The real parts of
e+ indicate the energies of the discrete states (relative to
E, ) and the imaginary parts half the decay rates, both in
units of I /2. They are related to det(1+m) by

z det(1+m ) = [ —P(e —e+)(e—e )],
I"/2
—lE'

where z and e are related by

/Iz= — (e—a) .
2

(5.12)

(5.13)

In the limit of weak laser field (Q~O), the states lie at
a —iO, where the laser is tuned, and at 6, iri Th—e ef. -

fective shift 5, of the autoionizing state is a result of the
"virtual recombination, " and is analogous to the single de-
cay channel shift discussed elsewhere. '

Figure 4 shows the motion of e+ with increasing laser
intensity for y/=0, q; =1, a= 1, and y;/I =0, 0.1, 0.3,
and 1. The "confluence" occurs when one of the poles for
y;=0 touches the real axis at 0=2. The curves show
how increasing y; shifts and broadens the states. Since
y;/I is comparable to q;, virtual recombination is impor-
tant both in shifting the weak-field state and in keeping
its width close to unity (g = 1). Identical curves would be
obtained if we took q~=q;=1, y;=0 and varied yj. Fig-
ure 5 shows the pole motion for qy

——10, q;=1, +=1,
y; =0.1, and y~ ——0, 0.1, and 1. Since y; &~q; and

yf ((qI in all the curves, P remains close to unity; conse-
quently, there is only a small weak field shift of the au-
toionizing state, and increasing y~ rapidly increases the
width of the state.

VI. SPECTRA OF PHOTOELECTRONS
IN LASER-INDUCED AUTQIONIZATION

PE(t) =pEE(t) . (6.1)

We will assume that the atom is in the state
~

i ) at t=O
In such a case it follows from (3.22) that

I'E(z)= 1+—&EE(z) (1+vTr& —g ) .
z

(6.2)

In what follows we consider the spectra in the limit
t~ oo. Equation (6.2) then gives

(z +v)z &E~(z)
PF ( 00 ):I'E lim— ——

0 z +vz Tr& (z) zg (z)— (6.3)

which for nonzero v is

voEE( ~ )/[vTra( ~ ) —g ( ~ )] (6.4)

We first note that if y; =0 but y/&0, then g ( oo )=0
[Eq. (3.19)] and

(6.5)

Having discussed the dressed states of the system in
Sec. V, we are now in a position to analyze the spectra of
photoelectrons produced in strong laser-field —induced au-
toionization. The energy distribution of the photoelec-
trons is related to the density operator of the atomic sys-
tem by
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i.e., the steady-state spectra are independent of v. On the
other hand, if y/

——0, v=O but y;&0, then (3.24) shows
that

(2Qy )'
X2- r

1

P(e—e+)(e—e )
T

PE O—E—E ( oo )/Tm( oo ) . (6.6) 2+—+iq; 1+e . 3'y 1

q;
' I q;

(6.11)

Note that (6.5) and (6.6) are identical in form and will

give the same Pz if q/
——q; and we interchange yf~y;

This leads to the interesting conclusion that the pho-
toelectron spectra are the same (for either y/=0 or y; =0,
v&0) no matter how the system is recycled.

In further discussion we drop the incoherent relaxation
rate v. Now spontaneous decay to

~ f ) represents a sink
and the y;,q;~y~, q~ symmetry is lost. The steady-state
spectra then become

Pz ——ozz( oo )/(1 —limga) .
z —+0

(6.7)

From the behavior of fz(t) in the limit t~ oo, we have

ozz(~ )=
~
QE( m )

~

',
(6.8)

gz( oo ) = lim (z+ibz)fz(z) .
z —+ —ib,E

We then can write

X2(t)= g X2 'e
a=1

where

1+ ff 1 1

qI

P(e+ —e )

On combining (6.7) and (6.9), we get

(6.12)

ei 2 E+ .—— (6.13)

ga(t)=yi I dEIBE,aOE, (t) I d&BEaez(t)

=2
~
X2(t)

~

(6.9)

where we have used the definitions (3.30) and (3.31).
Equation (3.35) gives X2,

X2 i[(I+m) ']21 (6.10)

which after some analysis can be written in terms of e as

The quantity g [given by (3.20)] is expressible in terms of
the solution of the integral equation (3.29) as follows:

Pz =
~
gz( oo )

~

'/[1 —g (0)],
g (0)=2 J dt

i X,(t)
i

'

=2
ap Za Zp

(6.14)

(6.15)

Note that the spectral properties of the electrons are all
determined from pz. The factor [1—g (0)] ' is a simple
scaling factor (equal to one for y;=0) which represents
the increased yield of photoelectrons in the recycling case:
If the atoin decays to

~

i ) by photon emission it can be re-
cycled, but no recycling is possible after a decay to

~ f )
for v=O.

From (3.35) and (6.8) we find

QE( oo ) = i lim — [(JL+m ) ]ii+
UEi —1 Yl

z —+ —ihE Z 2

1/2

BE.[(L+m) 'h2+
1/2

CE, [(I+m) ']i3 (6.16)

2Q
QE(a) )=

mI

' 1/2 e+q;+i (yi /I )(1—q;/qi )

P(e—e+)(e—e )
(6.17)

The photoelectron spectra will have a doublet structure
which is asymmetric as a function of e. The width of the
peaks can be obtained from our earlier figures. It is in-

where vz; [Eq. (2.8)] is proportional to Bz, with Bz,
given by (2.9). It is interesting to note that if the initial
and final states have the same q values, q;=q/, then

fz ( oo ) and hence Pz continues to show the Fano
minimum at e= —q;= —

qy since 8~, ——Cz, ——0 at this
point, even though we have taken into account the strong
laser field and spontaneous emission effects. The situa-
tion obviously is different if q;&q/. Equation (6.16) can
be simplified by writing explicit expressions for
(I+m ) ', BE„and Cz, . In simplest form we find

I

teresting to note that y; affects 1(E( oo) only through e+
and f Equation (6..17) is identical in form to the expres-
sion presented elsewhere for the case y; =0.

Figure 6 shows the photoelectron spectra in the long-
time limit for q;=qi ——1, a= 1, 0=1.5, y;=0, and

yi/I =0.1, 0.3, and 1. The poles e+ for this curve are
shown in Fig. 4. The curves exhibit the Fano minimum
since q; =q~. Note how increasing yy destroys the sharp
feature of the spectrum. Since decay to

~ f ) represents a
sink, the total number of photoelectrons ejected (as deter-
mined by the areas under the curves) decreases with in-
creasing yi. Figure 7 gives the spectra for the same pa-
rameters except that now y/=0 and y;&0. The poles are
the same as for Fig. 6, and the individual curves differ
from those in Fig.6 by only a (y-dependent) scaling fac-
tor. Now spontaneous decay does not act as a probability
sink, but instead allows population to be transferred be-
tween the dressed states. The area under the curves
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l.2 0.75

09—
y)/ I'=O. l 0.50

0.6—

0.3—
y)/ I'= 0.3

0.25

0
—5.0 0 2 ' 5 5.0 0

—5.0 —2,5 0
E

2 ' 5 5.0

FIG. 6. Photoelectron spectra in limit t ~ oo and in units of
1/mI for q;=qf ——1, a=1, 0=1.5, y;=0, and yf/I =0.1, 0.3,
and 1.

FIG. 8. Photoelectron spectra for q;=qf ——1, a=1, 0=1
+ (a/q; )=2 (directly at "conAuence"}, and y;/I =yf /I
=0.01, 0. 1, and 1.

remains constant since all the dressed-state population is
eventually ejected as photoelectrons.

Figure 8 shows the spectrum when the laser is tuned to
confluence (0=2) for a = q &

——qz ——1 for the cases
y;/I =yf /I =0.01, 0.1, and 1. Figures 9 and 10 give the
spectra for q; =1, qf ——10, a= 1, 0=1.5, and various y.
In Fig. 9, y;/I is constant at 0.1 and yf/I =0.02, 0.1,
and 0.5. Increasing yf washes out the Pano minimum,
destroys the sharp feature, and decreases the area under
the curve. In Fig. 10, yf/I is constant at 0.1 and y; is
varied. The curves in Figs. 9 and 10 are not related by a
simple scaling factor.

VII. TIME DEPENDENCE OF THE
GROUND-STATE POPULATION

g (~)=2 f,
". "

~

x2(t)
I

'« .

Here o;; can be expressed in terms of X,

&;;= f e dt (,p;(t) (2,

1 i
i +1.

z z

On using (3.34), we find

(7.1)

(7.2)

The ground-state population3O P;; (t) can be obtained for
the case yf ——0 by transforming which simplifies to

(7.3)

2.0
l.5

l.6—

y, /I"
l.0

0.8— y; /I'=0.
0.5

0.4—

0
—5.0 -2,5 2.5 5.0 0

—5.0 —2.5 2.5 5.0

FIG. 7. Photoelectron spectra for the same conditions as Fig.
5 except now yf ——0 and y;/I is varied.

FIG. 9. Photoelectron spectra for q; =1, q2
——10, +=1,

0= 1.5, y;/I =0.1, and yf /I =0.02, 0.1, and 0.5.
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I.5

I.O—

0.5—

0
—5.0

&. rI'=
I

—2.5 2.5 5.0

een. In allthe
~

i )-
~

a ) Rabi oscillations are clearly seen.
curves but the one directly at confluence and y;=0,
P;;(t)~0 as taco.
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APPENDIX: CONNECTION BETWEEN
PHENOMENOLOGICAL DECAY EQUATIONS

AND MASTER EQUATION RESULTS
IFOR y;=0, yf+0 qf +oo

or the same conditions asFIG 10. Photoelectron spectra or
~ /I =0.02, 0.1, and 0.5.Fig. 8 except now yf /I =0.1 and y;

(7.4)

for ~1 and applies for all y; and

d 0 1 One of the dressed states
n in Figs. 11 an

more ra idly than the other, and there is lit-

so that the discrete state —discrete state coupling is
relative to the discrete s a e—' ' '

strong rea '

r curve is directly at confluence, andcoupling. The upper curve is iree y a
population is trapped in

~ =0.1 and 1. NowW i; =0) hile the other curves have y; =0. an

p tt(t)=g (t)pit(t) . (A 1)

However, the equations (3.9) and (3.10) for g do not have
s far as the radiative decay terms

are concerne . ed The complication arises due to t e virtua
L t s therefore make the further simp '-li-recombination. e us e

'
n i.e. takefication an d ignore the recombination, i.e., a

Cz, ~bz, . Then (3.9) becomes

blems involving the interaction of an atom-In many pro em
ic system wi ex'th external fields, one uses a wave- un
description an d one also puts in phenomeno ogica y

t nts corresponding to the radiative decays.rate constan s corre
e mixin in-even has been done for the case of four-wave m' '

g
'-

volving autoionizing s a et tes by Crance and Armstrong.
~ ~

One is obviously ace wif d 'th the questions —what is the re-
rk andi between the master equation framework an

and what are the condi-the wave-function description, an w a a
~ ~

tions under w ic suc ah' h h a phenomenological description
~ ~

may be vai . n islid? In this appendix, we examine this ques-
tion. ' Clearly one must have a situation for whic y; =,
=0. I such a case result (3.26)] we indeed have a wavev=0. In such a case result

function description for

I,O I,O

0.8 0.8 .—

0.6 0.6 ——

0.4 04 ——

0.2 0.2 —-

4.0
l" t

8.0
I

4.0
1"t

8.0

FIG. 11. Time development of the p po ulation of
~

i ) for
1.~ ——1 a=1 A=1.5, yf ——0, and y;/I =0, 0.1, andt

FIG. 12. Time development of the p pe o ulation of ~i) for

q = 10 0= 1, yf ——0, and y;/I =0, 0.1, and 1.q;—
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Pz = —ibz gz, i—vz;t)'t; — dEbz, bz, gz . (A2)
Xf

If we now use (2.2) and the orthogonality of
I
a) and

I
E'), then (A2) leads to

~ Pf 4.+"
2

(A3)
E

where gz (E——
I P) and the ellipses denote the contribu-

tion coming from the coherent components. Equations
(A3) are just the equations which one would write on
phenomenological grounds. W'e have thus established the
connection between the master equation approach and
phenomenological approach in a very special case—when
the decay to a third level (from which the system does not
return) is considered and when the virtual recombination
effects are ignored. The description (A3) has the feature

that the problem with the radiative decay is solved by
changing E, to E, —(iyf/2), i.e.,

4z I rf~o=A I z z &'rfn- (A4)

The final photoelectron spectrum is given by
I Q I

and
so one still has to make a transformation from gz to Pz
using (2.2). However, it is known that the "steady-state
behavior" can be directly obtained by using gz since

»m Ifz I'=»m I@z I'.

Thus the steady-state spectral amplitudes obey the simple
substitution rule E, +E, ——(i yf /2) Th. e explicit expres-
sion for the steady-state photoelectron spectra of Ref. 8
does indeed show that such a substitution rule holds since
the conditions under which these results were derived are
precisely the conditions y; =0, v=0, qf' ——ao.
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