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Kinetic theory has recently been used to describe the spin dynamics associated with the stopping
process encountered by highly enex'getic muons as they thermalize in a single-component gas. The
xesult is a pair of rate equations that describe the dynamics encountex'ed by the diamagnetic and
paramagnetic IQUOQ spccIcs. This dynamical systcIQ has motion gcncI'Rtcd by the hypcrflnc 1ntclac-
tion of thc paramagnetic IIlUon species (muonlum) and by rRtcs w41ch RI c pI'oducts of time"
dependent Iate constants foI' t4e electron-captuxe and -loss processes with the number density of the
moderating gas. These rates are positive by definition, Using a finite-width-step-function approxi-
mation to the time dependence of the rates, analytic solutions of these equations are obtained and
related to thc muon spin polarization of the diamagnetic and paramagnetic species. Line shapes are
obtained for the amplitudes of these polarizations as a function of the length of thc charge exchange
regime I, This time duration is inversely proportional to the number density of the modexating gas.
The line shapes have two general features, namely, (i) they are constants when the duration of thc
charge exchange region is short (high-nuxnber densities), and (ii) they have resonances fox' long dura-
tions (low-numbex densities). Also, in general, the amplitudes of the "singlet" (muonium hyperfine
frequency) term and the "triplet" (muonium Larmor frequency) term are not equal. Pits to the
RV8118Mc cxpcxlnlcntal noble-gas data arc prcscntcd Using thc rate constants Rnd thc time duration
of the chaxge exchange region as parameters, The theoretical predictions suggest further experi-
mental studies bc made, in particu181, to scc whcthcl thc I'csonanccs Rx'c cxpcrimcntaHy rcsolvaMc or
not.

I. INTRODUCTION

In muon-spin-rotation (@SR) experiments' the time
dependence of the spin polarization of an ensemble of
thermal muons is followed by observing the ensemble of
decay positrons emitted along the direction of the muon
spin vectors. These experiments distinguish two general
types of magnetic states associated with thermal muons,
namely, paramagnetic and diamagnetic states. Chemical-
ly, the paramagnetic states are muon radicals which can
be divided into two classes, namely, free muonium (Mu,
the positive muon equivalence of the hydrogen atom) and
molecular muon radicals. These chemical species can
ca8lly bc distinguished magnetically by their characteristi
Larmor frequencies. In contrast, with present experimen-
tal techniques in pSR, no distinction can be made between
the characteristic Larmor frequencies of chemical species
containing the muon in a diamagnetic environment. Ex-
amples of classes of such chemical species involving the
muon are neutral molecules, molecular ions, and of
course, the bare muon itself. Since molecular muon radi-
cals have not been found in gas-phase experiments, then
only t%'0 IDagnctlc states al c observed, QRIDcly, t4c
paramagnetic stRtc which chcIIlically 18 muonium Rnd thc
diamagnetic state which may bc R slnglc chemical spcclcs
or a set of different chemical species. Throughout this pa-
per the term "state" will be used to describe the spin envi-
ronment of the muon, while "species" will be used to
dcnotc its chemical environment.

Generally, the time resolution of these experiments is of

the order of tens of nanoseconds as is the time scale of
the stopping process for the incoming highly energetic
muons. Thus the outcome of the stopping process acts as
the initial conditions for the experiments. Therefore it is
of interest to have a theoretical basis for understanding
the effects that the thermalization of the translational
motion has on the spin dynamics. Such a description has
recently been presented based upon kinetic theory. The
result ls a pall of 1'R'tc cqua'tlolls fol' thc dlalllRgllctlc Rlld

paramagnetic spin states. The effect of this stopping pro-
cess is completely contained in the (positive) time-
dcpcndcnt I'atc supcropcI'Rtors thRt describe thc colllslon
processes which interconvert the two spin states. These
rate superoperators depict loss of an electron from muoni-
lln1 to foHIl R dlRIIlagllctlc chemical spcclcs Rlld cRptul'c of
an electron by a diamagnetic species to form muonium.
They contain contributions from all possible chemical
species that may be involved and are averages of the prod-
uct of the total cross sections for the appropriate collision
with density operators that describe the translational
motion of the moderating gas and the chemical species
containing the muon. Their time dependence is deter-
1Illllcd by tlM tllllc dependence Rssoclatcd with thc
thermalization of the kinetic energy of the muon, that is,
thc dcI1slty opcI'at01 which dcscribcs thc tI RnslatloI181
motion of the chemical species containing the muon.
Thcsc translational dcnslty opcratoIs glvc thc probability
that the chemical species will have a certain kinetic energy
at a certain time. On the other hand, the moderating gas
18 assumed to bc 1I1 thcflTlal cqulllbrlum and~ thus~ 18
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described by a product of time-independent equilibrium
Maxwell-Boltzmann density operators, one for each gas
atom.

In this stopping process three main regions are encoun-
tered before thermallzat1on, that 1s, the Bethe-Bloch re-
gion from t =0 to t&, the charge exchange region from t,
to t2 (r, =tz —r&), and the epithermal region from t2 to the
beginning of the thermal regime which starts at tT. It is
this last time which acts as the initial time for the experi-
ments. In the Bethe-Bloch region, where the dominant
process is ionization of the moderating gas, the muon
remains as a bare muon. Thus the spin dynamics is sim-
ply that of a free diamagnetic state. Indeed, it is constant
since the time scale of this region is many orders of mag-
nitude faster than the period of the diamagnetic Larmor
frequency. In terms of the rate equations this means that
there is an energy mismatch between the total cross sec-
tions and the kinetic energy of the muon which results in
both the rate superoperators being zero. On the other
hand, ln the charge exchange region, both processes are
occurring simultaneously. Thus the rates for electron cap-
ture and loss are both positive and nonzero. Elastic and
inelastic scattering also occurs in this region. Indeed,
these latter processes dominate the third or epithermal re-
gion where one of the rates may be nonzero, but not both.
However, by the end of the epithermal region, both rates
must be zero since, for large number densities, there is no
depolarization of the signals. Such a condition holds be-
cause nonzero rates up to and including thermal times
would lead to noncoherent depolarization of the muon en-
semble.

The purpose of the present paper is twofold First. , La-
place transforms are used to obtain explicit solutions of
these equations based upon an approximation to the rates.
That is, the rates are assumed to be zero during the
Bethe-Bloch regime from r =0 to t~, to be nonzero but in-
dependent of time for the duration of the charge exchange
regime from r

&
to t2, and zero again during the epithermal

region from t2 to tr. This replaces the exact time depen-
dencies of the rates, namely, zero initially, positive and
nonzero as time progresses, and zero again at time I;T,
with finite-width-step functions of different heights. The
time windows or widths of the capture and loss rates are
assumed to be the same, that is, they are taken to be the
duration t, of the charge exchange region. Such a seem-
ingly simple approximation leads to nontrivial predictions
for the line shapes of the amplitudes of the polarization of
the muon. Thus its validity can easily be tested experi-
mentally. If, indeed, it proves to be inadequate then more
IcRllstlc Rpproxlmatlons will have to bc consldcIcd. How-
ever, solutions of the exact rate equations require solutions
of translational Boltzmann equations for each chemical
species since the time dependence of each rate superopera-
tor is explicitly contained in the appropriate translational
density operators. Such a calculation is beyond the scope
of present-day theoretical techniques.

The second purpose of this paper is to explore the
consequences that these solutions have for the observed di-
amagnetic and paramagnetic signals as a function of the
number density n of the moderating gas. The number
dcnslty cntcrs thc rate cquatlons ln two ways, that ls,

through the rates themselves and through the time dura-
tion of the charge exchange regime which is inversely pro-
portional to n. In particular, the line shapes associated
with the amplitudes of the polarization of the muon in the
diamagnetic and paramagnetic states have two general
features as a function of the time duration of the charge
exchange regime, namely (i) they are constants for high
number densities and (ii) they exhibit resonances at low
number densities. For the first region (high number densi-
ties) there is no depolarization, that is, the sum of the am-
plitudes is equal to the total incoming amplitude. This
agrees with experimental results ' ' and is in contrast to
the situation' in condensed phases where there is, in
general, a significant depolarization. For example, in
liquid water there is a 20% lost fraction. The theoretical
description of the gas-phase experiments is based upon
two assumptions, namely (i) that only binary collisions
occur and (ii) that no subsequent interactions occur be-
tween the muon and the products of a prior collision.
This implies that the lost fractions in liquids and solids
may have three possible sources, that is (i) many-body ef-
fects such as collective modes and/or many-body col-
lisions, (ii) interactions with products of prior collisions,
and (iii) interactions with short-lived species not present in
the gas phase {for example, solvated electrons). On the
other hand, depolarization does occur in the second region
of interest, namely, low-density gases. The mechanism for
dcpolRrlzRtlon ln this regime ls duc to thc hypcrf inc in-
teraction and the cyclic nature of the charg«xchange
process. In particular, when a collision forms muonium,
exchange of polarization between the muon spin and the
electron spin can occur during free flight. This exchange
is due to the hyperfine interaction. If the time between
collisions is much shorter than the period of a hyperfine
oscillation then the electron mill not carry away any ap-
preciable polarization when it is stripped from the muon
in the next charge-transfer collision. For dense gases no
transfer of polarization occurs over the whole charge ex-
change region. On the other hand, for low-density gases
the time between collisions near the end of the region be-
comes an appreciable fraction of the period of the hyper-
fine interaction. Thus, stripped electrons can carry away
an appreciable amount of the muon's original polariza-
tion. Indeed, thclc will bc a dcnslty whcIc thc time be-
tween collisions will be such that an electron will be lost
when it has acquired all the muon's polarization. At
lower densities still the electron mill have acquired all the
polarization and will be exchanging some of it back to the
muon when it is stripped by the next charge-transfer col-
lision. This is the source of the resonances that the theory
predicts. However, the size of these resonances depends
upon how much polarization has already been lost before
such "restoring" events can occur. The real parts of the
poles associated with the inverse Laplace transforms of
the rate equations lead to exponential damping of the res-
onances while the periods of these resonances are given by
the imaginary parts. Such resonances have as yet to be ex-
perimentally observed. Indeed the parameters may be
such that the resonances are too small in height to be seen.
Such extreme damping is most likely to occur when the
muon spends most of its time as muonium rather than as
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a diamagnetic muon species during the charge exchange
regime. Also, in general, the amplitudes of the hyperfine
frequency term ("singlet" signal) and the muonium Lar-
mor frequency term ("triplet" signal) are not equal. This
arises since the muonium hyperfine frequency enters the
rate equations in an asymmetric fashion. That is, the
muonium hyperfine frequency only appears in the equa-
tions for the singlet components of the spin density opera-
tors and does not appear in the equations for the triplet
components, see Eqs. (3.2) and (3.16). However, for rates
large compared to the hyperfine frequency, for example,
at high densities, these amplitudes become equal. At
present, the hyperfine frequency signal is not observed ex-

perimentally while it has been assumed that the ampli-
tudes associated with the muonium hyperfine frequency
and the muonium Larmor frequency are equal.

The rate equations and their associations with the ob-
served thermal signals are reviewed in Sec. II. Explicit
solutions of the rate equations are obtained and related to
the diamagnetic and paramagnetic signals in Sec. III.
High number-density limits of these expressions are
presented in Sec. IV, while large rate-constant results are
given in Sec. V. Finally, fits to the available noble-gas
data are presented in Sec. VI.

II. RATE EQUATIONS

For the typical muon-spin-rotation (@SR) experiment in
gases, ' the muon beam enters the target with its momen-
turn and spin polarization perpendicular to the applied
external magnetic field. By definition this external field is
in the z direction while the initial momentum is in the y
direction. Observation of the positrons emitted by the de-
caying muons is made in either the positive or negative x
directions. The components of the spin density operator
which describe the bare diamagnetic muons as they enter
the target are as follows: p«(0) = —,

'
(1 + I'z), ppp(0)

= —,(1—P'„),and p"p(0) = —,
'

~

I'&
~
exp(iqrz) =ptt (0)', where

a and Pare the + —,
' and ——,

'
spin states in the field direc-

tion. They involve the initial polarizations in the z direc-
tion P&, in the x direction ~P& ~cos(y&), and in the y
direction

~

I'&
~
sin(pre). Standard experimental condi-

tions are P& -0 and yz- —m/2. On the other hand, since
the moderating gas is assumed to be in thermal equilibri-
um, then the electrons which it donates to the charge ex-
change regime will be unpolarized. Thus the initial or
equilibrium components of the electronic density operator
are p' =p~p ———,

'
and p'p ——pp ——0. The initial muonium

spin density operator is zero since there is no muonium
present before the charge exchange region begins.

The derivation of the rate equations begins with the
exact quantal (X+ 1)-particle Liouville equation for
the single-component gas and the muon. Two first-
order quantal Bogoliubov-Born-Green-Kirkwood- Yvon
(BBGKY) equations for the diamagnetic and paramag-
netic muon species are then obtained by averaging over all
the gas particles. These equations for the single-particle-
reduced density operators are, of course, not closed as they
involve two-particle-reduced density operators for a gas
particle and either a diamagnetic or paramagnetic muon
species. To close these equations the generalized

Boltzmann ansatz is invoked, that is, the two-particle-
reduced density operators are written as products of the
appropriate Moiler superoperators and the single-particle-
reduced density operators for the gas particle and the
muon species. The result is a set of coupled quantal
Boltzmann equations for the paramagnetic muon species,
namely, muonium, and the various diamagnetic chemical
species which contain the muon. These equations involve
both the translation and spin degrees of freedom. The
translational degrees of freedom are then traced over and
the diamagnetic species summed over to produce a pair of
rate equations whose dynamics is generated by the free-
flight spin Liouville superoperators and by the time-
dependent rate superoperators which depict the electron-
capture and -loss processes, that is,

dp~(t)

dt
+iWqp~(t) = Rc(t)&—, ,q pq(t)+RL (t)pM„(t),

(2.1)
dpM. (t)

dt
+i WM„PM„(t)= RL. (t)P—M„(t)

+Rc(t) H. , ,q pq(t),

Kc(t)= f dP&T f dp&'~a„,(p~Mu)(p&'~/m&~)

Xf)(M)Pp)/Mp) —p p'))

&&fq(M~Pq)/Mq, + pq'(
~

t) . (2.2)

Here f, is the Maxwell-Boltzmann momentum distribu-
tion' for the translational motion of an equilibrium gas
particle, while f„is the momentum distribution associated
with the time-dependent single-particle translational muon
reduced density operator. cr«, (p —+Mu) is the total cross
section" for scattering events that begin with a diamag-
netic muon species and end with muonium. A similar ex-
pression holds for the electron-loss process. Here these
time-dependent rate constants are replaced by the product
of time-independent parameters, namely, Kc and Kt. , and
a finite-width-step function of the time duration of the
charge exchange region.

The free-flight muon spin dynamics is generated
by the diamagnetic muon Liou ville superoperator,

fi '[H&, . . .],——which is A' ' times the commutator
with the muon spin Hamiltonian H„=—co„IZ, where
co&

——8.6X 10 B/sec is the diamagnetic muon Larmor fre-
quency. Similarly, free-Aight muonium spin dynamics is
generated by the paramagnetic muonium Liouville super-
operator, WM„——A [HM„,. . .],which is A times the
commutator with the muonium spin Hamiltonian'

—+ w —+ } ~ +
HM„——co, S Z—cu&I Z+A' coDI.S. Here co, is the elec-
tronic Larmor frequency, while co0 is the muonium hyper-
fine frequency 2.8&& 10' rad/sec. The rate equations are
solved in Sec. III using the eigenfunctions' of the

where Rc(t)=nKC(t) and RL(t)=nK&(t) are the rates of
electron capture and loss, respectively. They are the prod-
ucts of the number density of the moderating gas and the
appropriate time-dependent rate constants Kc(t) and
KL (t). For example, the capture rate constant is given by
a sum over the individual rate constants for each diamag-
netic chemical species, namely,
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1 ) =
l

cxcI ),
l2&=slctP&+c IP~& I3&= IPP& Rnd l4&=c I~P&
--s

l
PcI), where the first spin is that of the muon. The

normalization constants c=I —,
' [1+x/(1 +x )' ]I' '

and s = (1—c )
' involve a field-strength parameter

x = (co, +co&)/coo ——6.3 X 10 8. Also associated with this
muonium spin Hamiltonian is the muonium Larmor fre-

quency coM„=(co, —co„)=S.g )& 10 8/sec. Finally, these
rate equations involve a multiplication superoperator
which selects the spin state of the electrons that are cap-
tured by the muon in the formation of muonium. This
superoperator represents multiplication by the equilibrium
clcctron sp1n density opcratol and 1s d1agonal 1Q thc cKQ.'

bas1s, namely,

« lub&&«ll&. ..q=pk« I'b&&'dll (2.3)

where the double bracket notation' is used to distinguish
the operator space from the standard wave function space.

Solutions of these rate equations evaluated at the end of
the charge exchange region act as the initial conditions for
the cpithcrmal and thermal regions where it is assumed,
for noble gases, that spin-lattice-type relaxations and the
free-flight spin Hamiltonians are adequate to describe the
spin dynamics. For comparison with the experimental
noble-gas signals, the rates ICc and El, and the duration of
the charge exchange regime t, =t2 —t~ are treated as pa-
rameters in a fitting procedure Th.is time span

t, =g, 'Ico', ca. n be written' in terms of the total number
of collisions X, occurring during the regime and the col-
lision frequency co,'=(nu;cr;) '. Here u; is the average
free-fhght velocity between colhslon i and I +1, while cr
is the total cross section associated with U;. Therefore the
time duration of the region can be written as t, =I;/n
Thus this theory involves three fitting parameters Kc, Et,
and w, . On the other hand, the number density acts as an
experimentally Mi)ustablc quantity.

In gaseous pSR experiments time histograms of the di-
amagnetic muon and paramagnetic muonium Larmor pre-
cessions are observed. ' The time scale of these histograms
is microseconds, that is, thermal times. Times on the or-
der of nanoseconds are too short to be observed and their
time zero is of the order of the start of the thermal region.
These histograms are fit to functional form'

QPy =CPM +Q M2=QPM —0 603=6)0+6)M +Q~ Rnd

co4 ——coo —coM„+0, where 0= —,coo[(1+x2)'~2 —1] is
field-dependent beat frequency. However, the hyperfine
signals are not observed experimentally as their time scale
is of the order of tenths of a nanosecond. The signal S(t)
is, in fact, the expectation value of the polarization of the

muon spin vcctoI' I 1Q thc X d11'cctlon, namely,

S(t)= &Pz) (t) =Tr[(2/Iri) I XP(t)],

where p(t) is the appropriate thermal spin density operator
fol thc dlalnagllctlc Rnd paramagnetic 11111011 stRtcs. Fol'
comparison of different experimental results, normalized
signals are considered here, that is, S(t) divided by the
amplitude of the incoming polarization. In gas-phase ex-
periments ' this incoming amplitude is obtained by
measuring the diaInagnetic signal produced when an
aluminum plate (in Uacuo) replaces the target gas. No
depolarization of the beam occurs and no muonium is
formed in aluminum and, thus, the incoming amplitude is
termed the aluminum asymmetry. ' Corrections for the
wall signals should also be included in the experimental
amplitudes as well. From now on the term "amplitude" is
taken to be synonymous with the wall corrected experi-
mental amplitude divided by the aluminum asymmetry,
that is, the normalized amplitude.

From a theoretical view point the signal S(t) becomes
a sum of diamagnetic and paramagnetic terms, namely,

S(t)=Tr[P p(t)]/l P„l
=Pg(t)+PM"{t), (2.7)

Px "{t)= g PM. exp[ —~M.(t —tT)]cos[~.(t —tr) —~M.] .

where the density operators used to evaluate P„"(t)and
Px "(t) have motion generated by the appropriate Liouville
spin superopeIators along with the thermal spin-lattice re-
laxation rates. The initial conditions of these density
operators are given by the solutions of the rate equations
evaluated at t, . Thus the diamagnetic and paramagnetic
contributions are

Pg{t)=P~exp[ —Ap(t —tT)]cos[cop(t —tT)+L9~],

(2.8)

X(t)=Xoexp{ t/r„)[I+S(t)]—+8,
where Xo is a normalization, w&

——2.197 @sec is the muon
lifetime, 8 is a time-independent background, and S(t) is
thc thermal signal P„=

l p.(t, )+p.(t, )
l

(2.9)

The phases of these expressions are simply the phases of
the experimental signal, Eq. (2.5), while the amplitudes P„
and PM„are the appropriate normalized (wall-corrccted)
amplitudes. Thc diamagnetic term lnvolvcs the amplitude

S(t)=A„exp( A,„t)co(scot +0)—

+ g AM exp( —A,M t)cos(co t HNI ) . —(2.5)

and 1ts assoc1atcd phase. Here thc dcIlslty I11atrix elements
are components of the diamagnetic spin density operator
described by Eq. (2.1), namely,

Here A,„and A,M„are the spin-lattice relaxation rates for
the diamagnetic muon and paramagnetic muonium states,
whllc Ap and 2 Mg Rlc thc11 RIIlplltudcs Rnd 0~ Rnd gQI RIc
their phases. The paramagnetic frequencies are those as-
sociated with the allowed transitions in a transverse mag-
netic field of the muonium Breit-Rabi diagram, namely,

P {t )=2[cplz(t ) —sp14{t )l

p, (t, )=2
l sp21(t, )+cp41(t, ) l

.
(2.10)

On the other hand, the paramagnetic amplitudes are given
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PMu I Pl(t. )
I

= 12SP23 (t )
I

PMu I p2(t )
I

=
I

2cplz"(t(, )
I

PM IP3(t )
I

=
I

—»p14 (t )
I

PM. = IP4(t )
I

= 12cp43 (t )
I

(2.11)

« I
1 & &211~...q I pp«) &&= 2 [c'piz(t) —scpi4(t)] =cp (t)/4

and (3.1)

« I
1 & &411&...~ I pi, (t) &&

= —'[—scpl2(t)+s P14(t)]

sp—a(t)/4,

while the phases are defined accordingly. In principle
there are five signals of different frequencies that can be
observed if x is of sufficient size that 0 is resolvable and
if the time resolution of the experiment is sufficient to
resolve the hyperfine frequency. As pointed out, the latter
signals are not currently observed, while in gases it is stan-
dard experimental practice to measure the muonium sig-
nal at low fields (about 7 G) and the diamagnetic signal at
intermediate fields (typically 70—300 G). Thus only two
signals are currently observed, namely, that associated
with the diamagnetic Larmor frequency and that with the
paramagnetic muonium Larmor frequency. The muoni-

um signal is the Larmor part of the low field muonium

polarization

Px "(t)=PMuCOS(coMut —8Mu)+PMuCOS(coot —HMu), (2.12)

where

PM. = I pi(t. )+pz(t. )
I PM. = I p3(t. )+P4(t. )

I

are the amplitudes of the "triplet" or muonium Larmor
frequency term and the "singlet" or hyperfine term. The
phases associated with these amplitudes are simply the
phases associated with the appropriate combination of
matrix elements. Experimentally measured quantities are
then the amplitudes P„and PM„and the phases O„and
OM„,cf. Eq. (2.5). It is also of interest to define the frac-
tions

4

+p P(u /PT FM y PM /PT 1 Pp (2.14)

III. DIAMAGNETIC AND PARAMAGENTIC
THEORETICAL SIGNALS

The rate equations with time-independent rate constants
are now solved using the muonium basis. In this represen-
tation the o., 2, and 3 matrix elements couple together as
do the a, 1, and 4 components. There is no coupling be-
tween these two sets. The former is considered first.

A. "Two" and "three" paramagnetic signals

The 1 eigenstate couples to the 2 and 4 eigenstates
through the muon spin density operator and the equilibri-
um electron spin density operator in Eqs. (2.1). That is,

of muon and muonium, respectively, where PT is the sum
of the diamagnetic and paramagnetic amplitudes

P&+Q, ,PM„((1).Expressions for the various ampli-
tudes and phases are evaluated in Sec. III in terms of the
analytic solutions of the rate equations which describe the
spin dynamics that emerge from the charge exchange re-
gion. The resulting signals are then fitted to the noble-gas
data which are functions of the number density (pressure)
of the moderating gas.

where use has been made of Eq. (2.3) and the representa-
tion of the muonium eigenstates in terms of the aa basis.
Thus the rate equations (2.1) which couple the paramag-
netic and diamagnetic components of the spin density
operator become three linear coupled differential equa-
tions which describe the dynamics associated with the o;,
2, and 3 matrix elements, namely,

dp (t)/dt = —,'Rcp —(t)+RL[pz(t)+p3(t)],

dp, (t)/dt= RLp, (—t)+ ,'Rcc'p—(t),

dp3(t)/dt = —(RI +to1p)p3(t)+ ,' RCs pa(t)—

(3.2)

and are subject to the following initial conditions:

p (tl) = —,
'

exp(iyz), pz(tl ) =p3(tl ) =0.
Using Laplace transforms,

p;= texp —xR~ t —t~ p; t
1

(3.3)

Eqs. (3.2) can be transformed into the following set of
three coupled algebraic equations:

(x+fp)Pa Pa(tl )/Rs+fil(P2+p3) )

(X+fp)Pz=fMuc Pa x (3.4)

[x+fr+i(too/Rs)]P3=+s fMuPa )

where R& ——Rl. + 2Rc ——nKz is the total rate and where

fp RL/Rs +L/+s and fMu 2 Rc/Rs 2 +c/+s
the fractions of diamagnetic muon and muonium, respec-
tively, which emerge at high pressures, see Sec. IV, where
the time duration of the charge exchange regime is short
compared to the hyperfine interaction. The solutions of
Eqs. (3.4),

pz=p [fM.c'/(x+f, )l

pz=p t+fM.S'/[x+f, +1(~o/Rs)] I, (3.5)

3

(T =p, ()&) (x+fx)[x+f„+((ruol&x)] ii(x —xx;) /)(x,
i=1

involve the roots of a cubic equation with complex coeffi-
cients, namely,

0=xs) +xs([1+f1 +&'(too/Rs)]

+xs, [f„+t(ohio/Rs)]+is'f~fM (~o/Rs) . (3.6)

This cubic equation has three complex roots,
xq; ———A,~;+ivq;, which can be written in terms of three
(positive) relaxation rates, As;, and three associated fre-
quencies, vz;. The relaxation rates lead to exponential
damping of the amplitudes, while the frequencies lead to
sinusoidal oscillations.

Inverting the Laplace transforms leads to analytic ex-
pressions for the various matrix elements of the spin den-
sity operators. For example, at the end of the charge ex-
change region the 2 matrix element becomes
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3

P2(t, ) = —,
' fM„c g exP(xs iRst, +icosi, ) [xs&+fp+t(too/Rs)] g (xs i x—s 1 )

3
= 2fM c g exp[( —~s +2'vsi)Ksrc+i(bsi+&it2p)]&si=I M exp(ioM„) (3.7)

The next to the last form of Eq. (3.7) involves a real am-
plitude function and a frequency, namely,

~s,i Ds, i /Es, i & Iis, i as, i es, i & (3.8)

xsix, sj Es,ij exP(ies, ij ) &

ES,i ff Es,ij & eS,i —g eS,ij ~

J+t j+i

(3.9)

respectively. These expressions are related to the relaxa-
tion rates and frequencies by the following formulas:

xs;+fi&+io2o/Rs =Ds, iexP(ids, t) &

It is to be noted that the explicit dependence on the num-
ber density of the moderating gas has been isolated in the
relaxation rates, their associated frequencies, and the D
functions. The E and 8 functions implicitly depend on n

through the complex roots of Eq. (3.6)~

As with the "two" paramagnetic signal the amplitude
of the "three" signal is the magnitude of the 3 matrix ele-
ment. That is,

3

MU [ 2fM S ] g eXP( 2~siKsrc)t"S, ' +2+ eXp[ (~S&.+~S j)KS2. ]CsicSji=1 J+i

Xcos[(vs, i
—vs j)Ksrc+(csi —cs )]

1/2

(3.10)

while its corresponding phase is OM„cj2&+a——rg[p3(t, )].
Here the real amplitude and phase functions

Cs, i Fs, i /Es, i & cs, i fs, i es, i (3~ 11) ,
' [scP23(t)+c—Pj43(t)]=cPc(t)/4 .

involve the complex function

xs, i+fi&, =Fs
& exp(ifs, i ) (3.12)

and the previously defined E functions, Eq. (3.9). Finally,
the a component of the spin density matrix becomes

(3.15)

The a, 1, and 4 components of the density operators satis-
fy the following set of three coupled linear first-order dif-
ferential equations:

3

Pa(tc) 2 g eXP[( XS,i+iVSi)KSrc+i(aS;+y&)]AS;,

(3.13)

dp, (t)/dt =—,' Rcp, (t)+RL [p—i(t)+p4(t)],

dpi'(t)/dt = Rt p, (t)+ ,' Rcs p—,(t), —

dp4(t)/dt = (RL

igloo)p4(t)+

2
R——cc2p, (t) .

(3 ~ 16)

~s, =Ds, iFsi/Es, ,as, =ds, +fs, es,i— (3.14)

This matrix element is related to the diamagnetic signal,
see Eqs. (2.5)—(2.9).

These expressions for the amplitudes and phases of the

p SR signals are evaluated for high number densities in
Sec. IV and for large rate constants in Sec. V. The "one"
and "four" paramagnetic signals are considered next.

B. "One" and "four" paramagnetic signals

The 3 eigenstate also couples to the 2 and 4 eigenstates
through the muon spin density operator and the equilibri-
um electron spin density operator in Eq. (2.1). That is,

« I
2& &31

I
~...q I pi&(t) & &

= —,
' [s pz3(t)+scp43(t)] =sp, (t)/4

These equations are complex conjugates of Eqs. (3.2) with
s and c interchanged. Indeed, for low fields where s =c
they are s™plycomplex conjugates of each other. Solu-
tions to this set of equations follow directly from Sec.
III A except that the cubic equation

O=xc i+ cx, [i1+f„i(coo/Rs)]-
+xc„[f„i(t&2o/Rs ) ] ic'f„fM.&(ohio/—Rs)—(3.17)

replaces Eq. (3.6). The roots xc; ———A,c,; —ivc, ;, of this
equation are complex conjugates of the previous roots
with s replaced by c. For low fields where s and c are
equal, the two sets of roots are simply complex conjugates
of each other. The "one" signal has the same form as the
"two" signal except that e replaces s everywhere. That is,
the 8 and b functions are evaluated using the c roots.
Similar results hold for the "four" and "three" signals and
the a and n components of the density operator.
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C. Diamagnetic and low-field paramagnetic signals

The amplitude of the normalized observed diamagnetic
muon signal is simply given by the magnitude of the sum
of the a component and the a component of the spin den-

sity operators, namely,

3

P„=—,
' g I exp[( —As i+ivs, t)Ksi;+ias t]~s t

lost fraction. Thus no depolarization occurs at these high
number densities and the amplitudes are equal to the frac-
tions defined by Eq. (2.14). In contrast, fM„and f& are
the fractions of muonium and muon, respectively, that
emerge from the charge exchange region at high densities
when E~~, ~&1. That is, they are the appropriate chemi-
cal kinetic fractions.

V. LARGE RATE-CONSTANT EXPRESSIONS

+exp[( —Ac, i' iv—c t )Ksw ia—c,i ]~c,t I

(3.18)

The phase follows accordingly. This signal is typically
measured between 70 and 300 6 where there is a nontrivi-
al difference between the two sets of roots. On the other
hand, the paramagnetic signal is usually measured at low
fields (around 7 G) where s =c. Thus the roots are simply
complex conjugates of each other, namely, A,~;——A,q; ——A,;
and vc; ——vz; ——v;. Also, Q is not resolvable at these low
fields. Thus the muonium Larmor signal, Eq. (2.13), is of
the form

3

PM„——,'(fM„—) g B;exp( A,;Ks~,—)cos(vKsv, +b;) and

~s, }=s o[1 —s fMu(1+fp)lfMu/MRS

=s too[Xi SA, 2—]I(nK, s) (5.1)

When the time duration of the charge exchange regime
is such that Ksv, &&1 while (too/Rs) is small but finite,
then spin depolarization can occur. In particular, if
cop/f&Rs «1, then only one root will contribute to the
amplitudes as the second and third relaxation rates will
lead to large exponential damping. Such situations re-
quire large rate constants if they are to be valid over the
number-density region of experimental interest. Other-
wise the exact expressions must be used. To second order
iil (top/Rs ) the relaxation rate and frequency, for the s
root, are

(3.19) vs 1 s ~pfMu/nKs2 2 (5.2)

where the B functions are evaluated using the above low-

field roots. A similar expression holds for the hyperfine
signal.

PMu =PMu =( 2 s')fMu[1 —exp( —Ks~c )]

PM. =PM. =( 2 c')fM. [1—exp( —Ks&. )]

P„=f„+fM„exP(—Ks'rc ) .

(4.1)

(4.2)

The sum of the polarizations is unity. That is, there is no
I

IV. HIGH NUMBER-DENSITY EXPRESSIONS

When the number density of the moderating gas is high
and when the rate constants Ks are of the order of or
greater than the hyperfine frequency, then (cop/Rs )

=(coo/nKS) is a small parameter. Simple expressions for
the relaxation rates and their associated frequencies can
then be obtained in terms of a power series in (ct)p/Rs).
Since the number-density dependence of the amplitudes
resides completely within these relaxation rates and fre-
quencies and the D functions then to zeroth order in
(coo/Rs), the line shapes are independent of the number
density of the moderating gas. That is, there is a high
number-denisty limit of the amplitudes in the gas-phase
experiments. In particular, to zeroth order in (cop/Rs),
the s and c roots become real and equal, namely, A, i

——0,
A,2 fp A3 —1. Since D2 —F2 ——0 then the c——ontribution of
the second root to the normalized amplitudes is zero,
while the remaining roots give

respectively. Similar expressions hold for the c roots. The
amplitudes of the resolved paramagnetic signals, Eq. (3.7)
and (3.10), are then dominated by the following expres-
sions:

X
I
cos( , fMuNoTcln) I— (5.4)

exhibit resonances. The periods of these resonances,
tp —,

' fM„t,=it(2m +1)/co—o———0.055X(2m +1) nsec (m is
an integer), occur at —,

' fM„times the periods of the hyper-
fine interaction. That is, the periods are determined by
the "fraction" of time, ,' fM„t„that the muo—n spends in
the singlet rnuonium state. The resonances are a quantal
interference effect for the large rate-constant limit. Final-
ly the diamagnetic amplitude, Eq. (3.18), becomes

PM = M =s fM exp[ s(7 i s~2—)too~. /K—sn ]

PM = M c fM„exp[ ——c(A, i cA2—)toor IK—sn l

(5.3)

Associated with the first signals is the phase
cP„sfM„topic/n, wh—ile the second signals involve the
Phase y&+c fMumps c In. Thus the resolved signals exhib-
it simple exponential damping along with strongly time-
dependent phases. On the other hand, for low fields
where c =s, A, =A,

&

——,
'

A,2 and where 0 is not resolvable,
the phases of the triplet and singlet signals are constant,
while the amplitudes

PM PMu 2 fMuexp( 2 ~topic /Ksn0 1 1

P„=f„exPI—2 co~~c[Ai —(s +c )A2]/Ksn I(cos ( —,
'
fMucoorc/n)+sinh I 2 cop7c[Ai(c s) (c s—)A2]I—Ksn —

I
)'

(5.5)



The exponential decay of both the paramagnetic and di-
amagnetic signals involves the inverse of the product of
the total rate constant and the square of the number densi-

Th1s ls thc only place that the totR1 1atc enters thcsc
large rate expressions. Thus exponential damping will
only occur for small number densities.

ARGON

r

!
I

Fits of the above expressions, Eqs. (3.18) and (3.19), for
the diamagnetic muon and triplet muonium amplitudes
are now made to the available experimental data for the
noble gases. The theoretical line shapes describe the nor-
malized amplitudes of the p,SR signals, Eq. (2.5), as a
function of the time duration of the charge exchange re-
gime Rnd Rrc to bc compared to thc experimental RIDpll-

tudes or asymmetries divided by the absolute aluminum
asymmetry. Since the time duration t, of the charge ex-
change regime is inversely proportional to the number
density of the moderating gas, the line shapes are depicted
here as a function of the number density. Indeed, as the
experiments have 811 bccn fUQ at room temperature, then
the number density is simply proportional to the pressure
which I'epI'cscnts thc experimental variable. Both thc dl-
Rmagnctlc muon and triplet muonlum RIDplltudcs must be
fit with consistent sets of parameters. The parameters to

1fit are the total rate constant, Ks Er, +TK——c, the muon
fraction f„(=1—fM„),and the time duration r, .

MuoIl and muonlum amphtudcs ln pul c 81gon have
been observed at TRIUMF '" and at SIN (Schweizerisches
Institut fur Nuklearforschung) . For pressures greater
than 1 atm the diamagnetic muon amplitude has a con-

E CI2

f

I

I

I

I

t

I

I

Pressure(atm )
FIG. 2. Muonium triplet and singlet amplitudes for argon.

The triplet line is the upper one at large pressures.

stant value of 0.24, whereas the muonium amplitude is
gradually increasing up to 3 atm. Various fits can be
made to both the muon and muonium amplitudes which
represent the data equally well. For the diamagnetic sig-
nal, these fits all have the same fraction of muon, namely,f„=0.24 and the same duration of the charge exchange
regime r, =1.3/coo=0. 046 nsecatm. However, there is
only a lower limit on the total rate constant Ks, namely,
15.0raa ——4.2&(10"/sec. Two illustrative fits are shown.
In the first, see Fig. 1 the lower limit on Its has been as-
sumed. The squares represent the TRIUMF data, with
the remainder being the SIN data. For this fit the reso-
nances are not experi. mentally resolvable. In Fig. 2 the
cofIcspondlng pal amagnctlc IDuonlum amplitudes arc
plotted for the same set of parameters. Here the data

ARGON

Pressure(atm )

FIG. 1. Muon amplitude for argon. The points given with a
box in this figure and in Figs. 2—12 are TRIUMF data, , while
the remainder are from SIN. The parameters for this line shape
and those of Figs. 2 and 3 are Kg=15.Oculo, f„=0.24, and
'P~ = I.3/QPo.

O.O
0.0

Pressure(atm )

FIG. 3. Fraction of muon for argon.
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FIG. 8. Muon amplitude for argon.

approximation is inadequate or the experimental triplet
amplitudes between 1 and 3 atm are too low.

B. Krypton and xenon

Muon and muonium amplitudes have also been mea-
sured in pure krypton and xenon at TRIUMF ' and SIN.
The triplet muonium amplitudes are very similar for both
gases, while the diamagnetic muon amplitudes are less
than 0.05 for all pressures that have been measured. This
latter result forces an upper limit on the muon fraction,
namely, that f& be less than or equal to 0 05 Fi.ts .to the
triplet krypton and xenon amplitudes with this constraint
are not very good. The major problem in fitting the data
is that the theoretical line shapes are too large at high

FIG. 10. Muon amplitude for krypton. This is the predicted
muon line shape obtained from the parameters of the muonium
fit.

pressures. However in light of the argon results where,

again, there is a discrepancy at high pressures, the above
results for krypton and xenon are not unreasonable.
Representative fits for both krypton and xenon are
presented in Figs. 9—12. The parameters for the krypton
fit are Ks ——47.0coo ——13&(10" sec, f& ——0.05, and

r, = 1.5/co& ——0.054 nsec atm, while those for the xenon fit
are Ks ——30.0coo ——8.4 X 10" sec, f„=0.05, and
=1.6/coo ——0.057 nsecatm. There is very little difference
between these two sets of parameters which, again, is indi-
cative of the close resemblance of the experimental ampli-
tudes.

0.5
,

KRYPTON

0.5
XENON

0.4

0.3

E
&C

O.2—
0

U
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E

&C

O.2—
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Pressure(atm )

2.0
0.0

0.0

Pressure(atm )

2.0

FIG. 9. Muonium amplitude for krypton. The parameters
for these line shapes are Xs ——47.0c00, f„=0.05, and r, =1.&/~0.
The upper line at high pressures is the triplet signal.

FIG. 11. Muonium amplitude for xenon. The parameters for
these line shapes are It's 30 Octo, f„——=0..05, and r, =l 6/coo.
The upper line at high pressures is the triplet signal.
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FIG. 12. Muon amplitude for xenon. This is the predicted
muon line shape obtained from the parameters of the muonium

fit.

VII. DISCUSSION

An approximation to the spin dynamics associated with
the stopping process of highly energetic muons in single-
component gases has been presented in which the time-
dependent rates for electron capture and loss have been re-
placed by finite-width step functions of different heights
but equal widths, namely, the duration of the charge ex-
change regime t, . Expressions for the diamagnetic muon
and paramagnetic muonium amplitudes have been ob-
tained as a function of t, . The resulting line shapes have
two general features, namely, they are constant at short
times and exhibit resonances at long times. Also in gen-
eral, the triplet and singlet muonium amplitudes are not
equal. Neither the possible resonances nor the difference
between the triplet and singlet amplitudes have been ob-
served experimentally. However, the theoretical line
shapes obtained for argon, krypton, and xenon are in
reasonable agreement with the experimental data. This
suggests that the finite-width-step-function approximation
is not unreasonable, at least, as a first approximation. Fi-
nally, the discrepancies at high pressures and the possibili-
ties of observable resonances at low pressures suggest that
further experiments be carried out as a test of the theory.
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